Thèse soutenue

Modèle hybride pour simuler l’écoulement à travers un birotor éolien caréné et sa validation expérimentale
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Michal Lipian
Direction : Fawaz MassouhKrzysztof Jozwik
Type : Thèse de doctorat
Discipline(s) : Génie énergétique
Date : Soutenance le 17/12/2018
Etablissement(s) : Paris, ENSAM en cotutelle avec Institute of Turbomachinery, Lodz University of Technology
Ecole(s) doctorale(s) : École doctorale Sciences des métiers de l'ingénieur (Paris)
Partenaire(s) de recherche : Laboratoire : Laboratoire de Dynamique des Fluides (Paris) - Laboratoire de Dynamique des Fluides
Jury : Président / Présidente : Michael Todorov
Examinateurs / Examinatrices : Fawaz Massouh, Krzysztof Jozwik, Farid Bakir
Rapporteurs / Rapporteuses : Piotr Doerffer, Frank Rueckert

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

La thèse résume la recherche sur le fonctionnement et l’écoulement autour d’une éolienne caréné à deux rotors. Le placement d’une turbine à l’entrée d’un canal divergent permet d’augmenter le débit massique à travers le rotor. Afin de mieux tirer parti de l’augmentation de la vitesse du vent à l’entrée du diffuseur, il a été décidé d’examiner la possibilité de placer un deuxième rotor, tournant dans le sens opposé, dans cette zone.L'étude menée combinait plusieurs voies de recherche différentes, y compris les méthodes de la mécanique des fluides numérique (CFD) et des études expérimentales. Cela a permis de mieux comprendre la nature de l'écoulement et du fonctionnement d'une éolienne à deux rotors. Des recherches expérimentales ont été menées dans la soufflerie de l’Institut de Turbomachinerie de l’Ecole Polytechnique de Lodz (Pologne). Une série de mesures de systèmes d'éoliennes divers, avec et sans carénage, à un et deux rotors, a été réalisée. Les résultats recueillis ont permis de confirmer que le carénage pouvait augmenter considérablement (même deux fois) l'efficacité du rotor. Cependant, les forces aérodynamiques et la vitesse de rotation augmentent également. Cet inconvénient peut être partiellement résolu en utilisant un deuxième rotor et en répartissant les charges aérodynamiques sur deux étages de turbine.Une partie importante de l'étude était les simulations numériques. Ils ont permis de préciser la nature et les paramètres de l'écoulement et d'estimer leur impact sur les performances de l'éolienne. Deux modèles numériques différents ont été développés:• Modèle rotor complet (anglais : Fully-resolved Rotor Model, FRM): modèle URANS dans ANSYS CFX, basé sur la discrétisation de la géométrie complète du rotor; ce modèle a été utilisé pour l'analyse de l’écoulement,• Modèle hybride CFD-BET (théorie de l’élément de pâle): modèle RANS dans ANSYS Fluent, dans lequel le rotor est représenté par les termes source dans les équations de Navier-Stokes, déterminés par un code interne; ce modèle a été utilisé pour évaluer les performances de différentes configurations d'éoliennes.Au cours de la recherche, une correction empirique interne de la perte d’extrémité de la pâle (anglais : tip loss correction) a été proposée, en tenant compte de l’influence du diffuseur. L’étude réalisée a permis d’observer, entre autres, que le déplacement du rotor en aval vers la sortie du diffuseur pouvait entraîner une réduction de la vitesse du vent à travers le rotor en amont, placé à l’entrée du diffuseur, et une diminution de la puissance globale du système.