Approches de bio-informatique et de modélisation pour une compréhension du stress oxydant au niveau systémique
Auteur / Autrice : | Elias Zgheib |
Direction : | Frédéric Yves Bois |
Type : | Thèse de doctorat |
Discipline(s) : | Bio-ingénierie et Mathématiques Appliquées : Unité de Recherche Biomécanique et Bio-ingénierie (UMR-7338) |
Date : | Soutenance le 18/12/2018 |
Etablissement(s) : | Compiègne |
Ecole(s) doctorale(s) : | École doctorale Sciences pour l'ingénieur (Compiègne) |
Partenaire(s) de recherche : | Laboratoire : Biomécanique et Bioingéniérie |
Résumé
Avec les nouvelles avancées en biologie et toxicologie, on constate de plus en plus la complexité des mécanismes et le grand nombre de voies de toxicité. Les concepts de ‘biologie systémique’ (SB) et de ‘voies des effets indésirables’ (adverse outcome pathway, AOP) pourraient être des outils appropriés pour l’étude de la toxicologie à ces niveaux de complexité élevés. Le point central du travail de cette thèse est le développement d’un modèle de SB du rôle de la voie de signalisation Nrf2 dans le contrôle du stress oxydant. Pour la calibration de ce modèle avec des données expérimentales (exposition des cellules rénales RPTEC/TERT1 à différentes doses de bromate de potassium), plusieurs cycles de proposition/vérification d’hypothèses ont progressivement contribué à l’ajout de nouvelles réactions. Ces nouvelles hypothèses (par exemple : action directe du bromate de potassium sur le DCF, atténuation de la fluorescence du DCF avec le temps, etc.) devraient être confirmées par de futures expérimentations. Ce modèle de SB a été ensuite utilisé pour la quantification d’un AOP de l’insuffisance rénale chronique et comparé à deux autres approches: l’utilisation de modèles statistiques empiriques et celle d’un réseau Bayésien dynamique. Les calibrations des paramètres ont été effectuées par chaînes de Markov simulées MCMC avec le logiciel GNU MCSim avec une quantification des incertitudes associées aux prédictions. Même si la mise au point du modèle SB a été une tâche complexe, la compréhension de la biologie qu’offre ce modèle n’est pas accessible aux deux autres approches. Nous avons aussi évalué les interactions entre Nrf2 et deux autres voies de toxicité, AhR et ATF4, dans le cadre d’une analyse utilisant des données de toxico-génomique provenant de trois projets différents. Les résultats de cette dernière analyse suggèrent d’ajouter au modèle SB de Nrf2 la co-activation par AhR de plusieurs gènes (par exemple, HMOX1, SRXN1 et GCLM) ainsi que d’associer (au moins partiellement) à ce modèle la voie ATF4. Malgré leur complexité, les modèles SB constituent un investissement intéressant pour le développement de la toxicologie prédictive.