Etude expérimentale de la concentration de particules solides dans les écoulements volcaniques biphasés turbulents
Auteur / Autrice : | Anne Weit |
Direction : | Olivier Roche |
Type : | Thèse de doctorat |
Discipline(s) : | Volcanologie |
Date : | Soutenance le 13/12/2018 |
Etablissement(s) : | Université Clermont Auvergne (2017-2020) |
Ecole(s) doctorale(s) : | École doctorale des sciences fondamentales (Clermont-Ferrand) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire Magmas et Volcans / LMV |
Jury : | Président / Présidente : Laura Pioli |
Examinateurs / Examinatrices : Guillaume Carazzo, Lucia Gurioli, Franck Donnadieu | |
Rapporteur / Rapporteuse : Laura Pioli, Jeremy Phillips |
Mots clés
Résumé
Des mélanges de gaz et de particules sont présents dans divers environnements géophysiques. De tels mélanges chauds sont générés par des éruptions volcaniques explosives et comprennent des écoulements de conduit, des jets et des panaches, ainsi que des courants de densité pyroclastiques. La concentration de particules dans ces mélanges volcaniques peut varier fortement, allant de concentrations élevées (>50 % en volume) dans les écoulements denses fluidisés à des concentrations très faibles dans les suspensions diluées dans lesquelles les particules sont mises en suspension par la phase gazeuse turbulente. Une limite de concentration inférieure à ~% en volume dans les suspensions diluées a été suggérée par des études récentes, car des concentrations plus élevées nécessiteraient une énergie cinétique turbulente excessive. L'objectif principal de cette thèse est d'étudier expérimentalement le comportement d'un écoulement d'air turbulent dans un cylindre avec des concentrations de particules croissantes, pour différents nombres de Reynolds et en utilisant différents types de particules. Les nombres de Reynolds des mélanges gaz-particules dans les expériences atteignaient ~106. Une première série d'expériences a été menée avec des billes de verre de différentes tailles allant de 75-80 μm jusqu'à 2 mm, pour un total de huit tailles de particules. Au-dessus d'un seuil de concentration moyenne de 0.5-3 % en volume, qui augmentait avec le nombre de Reynolds, le comportement de l'écoulement a montré une transition d'une suspension homogène de particules (sous la concentration maximale) vers une séparation en une partie basale dense et une partie supérieure diluée contenant la concentration maximale des particules. Ce seuil de concentration a été détecté à l'aide de mesures de pression et d'une méthode impliquant une sphère dont la densité était légèrement inférieure à la densité apparente des particules et qui pouvait donc flotter au-dessus de la partie basale dense, si celle-ci était présente. Des vidéos à haute vitesse ont révélé que l'apparition de la concentration maximale de particules coïncidait avec l'émergence d’amas de particules dans la partie turbulente diluée. Dans une deuxième partie de la thèse, les expériences ont été répétées pour cinq gammes de tailles de particules de céramique et elles ont révélé le même comportement général que pour les billes de verre. Pour les deux types de particules, une concentration maximale a pu être détectée pour presque toutes les tailles de particules et a montré une augmentation avec le nombre de Reynolds à la puissance 1/5 (billes de verre) ou 0.4 (billes de céramique). Compte tenu du nombre de Reynolds des particules, la concentration maximale des particules augmente ensuite jusqu'à la puissance de 1/6 pour les particules de céramique et de verre. Ces résultats ouvrent de nouvelles perspectives sur la structure des mélanges gaz-particules volcaniques et ils fournissent également des contraintes pour les données d'entrée et de sortie des simulations numériques et pour les observations géophysiques.