Thèse soutenue

Multi color space LBP-based feature selection for texture classification

FR  |  
EN
Auteur / Autrice : Vinh Truong Hoang
Direction : Denis HamadAlice PorebskiNicolas Vandenbroucke
Type : Thèse de doctorat
Discipline(s) : Traitement du signal et des images
Date : Soutenance le 15/02/2018
Etablissement(s) : Littoral
Ecole(s) doctorale(s) : École doctorale Sciences pour l'ingénieur (Lille)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'informatique, signal et image de la Côte d'Opale (Calais, Pas de Calais) - Laboratoire d'Informatique Signal et Image de la Côte d'Opale / LISIC
Jury : Président / Présidente : Olivier Alata
Examinateurs / Examinatrices : Denis Hamad, Alice Porebski, Nicolas Vandenbroucke, Jean-Christophe Burie, Fadi Dornaika
Rapporteurs / Rapporteuses : Jean-Christophe Burie, Fadi Dornaika

Résumé

FR  |  
EN

L'analyse de texture a été largement étudiée dans la littérature et une grande variété de descripteurs de texture ont été proposés. Parmi ceux-ci, les motifs binaires locaux (LBP) occupent une part importante dans la plupart des applications d'imagerie couleur ou de reconnaissance de formes et sont particulièrement exploités dans les problèmes d'analyse de texture. Généralement, les images couleurs acquises sont représentées dans l'espace colorimétrique RGB. Cependant, il existe de nombreux espaces couleur pour la classification des textures, chacun ayant des propriétés spécifiques qui impactent les performances. Afin d'éviter la difficulté de choisir un espace pertinent, la stratégie multi-espace couleur permet d'utiliser simultanémentles propriétés de plusieurs espaces. Toutefois, cette stratégie conduit à augmenter le nombre d'attributs, notamment lorsqu'ils sont extraits de LBP appliqués aux images couleur. Ce travail de recherche est donc axé sur la réduction de la dimension de l'espace d'attributs générés à partir de motifs binaires locaux par des méthodes de sélection d'attributs. Dans ce cadre, nous considérons l'histogramme des LBP pour la représentation des textures couleur et proposons des approches conjointes de sélection de bins et d'histogrammes multi-espace pour la classification supervisée de textures. Les nombreuses expériences menées sur des bases de référence de texture couleur, démontrent que les approches proposées peuvent améliorer les performances en classification comparées à l'état de l'art.