Thèse soutenue

Spécification et Analyse d'un AFDX étendu avec TSN/BLS pour des applications avioniques de criticités mixtes

FR  |  
EN
Auteur / Autrice : Anaïs Finzi
Direction : Emmanuel LochinAhlem Mifdaoui
Type : Thèse de doctorat
Discipline(s) : Réseaux, télécom, système et architecture
Date : Soutenance le 11/06/2018
Etablissement(s) : Toulouse, ISAE
Ecole(s) doctorale(s) : École doctorale Mathématiques, informatique et télécommunications (Toulouse)
Partenaire(s) de recherche : Equipe de recherche : Équipe d'accueil doctoral Modélisation et ingénierie des systèmes (Toulouse, Haute-Garonne)
Laboratoire : Institut supérieur de l'aéronautique et de l'espace (Toulouse, Haute-Garonne). Département d’ingénierie des systèmes complexes
Jury : Président / Présidente : Jean-Yves Le Boudec
Examinateurs / Examinatrices : Fabrice Frances
Rapporteurs / Rapporteuses : Laurent George, Ye-Qiong Song

Résumé

FR  |  
EN

L'augmentation du nombre de systèmes interconnectés et l’expansion des données échangées dans les réseaux avioniques ont contribué à la complexification des architectures de communication. Pour gérer cette évolution, une nouvelle solution basée sur un réseau cœur haut débit, e.g., l'AFDX (Avionics Full DupleX), a été implémentée sur l'A380. Cependant, il reste des réseaux bas débit, e.g, CAN ou A429, utilisés pour certaines fonctions spécifiques. Cette architecture réduit le délai de développement, mais en contrepartie, elle conduit à de l’hétérogénéité et à de nouveaux challenges pour garantir les contraintes temps-réel. Pour résoudre ces challenges, une architecture homogène basé sur l'AFDX pourrait apporter de grands avantages, tels que une facilité de l'installation et maintenance, et une réduction de poids et coûts. Cette architecture homogène doit supporter des applications de criticités mixtes, où coexistent les trafics critiques (SCT), Best-effort (BE) et le trafic AFDX actuel (RC). Pour atteindre ce but, nous commençons par évaluer les avantages et les inconvénients des solutions existantes par rapport aux contraintes avioniques. Cela nous conduit à sélectionner le Burst Limiting Shaper (BLS) (proposé par le groupe IEEE Time Sensitive Networking (TSN)) allié à un ordonnanceur Static Priority non-preemptif. Ainsi, nous identifions quatre contributions principales dans cette thèse. Tout d'abord, nous spécifions un AFDX étendu avec le TSN/BLS. Une analyse préliminaire basée sur de la simulation a donné des résultats encourageants pour poursuivre sur cette voie. En second, nous détaillons une analyse temporelle de l'AFDX étendu, grâce au Network Calculus, pour calculer des bornes maximales des délais pire cas des différents types de trafic, pour prouver le déterminisme du réseau et le respect des contraintes temporelles. Une analyse de performance préliminaire montre l'efficacité de la solution à améliorer les délais de RC, tout en garantissant les contraintes. Cependant, cette analyse a aussi montré certaines limitations du modèle en termes de pessimisme. Notre troisième contribution est par conséquent la réduction de ce pessimisme, grâce à une seconde modélisation de l'AFDX étendu, et à une méthode de paramétrage des variables système. Cette méthode permet d'améliorer les performances de RC tout en garantissant les contraintes temporelles du SCT et RC. Finalement, nous validons notre proposition à travers des études de cas avioniques réalistes pour vérifier son efficacité. Les résultats montrent une forte amélioration des délais de RC ainsi que de l'ordonnançabilité de SCT et RC, en comparaison à l'AFDX actuel et au Deficit Round Robin.