Thèse soutenue

Vérification formelle des systèmes cyber-physiques dans le processus industriel de la conception basée sur modèle

FR  |  
EN
Auteur / Autrice : Nikolaos Kekatos
Direction : Goran FrehseThao Dang
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 17/12/2018
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale Mathématiques, sciences et technologies de l'information, informatique (Grenoble ; 1995-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire Verimag (Grenoble, Isère, France ; 1993-....)
Jury : Président / Présidente : Laurent Fribourg
Examinateurs / Examinatrices : Alexandre Chapoutot
Rapporteur / Rapporteuse : Benoît Caillaud

Résumé

FR  |  
EN

Les systèmes cyber-physiques sont une classe de systèmes complexe, de grande échelle, souvent critiques de sûreté, qui apparaissent dans des applications industrielles variées. Des approches de vérification formelle sont capable de fournir des garanties pour la performance et la sûreté de ces systèmes. Elles nécessitent trois éléments : un modèle formel, une méthode de vérification, ainsi qu’un ensemble de spécifications formelles. En revanche, les modèles industriels sont typiquement informels, ils sont analysés dans des environnements de simulation informels et leurs spécifications sont décrits dans un langage naturel informel. Dans cette thèse, nous visons à faciliter l’intégration de la vérification formelle dans le processus industriel de la conception basé sur modèle.Notre première contribution clé est une méthodologie de transformation de modèle. A partir d’un modèle de simulation standard, nous le transformons en un modèle de vérification équivalent, plus précisément en un réseau d’automates hybrides. Le processus de transformation prend en compte des différences de syntaxes, sémantique et d’autres aspects de la modélisation. Pour cette classe de modèle formel, des algorithmes d’atteignabilité peuvent être appliqués pour vérifier des propriétés de sûreté. Un obstacle est que des algorithmes d’atteignabilité se mettent à l’échelle pour des modèles affines par morceaux, mais pas pour des modèles non linéaires. Pour obtenir des surapproximations affines par morceaux des dynamiques non linéaires, nous proposons une technique compositionnelle d’hybridisation syntaxique. Le résultat est un modèle très compact qui retient la structure modulaire du modèle d’origine de simulation, tout en évitant une explosion du nombre de partitions.La seconde contribution clé est une approche pour encoder des spécifications formelles riches de façon à ce qu’elles peuvent être interprétées par des outils d’atteignabilité. Nous prenons en compte des spécifications exprimées sous forme d’un gabarit de motif (pattern template), puisqu’elles sont proche au langage naturel et peuvent être compris facilement par des utilisateurs non experts. Nous fournissons (i) des définitions formelles pour des motifs choisis, qui respectent la sémantique des automates hybrides, et (ii) des observateurs qui encodes les propriétés en tant qu’atteignabilité d’un état d’erreur. En composant ces observateurs avec le modèle formel, les propriétés peuvent être vérifiées par des outils standards de vérification qui sont automatisés.Finalement, nous présentons une chaîne d’outils semi-automatisée ainsi que des études de cas menées en collaboration avec des partenaires industriels.