Thèse soutenue

Théorie de Hodge mixte et variétés des représentations des groupes fondamentaux des variétés algébriques complexes

FR  |  
EN
Auteur / Autrice : Louis-Clément Lefèvre
Direction : Philippe Eyssidieux
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 25/06/2018
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale mathématiques, sciences et technologies de l'information, informatique (Grenoble ; 199.-....)
Partenaire(s) de recherche : Laboratoire : Institut Fourier (Grenoble)
Jury : Président / Présidente : Benoît Claudon
Examinateurs / Examinatrices : Catriona Maclean, Joana Cirici
Rapporteurs / Rapporteuses : Nero Budur, Carlos Simpson

Résumé

FR  |  
EN

La théorie de Hodge mixte de Deligne fournit des structures supplémentaires sur les groupes de cohomologie des variétés algébriques complexes. Depuis, des structures de Hodge mixtes ont été construites sur les groupes d'homotopie rationnels de telles variétés par Morgan et Hain. Dans cette lignée, nous construisons des structures de Hodge mixtes sur des invariants associés aux représentations linéaires des groupes fondamentaux des variétés algébriques complexes lisses. Le point de départ est la théorie de Goldman et Millson qui relie la théorie des déformations de telles représentations à la théorie des déformations via les algèbres de Lie différentielles graduées. Ceci a été relu par P. Eyssidieux et C. Simpson dans le cas des variétés kählériennes compactes. Dans le cas non compact, et pour des représentations d'image finie, Kapovich et Millson ont construit seulement des graduations non canoniques. Pour construire des structures de Hodge mixtes dans le cas non compact et l'unifier avec le cas compact traité par Eyssidieux-Simpson, nous ré-écrivons la théorie de Goldman-Millson classique en utilisant des idées plus modernes de la théorie des déformations dérivée et une construction d'algèbres L-infini due à Fiorenza et Manetti. Notre structure de Hodge mixte provient alors directement du H^0 d'un complexe de Hodge mixte explicite, de façon similaire à la méthode de Hain pour le groupe fondamental, et dont la fonctorialité apparaît clairement.