Thèse soutenue

Etude de schémas de confinement d'ordre élevé

FR  |  
EN
Auteur / Autrice : Ilias Petropoulos
Direction : Paola CinnellaMichel Costes
Type : Thèse de doctorat
Discipline(s) : Génie énergétique (AM)
Date : Soutenance le 22/01/2018
Etablissement(s) : Paris, ENSAM
Ecole(s) doctorale(s) : École doctorale Sciences des métiers de l'ingénieur (Paris)
Partenaire(s) de recherche : Laboratoire : Laboratoire de Dynamique des Fluides (Paris) - Laboratoire de Dynamique des Fluides
Jury : Président / Présidente : Christophe Corre
Examinateurs / Examinatrices : Paola Cinnella, Michel Costes, Christophe Corre, Éric Lamballais
Rapporteurs / Rapporteuses : Héloïse Beaugendre, John Steinhoff

Résumé

FR  |  
EN

Les tourbillons sont des structures importantes pour une large gamme d'écoulements de fluides, notamment les sillages, l'interaction fluide-structure, les décollements de couche limite et la turbulence. Cependant, les méthodes numériques classiques n'arrivent généralement pas à donner une représentation précise des tourbillons. Ceci est principalement lié à la dissipation numérique des schémas qui, si elle n'est pas spécifiquement calibrée pour le calcul des écoulements tourbillonnaires, conduit à une diffusion artificielle très rapide des tourbillons dans les calculs. Parmi d'autres approches, la méthode "Vorticity Confinement" (VC) de J. Steinhoff permet de compenser la dissipation des schémas au sein des tourbillons en introduisant une anti-dissipation non-linéaire, mais elle n’est précise qu’au premier ordre. D’autre part, des progrès significatifs ont récemment été accomplis dans le développement de méthodes numériques d’ordre élevé. Celles-ci permettent de réduire ce problème de dissipation excessive, mais la diffusion des tourbillons reste importante pour de nombreuses applications. La présente étude vise à développer des extensions d’ordre élevé de la méthode VC pour réduire cette dissipation excessive des tourbillons, tout en préservant la précision d'ordre élevé des schémas. Tout d'abord, les schémas de confinement sont analysés dans le cas de l'équation de transport linéaire, à partir de discrétisations couplées et découplées en espace et en temps. Une analyse spectrale de ces schémas est effectuée analytiquement et numériquement en raison de leur caractère non linéaire. Elle montre des propriétés dispersives et dissipatives améliorées par rapport aux schémas linéaires de base à tous les ordres de précision. Dans un second temps, des schémas VC précis au troisième et cinquième ordre sont développés pour les équations de Navier-Stokes compressibles. Les termes correctifs restent conservatifs, invariants par rotation et indépendants du schéma de base, comme la formulation originale VC2. Les tests numériques valident l'ordre de précision et la capacité des extensions VC d’ordre élevé à réduire la dissipation dans les tourbillons. Enfin, les schémas avec VC sont appliqués au calcul des écoulements turbulents, dans une approche de simulation de grandes échelles implicite (ILES). Les schémas numériques avec VC présentent une résolvabilité améliorée par rapport à leur version linéaire de base, et montrent leur capacité à décrire de façon cohérente ces écoulements tourbillonnaires complexes.