Thèse soutenue

Amélioration des performances des cellules solaires à base de Kesterite

FR  |  
EN
Auteur / Autrice : Md Abdul Aziz Suzon
Direction : Henri Mariette
Type : Thèse de doctorat
Discipline(s) : Matériaux, Mécanique, Génie civil, Electrochimie
Date : Soutenance le 03/12/2018
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale Ingénierie - matériaux mécanique énergétique environnement procédés production (Grenoble ; 2008-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'innovation pour les technologies des énergies nouvelles et les nanomatériaux (Grenoble)
Jury : Président / Présidente : Hubert Renevier
Examinateurs / Examinatrices : Muhammad Monirul Islam, Louis Grenet
Rapporteurs / Rapporteuses : Edgardo Saucedo, Charlotte Platzer-Björkman

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

Le but de ce travail est d'étudier et de développer des voies pour améliorer l'efficacité des cellules solaires à base de Kesterite. La première partie de ce manuscrit traite du développement d’un procédé de base : le mécanisme de formation de l’absorbeur est étudié en fonction des conditions de croissance du composé Cu2ZnSnS4 (CZTS à base de soufre pur) et Cu2ZnSnSe4 (CZTSe à base de sélénium pur). Un procédé séquentiel en deux étapes a été utilisé pour synthétiser l’absorbeur en Kesterite. La première étape est un dépôt par pulvérisation cathodique des précurseurs métalliques (Cu, Zn et Sn élémentaires) et la deuxième étape consiste en un recuit des précurseurs sous atmosphère de sélénium (pour le CZTSe dans un réacteur semi-ouvert) ou de soufre (pour le CZTS dans un réacteur ouvert). Différentes optimisations du procédé sont réalisées pour améliorer la microstructure et les performances des dispositifs. Dans le cas du dispositif à base de CZTSe, le meilleur rendement de conversion photovoltaïque obtenu est de 7,6% en utilisant un profil de température en deux étapes et un suscepteur fermé. Pour les cellules solaires à base de CZTS, la meilleure performance obtenue est de 5,9% grâce à l’optimisation de la température et de la pression partielle ensoufre : Les performances des dispositifs augmentent avec la pression partielle en soufre.L’incorporation de Na (Sodium) et de Sb (Antimoine) dans les absorbeurs Kesterite en pur soufre a été testée comme la première stratégie pour améliorer les performances des dispositifs à base de CZTS. L'incorporation de Sb n‘entraîne pas d'amélioration en termes de propriétés des matériaux ou des dispositifs, tandis que le co-dopage avec Na et Sb a montré une morphologie améliorée des absorbeurs. Cependant, cette amélioration n’est suivie d’aucun effet sur les propriétés photovoltaïques du dispositif. L’incorporation de Sb n’est donc pas bénéfique pour la cellule solaire à base de CZTS. D'autre part, la contamination intentionnelle avec du Na s'est avérée bénéfique pour les cellules solaires, particulièrement pour la tension en circuit ouvert. Par conséquent, l’efficacité des dispositifs avec une teneur en Na optimisée est doublée (> 4,5 %) par rapport à celle des échantillons de référence sans Na.La seconde étude pour améliorer les performances des cellules solaires à base de Kesterite concerne l’introduction de gradients de chalcogènes (S/Se) dans l’épaisseur de l’absorbeur. Le but est d’obtenir des gradients de bande interdite afin d’augmenter la longueur de collection des porteurs et de diminuer les phénomènes de recombinaison. Dans ce but, deux procédés sont développés pour réaliser des gradients simples (en face avant ou en face arrière de l’absorbeur). Ces procédés consistent en des recuits successifs (sulfurisation/sélénisation) d’empilements de précurseurs. Pour obtenir un gradient en face avant, un recuit de sulfurisation à différentes températures et durées est appliqué après un recuit de sélénisation standard. Une température plus importante entraîne un gradient plus marqué. Une couche de défaut à base de soufre pur est également formée au cours de ce processus, qui peut être éliminée à l'aide d'une gravure au HCl. Le rendement de conversion photovoltaïque le plus élevé obtenu à l’aide de ce procédé est de 3,5%. Pour obtenir un gradient en face arrière, un recuit de sulfurisation à différentes températures avant un recuit de sélénisation standard a été utilisé. A faible température de sulfurisation, des absorbeurs avec une bonne morphologie ont été obtenus mais sans gradient de composition en chalcogène tandis que l’utilisation de températures de sulfurisation plus importantes ont entraîné l’apparition de gradients de composition mais ont détérioré la morphologie des absorbeurs. Ainsi, les voies et limites pour réaliser des absorbeurs de Kesterite à gradient de bande interdite sont proposées.