Thèse soutenue

Gestion de robots mobiles et redondants et collaboratifs en environnement contraint et dynamique

FR  |  
EN
Auteur / Autrice : David Busson
Direction : Richard Béarée
Type : Thèse de doctorat
Discipline(s) : Automatique
Date : Soutenance le 26/11/2018
Etablissement(s) : Paris, ENSAM
Ecole(s) doctorale(s) : École doctorale Sciences des métiers de l'ingénieur (Paris)
Partenaire(s) de recherche : Laboratoire : LISPEN - Laboratoire d’Ingénierie des Systèmes Physiques et Numériques
Jury : Président / Présidente : Rachid Alami
Examinateurs / Examinatrices : Richard Béarée, Bruno Siciliano, Olivier Gibaru
Rapporteurs / Rapporteuses : Hélène Chanal, Vincent Padois

Résumé

FR  |  
EN

L’utilisation de robots collaboratifs dans l’industrie de production est en plein essor. Ces robots, dont la puissance est limitée, sont dotés de capteurs leur permettant de détecter la présence d’obstacles, afin de garantir la sécurité des humains se trouvant aux alentours. On s’intéresse dans cette thèse à l’utilisation de systèmes redondants, collaboratifs et mobiles (bras articulés montés sur plateformes mobiles), dans un environnement de production aéronautique peuplé d’humains, pour la réalisation d’opérations d’assemblage. Du point de vue des process, l’utilisation de ces systèmes, souvent beaucoup moins imposants et rigides que leurs homologues non collaboratifs, est jalonnée de défis. La grande souplesse mécanique et les faibles couples qui les caractérisent peuvent induire des imprécisions de positionnement et une incapacité à soutenir l’intensité d’une interaction physique. Ce contexte induit également un besoin d’autonomie de ces systèmes, qui sont amenés à travailler dans des environnements en perpétuelle évolution. Dans cette thèse, une formulation de la redondance cinématique est d’abord présentée. Le formalisme associé permet de simplifier l’exploitation de la liberté que ces systèmes possèdent sur le choix des postures à utiliser pour réaliser des tâches de placement statique de l’effecteur. Ce formalisme est ensuite exploité pour améliorer et caractériser le comportement en déformation et la capacité d’application d’efforts des systèmes redondants sériels. Enfin, le sujet de la planification des mouvements de systèmes robotisés dans un environnement dynamique et encombré est considéré. La solution présentée adapte l’algorithme bien connu des Probabilistic RoadMaps pour y inclure une anticipation des trajectoires des obstacles dynamiques. Cette solution permet de planifier des mouvements sécuritaires, peu intrusifs et efficaces, jusqu’à la destination.