Architectures reconfigurables pour l’accélération des CNNs. Applications sur cameras intelligentes à base de FPGAs
Auteur / Autrice : | Kamel Abdelouahab |
Direction : | François Berry, Maxime Pelcat |
Type : | Thèse de doctorat |
Discipline(s) : | Electronique et Architecture de Systèmes |
Date : | Soutenance le 11/12/2018 |
Etablissement(s) : | Université Clermont Auvergne (2017-2020) |
Ecole(s) doctorale(s) : | École doctorale des sciences pour l'ingénieur (Clermont-Ferrand) |
Partenaire(s) de recherche : | Laboratoire : Institut Pascal (Aubière, Puy-de-Dôme) |
Jury : | Président / Présidente : Jocelyn Sérot |
Examinateurs / Examinatrices : Cédric Bourrasset, Luca Maggiani | |
Rapporteur / Rapporteuse : Francesca Palumbo, Daniel Ménard |
Mots clés
Mots clés contrôlés
Résumé
Les Réseaux de Neurones Convolutifs profonds (CNNs) ont connu un large succès au cours de la dernière décennie, devenant un standard de la vision par ordinateur. Ce succès s’est fait au détriment d’un large coût de calcul, où le déploiement des CNNs reste une tâche ardue surtout sous des contraintes de temps réel.Afin de rendre ce déploiement possible, la littérature exploite le parallélisme important de ces algorithmes, ce qui nécessite l’utilisation de plate-formes matérielles dédiées. Dans les environnements soumis à des contraintes de consommations énergétiques, tels que les nœuds des caméras intelligentes, les cœurs de traitement à base de FPGAs sont reconnus comme des solutions de choix pour accélérer les applications de vision par ordinateur. Ceci est d’autant plus vrai pour les CNNs, où les traitements se font naturellement sur un flot de données, rendant les architectures matérielles à base de FPGA d’autant plus pertinentes. Dans ce contexte, cette thèse aborde les problématiques liées à l’implémentation des CNNs sur FPGAs. En particulier, ces travaux visent à améliorer l’efficacité des implantations grâce à deux principales stratégies d’optimisation; la première explore le modèle et les paramètres des CNNs, tandis que la seconde se concentre sur les architectures matérielles adaptées au FPGA.