Thèse soutenue

Optimisation numérique et statistique pour la microscopie à éclairement structuré non contrôlé

FR  |  
EN
Auteur / Autrice : Penghuan Liu
Direction : Jérôme IdierSébastien Bourguignon
Type : Thèse de doctorat
Discipline(s) : Signal, Image, Vision
Date : Soutenance le 25/05/2018
Etablissement(s) : Ecole centrale de Nantes
Ecole(s) doctorale(s) : École doctorale Mathématiques et sciences et technologies de l'information et de la communication (Rennes)
Partenaire(s) de recherche : Laboratoire : Laboratoire des Sciences du Numérique de Nantes
Jury : Président / Présidente : David Rousseau
Examinateurs / Examinatrices : Jérôme Idier, Sébastien Bourguignon, David Rousseau, Laurent Mugnier, Jean-François Giovannelli, Perrine Paul-Gilloteaux
Rapporteur / Rapporteuse : Laurent Mugnier, Jean-François Giovannelli

Résumé

FR  |  
EN

La microscopie à éclairements structurés(structured illumination microscopy, SIM) permet de dépasser la limite de résolution en microscopie optique due à la diffraction, en éclairant l’objet avec un ensemble de motifs périodiques parfaitement connus. Cependant, il s’avère difficile de contrôler exactement la forme des motifs éclairants. Qui plus est, de fortes distorsions de la grille de lumière peuvent être générées par l’échantillon lui-même dans le volume d’étude, ce qui peut provoquer de forts artefacts dans les images reconstruites. Récemment, des approches dites blind-SIM ont été proposées, où les images sont acquises à partir de motifs d’éclairement inconnus, non-périodiques, de type speckle,bien plus faciles à générer en pratique. Le pouvoir de super résolution de ces méthodes a été observé, sans forcément être bien compris théoriquement. Cette thèse présente deux nouvelles méthodes de reconstruction en microscopie à éclairements structurés inconnus (blind speckle-SIM) : une approche conjointe et une approche marginale. Dans l’approche conjointe, nous estimons conjointement l’objet et les motifs d’éclairement au moyen d’un modèle de type Basis Pursuit DeNoising (BPDN) avec une régularisation en norme lp,q où p=>1 et 0<q<=1. La norme lp,q est introduite afin de prendre en compte une hypothèse de parcimonie sur l’objet. Dans l’approche marginale, nous reconstruisons uniquement l’objet et les motifs d’éclairement sont traités comme des paramètres de nuisance. Notre contribution est double. Premièrement, une analyse théorique démontre que l’exploitation des statistiques d’ordre deux des données permet d’accéder à un facteur de super résolution de deux, lorsque le support de la densité spectrale du speckle correspond au support fréquentiel de la fonction de transfert du microscope. Ensuite, nous abordons le problème du calcul numérique de la solution. Afin de réduire à la fois le coût de calcul et les ressources en mémoire, nous proposons un estimateur marginal à base de patches. L’élément clé de cette méthode à patches est de négliger l’information de corrélation entre les pixels appartenant à différents patches. Des résultats de simulations et en application à des données réelles démontrent la capacité de super résolution de nos méthodes. De plus, celles-ci peuvent être appliquées aussi bien sur des problèmes de reconstruction 2D d’échantillons fins, mais également sur des problèmes d’imagerie 3D d’objets plus épais.