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Abstract / Résumé

English version

n this thesis, we are initially interested in the phase transitions that take place in
liquid crystals (LC), from a theoretical and numerical point of view. Indeed, the
results presented here are derived from Monte Carlo (MC) simulations and ana-
lytical developments based on statistical physics and condensed matter models.

A strong analogy exists between spin systems and LC. For example, the latter have phases
where the molecules are all aligned in the same direction (orientational order) comparable
to spins in ferromagnetic materials. Other phases, called cholesteric, are characterized by a
molecular arrangement very similar to the helimagnetic structures. But liquid crystals being
an intermediate state of matter, between the solid and the liquid phase, it is necessary to
take into account the motions of the molecules in the models and to adapt accordingly the
MC algorithm.

After a short and general introduction on LC and their applications in the first chapter, the
second chapter is devoted to MC methods and the adaptation of the Metropolis-Hastings
algorithm in order to introduce the mobility of molecules in our systems.

Chapter III is a test case to simulate LC. We consider a set of molecules (which we will
call spins for convenience in analogy with condensed matter) on a lattice. The number of
molecules is smaller than the number of the lattice sites to allow for a molecule mobility
between sites. The interaction between nearest neighbouring spins is supposed to be a Potts
model. The lowest energy state corresponds to the case where all the spins are packed at
the bottom of the tank. This solid ground state becomes a liquid at high temperatures.
This system is first treated with a mean-field (grand-canonical) analysis whose results are
confirmed by the MC simulations. It appears that the surface layers undergo a melting and
that the core of the remaining solid undergoes a first-order phase transition. The influence
of the size effects, the concentration of the number of spins and the shape of the tank was
studied.
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The following chapter is devoted to particularly topological structures which are skyrmions
and stripe structures. These structures are often observed in LC. We use a Dzyaloshinski-
Moria (DM) interaction of strength D in addition to an exchange interaction J to study
properties of thin films. In a first part of the chapter, we study the spin-wave excitations,
also termed magnons, that are the result of a collective excitation of spins. Using the Green’s
function, we calculate the spin-wave spectrum which is used next to determine properties
at T = 0 (quantum fluctuations) and at finite temperatures. In the second part of the chap-
ter, we apply a magnetic field H orthogonal to the thin film making appear a crystal of
skyrmions. Using MC simulations, we show that skyrmions arranged on a super-structure
of a triangular geometry. Depending on the value of D/H , these simulations also show
a labyrinth-like structure very close to the filament-shaped structures found in certain LC.
We show the stability of the crystal of skyrmions at finite temperatures and a stretched
exponential relaxation law.

The next chapter is devoted to the study of the dynamics leading to the formation of
the nematic and smectic phases using a mobile Potts model. We observe here how the
nematic and smectic liquid crystals are dynamically formed upon cooling from the isotropic
phase. The choice of the interactions is crucial to model these two phases. Various physical
quantities have been calculated, confirming thus the transition from the isotropic phase to
a LC structure.

In the chapter VI, we deal with the dipolar interaction in nanodots using the Heisenberg
spin model. The first part of the chapter is devoted to the determination of the ground state
exhibiting a vortex around the center of the dot. The spins lie in the xy plane at the border
of the dot but go out of the xy plane at the dot center to give rise to a non-zero z compo-
nent. We then study the effect of the temperature and the melting of the dot. The melting
temperature of the dot do not depend on the size of the system. This is very different with
the case of localised spins where the transition temperature increases with increasing the
film thickness. This chapter is not directly related to liquid crystals. It was the first step
towards a more complicated model describing the mechanism leading to cholesteric LC
phases.



Version française

ans cette thèse, nous nous sommes intéressés initialement aux transitions de
phase qui ont lieu dans les cristaux liquides (CL), d’un point de vue théorique
et numérique. En effet, les résultats présentés ici découlent de simulations
numériques Monte Carlo (MC) et de développements analytiques basés sur

modèles de physique statistique et de matière condensée. Une forte analogie existe en-
tre les systèmes de spins et les CL. Par exemples, ces derniers présentent des phases où
les molécules sont toutes alignées dans le même sens (ordre orientationel) comparables
aux spins dans les matériaux ferromagnétiques. D’autres phases, dites cholestériques, sont
caractérisées par un arrangement moléculaire ressemblant beaucoup aux structures heli-
magnétiques. Mais les cristaux liquides étant un état de la matière intermédiaire, situé entre
le solide et le liquide, il est nécessaire de tenir compte des mouvements des molécules dans
les modèles et d’adapter en conséquence l’algorithme de Monte Carlo utilisé.

Après une courte introduction sur les CL et leurs applications dans le premier chapitre, le
second chapitre est longuement dédié aux méthodes MC et à l’adaptation de l’algorithme
de Metropolis-Hastings afin d’introduire la mobilité des molécules dans nos systèmes.

Le chapitre III est en quelque sorte un cas test pour simuler les CL. On considère un
ensemble de molécules (que l’on appellera spins par commodité et analogie avec la matière
condensée) sur réseau et dont le nombre est inférieur au nombre de sites du réseau.
L’interaction entre spins de plus proches voisins est de type Potts. L’état de plus basse
énergie correspond au cas où tous les spins sont tassés au fond de la cuve. Ce système
est d’abord traité par une étude de champ moyen (grand-canonique) dont les résultats sont
confirmés par les simulations. Il apparaît que les couches de surface subissent une fusion et
que le coeur du solide restant subit une transition du premier ordre. L’influence des effets de
taille, de la concentration du nombre de spins ainsi que de la forme de la cuve a été étudiée.

Le quatrième chapitre est consacré à des structures topologiques particulières qui sont des
skyrmions et des structures en bandes que l’on peut trouver dans les CL. A l’aide d’interactions
Dzyaloszhinski-Moria (DM) D en présence d’une interaction d’échange J dans des films
minces, nous étudions dans un premier temps les excitations des ondes de spin, également
appelées magnons, qui sont le résultat d’une excitation collective de spins. En utilisant les
fonctions de Green, nous calculons le spectre d’ondes de spin permettant ainsi de déterminer
les propriétés à T = 0 (fluctuations quantiques) et à température finie. Dans un deuxième
temps, nous appliquons un champ magnétique H orthogonal au film mince faisant appa-
raître un cristal de skyrmions. En utilisant des simulations MC, nous montrons des vortex
pour lesquels chaque centre peut être considéré comme le noeud d’une super-structure.
Nous parlons alors de cristal de skyrmions. Selon les valeurs de D/H les simulations peu-
vent montrer également une structure semblable à un labyrinthe très proche des structures



en forme de filaments que l’on trouve dans certains CL.

Le chapitre suivant est consacré à l’étude de la dynamique conduisant à la formation des
phases nématiques et smectiques à l’aide d’un modèle mobile de Potts. Nous observons ici
les mécanismes qui se produisent pour former un cristal liquide nématique ou smectique
lors du refroidissement à partir d’une phase isotrope. Le choix des interactions est crucial
pour modéliser ces deux phases. Différentes grandeurs physiques ont été calculées confir-
mant ainsi le passage d’une phase isotrope à une structure CL.

Dans le chapitre VI, nous traitons de l’interaction dipolaire dans les nanodots avec un
modèle de spin d’Heisenberg. La première partie du chapitre est consacrée à l’état fonda-
mental présentant un vortex autour du centre du dot. Les spins sont coplanaires au plan
du dot sauf à proximité du centre du dot où ils ont une composante z non nulle. Nous
étudions ensuite l’effet de la température et la fusion du dot. La température de fusion du
dot ne dépend pas de la taille du système, ce qui est très différent de ce qui se passe dans le
cas des spins localisés, où la température de transition augmente avec l’épaisseur du film.
Ce chapitre n’est pas directement lié aux cristaux liquides. Il était le premier pas dans la
construction d’un modèle plus complet pour décrire le mécanisme conduisant aux phases
cholestériques.
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We give first the historical context in which liquid crystals have been discovered before to
define and introduce them. This chapter is also dedicated to their extraordinary physical
properties and their numerous applications. In the light of these generalities about liquid
crystals, we will set the context and the purpose of this thesis.
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Chapter I. Introduction

General context

he present work takes place in the soft matter physics, which is actually part of
a larger domain : the condensed matter. The latter deals with systems having
very high density of particles and with numerous and strong interactions. It
concerns the physical properties of the matter present on earth and that can be

studied in a laboratory (like for instance glasses, magnets, liquids, etc.), while other systems
like neutron stars (one of the most dense objects of the universe) fall within the astrophysics
field. Soft matter is more specifically about materials that can be deformed under the action
of a stress due to, e.g., an electric or magnetic field or thermal fluctuations. It includes
liquids, polymers, colloids and naturally the liquid crystals (LC).

While in the nineteenth century only three states of matter were known (solid, liquid and
gas), the chemist and botanist Freidrich Reinitzer discovered in 1888, by working on the
melting of the cholesteryl benzoate, a new state of matter termed liquid crystals by Otto
Lehmann one year later [110], enabling thus to complete this classification. Reinitzer noticed
this substance has two melting points, one at 418 K giving an opaque liquid that becomes
transparent at 451 K and related his observations in a letter addressed to Lehmann [98] :

"If you let cool it [the cholestryl benzoate substance] down, at first a violet and
blue appearance of color is appearing, whereon the mass stays milky cloudy
and liquid. With further cooling down once again the violet and blue color
appearance is appearing and right afterwards the substance is congealing to a
white crystalline mass [...] In the former case, the clouding is not caused because
of crystals but because of certain liquidity, which forms in the melted mass oily
stripes..."

Lehmann confirmed this discovery of this intermediate phase (between crystal and liquid)
and found an optical anisotropy properties of the clouding phase. Despite of this, the enthu-
siasm for liquid crystals faded away for fifty years until a renewed interest in the seventies.
During the second part of the twentieth century, they have been intensively studied allow-
ing thus to find various technical applications, particularly for the digital display and the
determination of surface temperatures as we will see after.

Liquid crystals: a mesophase

It is quite disconcerting to think that a material has a structure halfway between crystal and
liquid. Crystals are materials where atoms, or more generally its constituents, are periodi-
cally arranged on a lattice. There is a long-range order correlation and position of atoms
in a crystal can be guessed thanks to primitive pattern [49] that is persistently repeated by
translational symmetry. While the components of a liquid do not respect a specific medium-
or long-range order and are weakly bound to each other (see Figure I.1), making impossible
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Liquid crystals: a mesophase

to determine the position of a particle from another one. This is the consequence of the
existence of an isotropic length scale ξ, termed "correlation length", over which correlations
disappear. Thus a crystalline solid is characterised both by its form and volume whereas
a liquid has a definite volume but no definite shape. Liquid crystals are systems having no
order at least in one dimension like liquids and having in the same time a position or/and
an directional order in another direction like in crystals. It is therefore more appropriate to
define liquid crystals as a mesomorphic〈1〉 phase [41] or simply a mesophase.

Figure I.1 – Schematic representation of the microscopic arrangement of the matter in
two phases. Left: Crystalline phase. Atoms or groups of atoms are periodically arranged.
There is a long-range order. The red cube represents a primitive cell (cf. crystallography’s
concepts [49]) allowing to determine the position of atoms in the crystal from the position
of one atom. Right: Liquid phase. There is no order and constituents are weakly bound to
each other, allowing thus to the liquid to change form.

Liquid crystals are often made of elongated organic molecules, called calamitic〈2〉 or rode-
shaped molecules, or of discotic, i.e. disk-like, molecules. Thus LC are generated by strong
structural anisotropy objects [30]. The way how these constituents are arranged to form
LC depends usually on the temperature. We speak then of thermotropic liquid crystals. For
some mesomorphic phases, it can also be function of the concentration of the molecules in
a solvent; these are lyotropic liquid crystals.

The physicist Georges Friedel is the first to have proposed in 1922 a classification of the
mesophases [65] based on microscopic observations allowing thus to characterise the de-
grees of symmetry and the physical properties of LC according to their molecular arrange-
ment. According to this classification〈3〉, the mesophase counts four kinds of structure,
namely :

〈1〉From the ancient Greek méso (µεσoς ) meaning middle or intermediate and morphé (µoρφη), shape.
〈2〉From the Latin word calamus, reed.
〈3〉For G. Friedel, there were initially two mesophases, that he termed himself nematic and smectic. Moreover,

the cholesteric mesophase, presented here, belongs for him (and also for J. Prost, P.G de Gennes [41] and S.
Chandrasekhar [30]) to the nematic mesophase. But in the literature, it is frequent that authors consider the
cholesteric mesophase as a full one as we do here.
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• Nematic : This mesophase is characterised by the fact that molecules〈4〉 have no
long-range position order but they have a long-range directional order as showed by
Figure I.2. In other words, molecules are randomly arranged and have globally the
same orientation represented by a vector n, called the director, indicating the preferred
(in average) orientation. This is the nearest mesophase of an isotropic liquid and
is termed nematic (from the Greek néma (νηµα), thread) because of the thread-like
topological defects, called disclinations lines, which are regions where the direction of
the director changes abruptly of direction (see Figure I.3).

Figure I.2 – Schematic representations of the different rode-like molecules arrangement
that can be found in liquid crystals. Left: Nematic mesophase. Molecule have no position
order but aligned according to a common direction, having thus a long-range direction
order. Middle and right: The last schemas represent two smectic mesophases : smectic
A (left) and smectic C (right). Molecules are organised in layers, giving thus a long-
range positional order in one direction. There is no ordered arrangement within layers
and molecules are still characterised by a directional order. For the smectic A structure,
molecules are aligned along the normal to the layers, while for smectic C, they are tilted.

• Smectic : Mesophase in which molecules have also a common orientation but are
organised in equidistant layers (positional order following one direction). However
there is no specific positional order within the plane of each layer, that can be consid-
ered as a two-dimensional liquid. The name of smectic, deriving from the Greek word
smegma (σµη̃γµα) for soap, is due to the fact layers can slide over one another, similar
to the mechanical properties of soaps. This mesophase is then more ordered than
the nematic one and is the closest to a crystalline solid. The domain’s temperature in
which this mesophase appears is usually below that of the nematic phase.

Note that the smectic mesophase can be subdivided into different classes〈5〉 (distin-

〈4〉Whether they have a rode-like or a disk-like shape.
〈5〉This sub-classification was not established by G. Friedel.

4



Liquid crystals: a mesophase

Figure I.3 – Pictures of liquid crystals (LC) viewed under a polarising microscope (com-
posed of two cross linear polarisers). The sample, illuminated by a linear polarised light,
is observed through a linear polariser. The color of the LC is due to their birefringent
properties. Left: Nematic mesophase. The black lines, called disclinations lines, are the
regions where the global orientation of the molecules change abruptly, due to topological
defects occurring, for instance, under electric or magnetic field or simply because of the
mechanical constraints applied by the recipient on the sample. It corresponds to extinction
zones of light passing through cross polariser. Right: Smectic A mesophase. Molecules
have the same global orientation and structured in layers.

guished by a letter), like for instance smectic A and C [41, 30] (being the most known).
In the smectic A phase, molecules are oriented along the normal to the surface (cf.
Figure I.3), while for a smectic C its direction makes a non-zero angle to the normal
(cf. Figure I.2).

• Cholesteric : This mesophase has been observed for the first time in cholesterol esters
which are chiral〈6〉 molecules. For this reason, this mesophase is historically called
cholesteric although it also appears in other chiral chemical species that do not derive
from cholesterol. We also speak then of chiral nematic. It presents similitude locally
with the nematic mesophase in the sense that molecules have non long-range position
order and still have a preferred orientation labelled by the director n discussed above,
within a plane. However, contrary to the pure nematic mesophase, molecules are
stacked in very thin layers〈7〉 and the direction of n is not constant in space, changing
from a plane to another, making appear thus a periodic helical structure, as we can
see on the Figure I.4. The spatial period is equal to one-half of the pitch p, which
is the distance over which the director has completed a 2π-rotation along the helix
axis. Thanks to the chirality of the molecules, this mesophase has interesting optical
properties. In effect, it is optically active, i.e. it is able to make rotate the polarisation
plane of linearly polarised light. For optically inactive molecules〈8〉, the pitch is infinite
corresponding then to the nematic phase.

〈6〉An object is said chiral if it cannot be superposed to its mirror image.
〈7〉That can be viewed as two-dimensional nematic-like layers and must not be confused with the planar

arrangement found in smectic mesophases.
〈8〉A material is optically inactive if it is made of achiral molecules or composed of a racemic mixture, i.e.
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Figure I.4 – Schematic representations of the cholesteric also termed chiral nematic
mesophase. Molecules have no long-range position order but are stacked in very thin
layers and have a preferred orientation which varies from a layer to another with a certain
periodicity.

Let us make the remark〈9〉 that molecules of the smectic C* mesophase present also a
periodic twisted arrangement due to their chirality. They have the same kind of order
as in smectic C liquid crystals except that their orientation is different in each layer.
The director n has a non-zero z-component (unlike in the chiral nematic mesophase)
and precesses then around the helical axis.

• Columnar : This mesophase appears often with discotic molecules (but this is not
necessary as a prerequisite [41]) and is such that molecules are packed to form columns
showing thus a directional order (see Figure I.5). Molecules have a two-dimensional

Figure I.5 – Columnar mesophase made of disk-like molecules that are stacked making a
columnar structure. Molecules have a two-dimensional positional order within the plane
and no order along the third dimension. This mesophase is also termed columnar liquid.

position order and a liquid-like order, because of short correlation length ξ along

there is exactly the same amount of left- and right-handed enantiomers of a chiral molecule.
〈9〉The smectic C* mesophase belongs, as its name suggests, to the family of the smectic liquid crystals.

But because of the property and the structure of such LC, it is preferable here, for our study, to include this
specific mesophase into the cholesteric one, in order to cover all LC with periodic molecular arrangement
under a single designation.
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the columnar axis (the third dimension). We speak then of columnar liquid. Like for
the smectics, the columnar liquid crystals present also different sub-phases (hexagonal,
rectangular or oblique phases), but we will not enter in details on them.

Technical applications

Because of their amazing optical properties, liquid crystals have been intensively studied
and used for technical applications for decades, like, i.e., for the liquid crystals display
(LCD) or for the measure of surface temperature. In order to highlight the physical proper-
ties of LC, we briefly discuss here how these applications work.

One of the most notable features of certain liquid crystals (often nematic), observed the
first time by Lehmann, is the birefringence, i.e. the propriety of a material in which the
refractive index depends on the polarisation and the direction of propagation of the light
and making then the light spread anisotropically. LC can thus be used to polarise light or
to manipulate the polarised light beams. Thanks to that, a natural application of LC is then
the display monitors.

Figure I.6 – Schematic representation of a liquid crystal display (LCD). The incident light is
polarised linearly by the first polariser. The electric field of the polarised light is orthogonal
to the polarisation axis of the analyser such as there is extinction in output. Thus, The
polarisation surface of the light must be rotated, thanks to the orientation of the molecules,
in order to pass through the analyser. Left: The molecules have an helix configuration.
This is a chiral nematic mesophase. The light is transmitted. Its polarisation follows the
helix structure. Right: By applying a voltage, the molecules change their orientation. If
molecules are parallel or orthogonal (like on the figure) the polarisation of the light is not
changed and there is extinction.
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The principle underlying the operation of liquid crystal display is quite simple. It i relies
on the control of the molecules orientation in order to let polarised light propagate or
not. A LCD, is made up with two crossed polarisers, liquid crystals and electrodes. The
light crosses the first polariser is linear polarised such as the direction of the electric field
is orthogonal to the axis of polarisation of the second one, termed analyser, i.e. there is
extinction in output. The electrodes are used here to apply a voltage on the LC, in order
to change the orientation of their molecules〈10〉 and then to rotate the polarisation surface
of the electromagnetic wave. If the molecules are orthogonal or parallel to electric field
there is extinction. But if they are arranged such as they form an helix, the polarisation of
the light is modified progressively, like shown by the Figure I.6 on the previous page. LCD
requires then chiral nematic liquid crystals. One of the technologies the most used in LCD
is moreover called TN for twisted nematic. Note that by controlling the pitch of the helix, it
is possible to control the contrast in output.

n0
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θ′i

Air

Substance

Cholesteric
liquid crystals

η
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θr

θ′r
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λ

Figure I.7 – Schema showing the physical principle to determine the temperature of a
surface using cholesteric liquid crystals (LC). The system is based on simple optical laws.
A beam of white light is sent on an interface containing liquid crystals with an angle of
incidence θi to the normal n0. It is then refracted and dispersed in several beams that
are reflected on the cholesteric layers undergoing a diffraction similar to the Bragg’s
diffraction [23] giving birth to a wave packet crossing again the surface with a certain
wave length λ and consequently with a certain color. λ depends on θi, on θr and on the
orientation of the molecules in the layers which is a function of the temperature. With
these three quantities, it is then possible to know the temperature of the surface on which
is placed the device.

Another useful application of the liquid crystal is the determination of surface temperature.
The physical principle is quite simple. It is based on selective wave lengths of reflected white
light beams thanks to nematic chiral liquid crystals. The orientation of the LC, contained

〈10〉Due to the fact chiral mesophases present ferroelectric properties.
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in the device landed on a surface, depends on the temperature. More exactly, it is the pitch
p of the helical structure which varies, making thus the wave length λ of the reflected light
depend on the temperature [60]. Thus, knowing λ and thanks to a simple theoretical model
[42] we are able to determine the temperature. More details are given in Figure I.7.
We have seen here the most important and most famous applications of liquid crystals in the
industry. Our work takes place far from the applied physics and is dedicated to a theoretical
study in order to understand better the phase transition taking place in the LC thanks to
models of statistical physics and magnetism as shown in the next section.

State of the art and purpose

Pierre-Gilles de Gennes considered liquid crystals beautiful and mysterious, perhaps be-
cause of their astonishing physical and more especially optical properties and probably also
because of their complexity. Indeed, different aspects of LC can be investigated, mixing
thus different research fields, as briefly exposed hereafter.

Naturally, one of the first research domain that comes to mind about liquid crystals is
chemistry [43, 41]. Indeed, the explanation of the different mesophases involves the chemi-
cal properties of the complex molecules constituting the LC.

Liquid crystals can also be investigated under a mechanical point of view in a large sense,
fluid mechanics and elasticity to be more specific. Indeed, their hydro-statics and hydro-
dynamics properties have been extensively studied [41, 29, 39, 116], in the same manner it
has been done for the superfluid Helium [155] (numerous analogies can be found between
certain mesophase and superfluids or superconductors [92, 40]). The study of the elasticity
has given rise to numerous publications and considerable debates for several decades, as
for the distortion free energy density〈11〉 [64, 149] of the nematic mesophase, given by

Fd =
1

2

{
K1 (∇ · n)2 +K2

[
n · (∇× n)

]2

+K3

[
n× (∇× n)

]2
}
, (I.1)

where n is the normalised director and the Ki (i = 1, 2, 3) are positive elastic constants as-
sociated to a type of deformations. The first term with K1 corresponds to a splay-constraint,
the second with K2 to a twist and the last one to a bend-distortion. The fundamental equa-
tion (I.1) of the elastic theory for nematics, as said above, is just an example of the kind of
mathematical developments which have been generalised [29, 41].

Another very interesting approach is the statistical physics [30] that appears as a natu-
ral choice in the study of LC. Indeed, the different mesophases exhibit phase transitions,
like for instance the transition from a nematic phase to an isotropic phase characterised by

〈11〉Commonly termed the Frank free energy and has the dimension of an energy per unit of volume.
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the discontinuity of the following order parameter for rode-like molecules〈12〉 [198]

S =
1

2
〈3 cos2 θ − 1〉, (I.2)

where θ is the angle between the normal to the layer and the director n and 〈·〉 denotes
a statistical average over all the molecules. This order parameter, that has been con-
firmed experimentally [36], totally looks like the type of order parameter used to describe
phase transitions of spin models. Moreover de Gennes, who initially comes from the con-
densed matter’s community, has made analogies between phase transitions occurring in
superconductors and liquid crystals [38] and generalized the Ginzburg-Landau phase tran-
sition theory [50] by making the free energy, known as the Landau-de Gennes free energy,
be a functional of a second-order tensor [164, 27, 121, 30]. However, despite of the huge
contribution of de Gennes, there is no model with a Hamiltonian to describe microscopic
interactions between molecules in liquid crystals as it exists for in magnetism with spin
models.

It is in this context, i.e. the one of the statistical physics, condensed matter and the physics
of spin systems, that our study of LC leads us also to the study of topological structures.
Indeed, as mentioned at the beginning of the chapter, some mesophases like the nematics
for instance present disclinations (see Figure I.3), that are regions of topological defects as
mentioned above. These regions look like threads or filaments. In certain nematic and chiral
LC, other specific topological structures, termed skyrmions [22, 111] can also be observed.

Skyrmions were first predicted and described as quasi-particles by T. H. R. Skyrme [170, 171]
in the particle physics field in the 60’s and their study has been then intensively extended
to the condensed matter field [1, 139] giving birth to magnetic skyrmions. They are promising
physical objects for the magnetic data storage and more generally in the spintronic’s domain.
We can give a global definition of skyrmions as being regions where the orientation of spins
follows a non-trivial topological structures. But they can be seen as structures giving raise
to circular arrangements of spins (or molecules in the case of LC), i.e. vortices.

Because the results presented in this thesis are based mostly on Monte Carlo (MC) sim-
ulations, the next chapter is dedicated to the MC methods in general and its adaptation for
the simulation of systems of mobile spins.

The third chapter can be considered as a toy model. It is about a system of mobile spins
for which the concentration is fixed and the interaction between spins is ruled by the Potts
model. Spins can freely move on vacant sites. The ground state corresponds to the case
where all spins are stacked at the bottom of the tank. At high temperature T , this solid

〈12〉Generalised by Alfred Saupe for molecules with arbitrary shapes [166], the order parameter being thus a
2-order tensor.
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phases becomes liquid (isotropic phase). We will show by MC simulations that when T

arises, the surface layers melt and the bulk undergoes a first-order phase transition. This
has been confirmed by a mean-field analysis. We study in details the effect the influence of
the size and the shape of the system.

The fourth chapter deals with skyrmions and stripes structure that are topological struc-
tures that can appear in liquid crystals. They are modeled here with Dzyaloshinskii-Moriya
interaction in addition to Heisenberg exchange interaction. In a first time, we calculate
the spin-wave excitations (termed magnons that are collective excitations of spins) in thin
films. Thanks to the Green’s function, we are able to determine the spin-wave spectrum
used to calculate physical properties of the thin film at T = 0 (quantum fluctuations) and at
finite temperatures. Then, we apply a magnetic field orthognal to the film making appear
a crystal of skyrmions. MC simulations show that skyrmions arranged on a super-structure
of a triangular geometry. These simulations show also stripes structure or labyrinth-like
structures similar to the filament-shaped structure that can be found in some LC. The sta-
bility of the skyrmions at high temperatures is shown and the relaxation is found to follow
a stretched exponential law.

The next chapter (the fifth) is devoted to the study of the dynamics leading to the for-
mation of a nematic and smectic LC. We use here a mobile Potts model and cool the system
from a liquid phase. The choice of the interactions is really important to get to model this
both mesophases. Various physical quantities have been calculated, confirming thus the
transition from the isotropic phase to a LC structure.

The chapter VI is about dipolar interaction in nanodots with Heisenberg spin model. The
first part of the chapter is devoted to the determination of the ground state. We show that
it is a vortex around the center of the dot. The spins lie in the xy plane at the border of the
dot but have a non-zero z component around the center of the dot. We next study the effect
of the temperature and the melting of the dot and we show that the melting temperature
does not depend on the thickness of the system, which is totally different with the case of lo-
calised spins. This chapter can be seen as preparative work to model cholesteric mesophase.

The last chapter is a general conclusion about the results and this thesis in general.
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Chapter II
Monte Carlo method for mobile
spin systems
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In this chapter, we introduce the numerical methods used for the computer simulations pre-
sented in the next chapters. Indeed we have adapted the classical Monte Carlo Metropolis
algorithm to investigate in details the phase transitions that occur in our mobile spin sys-
tems.
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II.1 Monte Carlo methods

or twenty years, numerical simulations play a very important part in physics
(and also in other fields like biology, economics, financial markets...). It allows
to investigate systems with high degrees of freedom that theoretical physicist
could not study analytically (or with extreme difficulties), like for example the

three-dimensional Ising model. It also allows to test the validity of certain model by con-
fronting numerical results to experimental data [35, 19]. Indeed, among a significant number
of parameters (e.g. the temperature, the volume, the number of particles...), only a few gov-
erns a real system. That is why computational physic turns out to be sometimes the best
and maybe the only way to identify the relevant parameters. Thus simulations can be con-
sidered as numerical experiments preceding traditional experiments in order to better target
the experimental research [158].

The large family of Monte Carlo (MC) methods falls perfectly within this context of de-
scribed just above. These stochastic methods are first of all used to solve multiple inte-
grals〈1〉 by generating random numbers. For example, a basic way (rudely expressed here)
to evaluate a simple integral is to draw randomly points and to look if they are under the
curve or not. It is like playing with a slot machine in casino; we understand then the name
of those methods. In statistical physics, the high-dimensional integrals we are interested in,
is the partition function as we will see in the next subsection. It is the highest difficulty that
can be encountered in this field.

One can also mention the molecular dynamics (MD) method. But because the systems
presented in this thesis are all based on equilibrium statistical physics and because we are
less interested in the dynamic of a system than in the study of phase transition, this method
is less adapted for our purpose.

For all these reasons, our study of the transitions of phase in liquid crystals requires a
numerical approach based on MC. We present in the following parts, how to generate
samples (of possible configurations) during a Monte Carlo simulation and the Metropolis
algorithm. Then we will introduce our adaptation of the Metropolis algorithm for the study
of mobile spin system. And to finish, we will discuss about the statistical error in MC and
also about the link between the reliability of such simulations and the generation of random
numbers.

〈1〉The strength of Monte Carlo methods for integral’s calculations lies in the fact they work whatever the
space dimension considered.
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II.1.1 Theoritical framework: the statistical physics

Before to go into the details of Monte Carlo methods, we need to set the physical and math-
ematical context in which we have performed the simulations. As mentioned just above,
this context is the statical physics and the calculation of its partition function.

The essence of the statistical physics is to be able to explain the macroscopic behaviour
and the evolution of a large system of particles only by knowing the features of the con-
stituents (namely the classical spin in this thesis). It relies on the notion of microstates
abusively called hereafter configurations C, and on the fact these configurations do not have
the same importance. This importance is evaluated by a probability P for a system to be
in a configuration C. In the canonical description [50], for a physical system ruled by an
Hamiltonian H at a given equilibrium temperature T , this probability is given by

P [C] =
1

Z
e−βH[C], (II.1)

where H[C] denotes the energy of a configuration C, Z the partition function and β =

1/kBT . Note that the choice of the canonical description is not fortuitous. Indeed, the
systems studied in the next chapters correspond to systems in thermal equilibrium with a
heat bath at fixed T with no particles exchange with the environment.

The unique challenge in this statistical description lies in the capacity to determine Z
from which all the thermodynamic quantities derived. If we know the partition function,
we can get a large amount of informations about the system and calculate the statistical
averages of observables O such as

〈O〉 =
∑
C

O[C]P [C] =
1

Z

∑
C

O[C] e−βH[C],

Z =
∑
C

e−βH[C].

(II.2)

The sums are performed over all the accessible states that may be infinite. It is then
convenient and habitual in statistical physics to transform the discrete sum over C into an
integral when the thermodynamic limit is reached. It allows us also, in the same time, to
relate later this part to the historical purpose of the Monte Carlo methods (cf. the next
section) namely the calculation of multiple integrals. Thus equation (II.2) becomes

〈O〉 =

∫
D
O(x)

e−βH(x)

Z
dx, (II.3)

where the states of the system are characterised by a n-tuple x〈2〉 defined on a domain
D. From this equation, it comes then that the probability to find the system in a state x

〈2〉For example, x can represent the positions of the n particles of a system: x = (r1, r2, · · · , rn) with
ri ∈ R3. Therefore, x is a 3n-tuple.
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included in the hypervolume (noted abusively here) [x,x + dx] is

dP =
e−βH(x)

Z
dx, (II.4)

with the partition function Z defined by a multiple integral such as

Z =

∫
D

e−βH(x) dx. (II.5)

In most cases, these equations cannot be exactly solved express for only several simple
models. We can cite for examples the well known two-dimensional Ising model [148], the
8-vertex model [9] or the 16-vertex free-fermion model [9, 66]. Different methods have been
developed to get around the problem of the calculation of the partition function like the
series expansion, the field theory [29] and obviously the computer simulations. We will
dwell exclusively on the Monte Carlo methods.

II.1.2 Sampling techniques

In the light of the previous section, we are looking for a Monte Carlo method allowing
to browse intelligently the configurations of a system. Indeed, we want that this method
respects the statistical distribution of the configurations, namely here the Boltzmann’s dis-
tribution. It means that the method must visit with a higher priority the most probable
configurations C.

We present in this section two different methods. With the first one, which is naive, the
configurations are chosen with the same probability. While the second one is more smarter
and is such that the choice of the configurations follows the statistical distribution desired.

a) Simple sampling

One of the methods to estimate the average value of the observable O (eq. (II.2)) consists in
generating a set E of N accessible configurations Ci among all those possible, such as

E = {Ci}i∈[[1,N ]]. (II.6)

〈O〉 can be estimated with

〈O〉E =
1

ZE

∑
C∈E

O[C] e−βH[C], (II.7)

where 〈O〉E denotes the thermal average value of the observable over the selected configu-
rations (i.e. ∀ C ∈ E ) and ZE the corresponding partition function defined as

ZE =
∑
C∈E

e−βH[C] . (II.8)
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Obviously, the estimate’s quality of 〈O〉 depends on N : when N → +∞ the result becomes
more accurate〈3〉. But the simple sampling method suffers from a serious problem.

There are two manners to choose the configurations Ci in simple sampling method. The
first one is to draw randomly (with an uniform probability) the configurations. The other
choice is to discretise uniformly and to browse the very high-dimensional phase space. In
any case all the configurations must be weighted by a Boltzmann factor (as we can see
with the equation (II.7)). But none of these methods is satisfactory, because the generated
configurations Ci have all the same statistical weight and do not then correspond most of
the time to the equilibrium states for a given temperature [108]. In other terms, they do
not contribute significantly in the expression of the partition function, distorting thus the
calculation of the mean value of the observable: 〈O〉E is then a rough approximation of 〈O〉.

A more sophisticated scheme, allowing to get a better accuracy on the calculation of 〈O〉
by browsing the configurations in the respect of the Boltzmann’s distribution, is presented
next.

b) Importance sampling

The importance sampling is a technical used to reduce the variance of the estimates in
Monte Carlo methods. Unlike the simple sampling, the idea of this method is to replace,
during the simulations, a uniform density probability by a biased one ℘ [103]. In other
words, one chooses the most relevant microscopic states, i.e. those which are dominant in
the partition function, allowing thus to decrease the time of the simulations and to have
reliable results in the same time.

For a better understanding, let us consider, as an example, the integral I on a domain
D of the function ψ : R 7→ R〈4〉 such as

I =

∫
D
ψ(x) dx. (II.9)

Let ℘ be a probability density function such as ℘(x) > 0 for all x ∈ D and
∫
D
℘(x) dx = 1.

We can rewrite (II.9) thus

I =

∫
D

ψ(x)

℘(x)
℘(x) dx, (II.10)

〈3〉For really small system, we could imagine to generate all the microstates and to calculate their probabil-
ities. We would get then an exact calculation of the average of the observable such as 〈O〉 = 〈O〉E . But the
kind of systems we are interested in do not allow us to do that. For instance, even for a small 2D-Ising system
of 10×10 = 100 spins there are 2100 ∝ 1030 possible configurations. It is clearly impossible to generate them
all.

〈4〉It can be generalised for a n−dimensional space, but here for more convenience n = 1.
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which is totally equivalent to

I = E
[
ψ(X)

℘(X)

]
= E [Y ] , (II.11)

X denoting a continuous random variable distributed following ℘. It represents the ex-
pected value (stochastic average) of the random variable Y = ψ(X)/℘(X). If we perform
N draws of Xi following the probability law ℘(x) dx and approximating (II.11) with an
arithmetic series, we define a new random variable

S =
1

N

N∑
i=1

ψ(Xi)

℘(Xi)
=

1

N

N∑
i=1

Yi, (II.12)

or in terms of realisations xi, the experimental mean

Ĩ =
1

N

N∑
i=1

ψ(xi)

℘(xi)
=

1

N

N∑
i=1

yi, (II.13)

with yi = ψ(xi)/℘(xi). According to the strong law of large numbers, Ĩ converges almost
surely on I when N goes to infinity [5], i.e.

Ĩ a.s−−−−−→
N→+∞

I. (II.14)

The purpose of the importance sampling is to find the density probability ℘ that makes the
quantity

Var[Y ] = E[Y 2]− E[Y ]2,

=

∫
D

[
ψ(x)

℘(x)

]2

℘(x)2 dx− I2, (II.15)

called the variance of the estimate, the smallest possible. Var[Y ] is minimal, i.e. equal to
zero, for

℘(x) =
ψ(x)∫

D
ψ(x) dx

. (II.16)

That is why, in the context of the calculation of the integral (II.3), we want to generate
configurations, noted x in the subsection (II.1.1), with a density probability

℘0(x) =
e−βH(x)∫

D
e−βH(x) dx

=
e−βH(x)

Z
. (II.17)

Indeed, if we are able to draw configurations satisfying ℘0(x), then according to the theo-
rem A.3 on page 119, the experimental mean of O(x), i.e. 〈O〉E , is equivalent to the expected
value of the random variable O(X)〈5〉 such as

〈O〉E
a.s−−−−−→

N→+∞
E [O(X)] = 〈O〉, (II.18)

〈5〉Which is actually the definition of 〈O〉 given by the equation (II.2).
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and from (II.13) and (II.14), it comes that the estimator 〈O〉E of 〈O〉 is defined by

〈O〉E =
1

N

N∑
i=1

O[xi]. (II.19)

Consequently, if the density distribution to draw the configurations is well chosen, the Monte
Carlo algorithm is then improved compared to the simple sampling method. Indeed, we
see from the equation (II.19) that there is no use for the terms O[xi] to be weighted by
Boltzmann’s factor like in the equation (II.7).

But all these results are based on a condition we have omitted. To generate configura-
tions with a such probability density, we need to know the denominator of ℘0 (or of ℘ in
general) but this is precisely what we are looking for. It leads to the following questions:
are we able and how to generate such random variables? Indeed we do not know how to
evaluate the partition function Z , but Metropolis and al. proposed in 1953 a method [130]
to overcome this difficulty and to draw a set of configurations obeying to (II.17).

II.1.3 Metropolis algorithm

a) Markov chain and detailed balance

The idea of the Metropolis algorithm relies on a Markov chain〈6〉 between two successive
configurations to engender the appropriate distribution. It is one of the numerous methods
belonging to the class of the Markov Chain Monte Carlo (MCMC) algorithms〈7〉. The partic-
ularity of those methods is that the knowledge of the recent past influences the future, but
there is no memory of the ancient time.

A configuration Cf at time t + dt is chosen from a configuration Ci at t according to
the transition probability (per unit of time) Wi→f [184]. The matrix W〈8〉 is crucial, because
it decides of the strategy of the evolution of the Markov chain. And because, one does not
change of strategy during a simulation run, all the entries ofW are independent of the time.
The dynamic of the system can be modelled by a flow equation. Indeed, the probability
Pf (t + dt) of occurrence of state f at time t + dt is equal to this probability at t increased
by the probability to pass from a state i to f weighted〈9〉 by Pi (t) minus the probability to
leave the sate f weighted by Pf (t). The evolution of the chain is thus governed by the master

〈6〉The reader is invited to refer to the appendix A for further information on the topic.
〈7〉One can cite different examples of MCMC algorithms: the simulated annealing, importance sampling,

Gibbs sampling, slice sampling, on the contrary of the simple or rejection sampling (academic case to calculate
the value of π). Note that in the following, when we will mention Monte Carlo methods, it will imply only
MCMC algorithms.

〈8〉W is the transition probability matrix also termed stochastic matrix or even Markov matrix. Note that
Wi→f is a conditional probability to move from i to f .

〈9〉It is equivalent to tell the probability transition is regulated by the population N` (` = i, f ) of a state.
Indeed p̀ is the ratio between N` and the whole population N . That is why, sometimes p̀ is named population.
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equation [108, 103]

Pf (t+ dt) = Pf (t) +
∑
i 6=f

[
Wi→fPi (t)−Wf→iPf (t)

]
dt, (II.20)

that can be derived in〈10〉

dPf
dt

(t) =
∑
i 6=f

[
Wi→fPi (t)−Wf→iPf (t)

]
, (II.21)

with the constraints (by definition of the stochastic matrix) [162]∑
f

Wi→f = 1 and Wi→f > 0,∀(i, f). (II.22)

In the same spirit, we have obviously∑
i

Pi (t) = 1 and Pi (t) > 0,∀i. (II.23)

The principle of the Monte Carlo is to reach an equilibrium configuration starting from a
configuration out of equilibrium. The question remaining is how to choose the transition
matrix W to make the Markov chain converge on the equilibrium distribution P eq

f , i.e. to
ensure that configurations are distributed according to (II.17) in our case? We then look for
W such as when t ∼ +∞ we have Pf (t) = P eq

f , which is leads to

dPf
dt

(t) = 0, (II.24)

leading to the trivial solution∑
i

Wi→fP
eq
i −

∑
i

Wf→iP
eq
f = 0, (II.25)

known as the global balance equation, which is, with respect to the transition matrix rules
(II.22), totally equivalent to ∑

i

Wi→fP
eq
i = P eq

f . (II.26)

There is a large choice of transition matrix satisfying the equation (II.25), but much less
verifying the particular solution of (II.24) :

Wi→fP
eq
i = Wf→iP

eq
f . (II.27)

〈10〉In this thesis, we focus mainly on classical spins system on a lattice and Monte Carlo simulations. But
this formula is general and rules for other physical systems. For instance, this master equation can be an
approach for the study of electronic transport in quantum dots [58]. In this case, the probability of transition
(under the effect of a perturbing Hamiltonian H) from an eigenstate |i〉 to another one |f〉 is given by the
Fermi’s golden rule:

Wi→f =
2π

~
|〈f |H|i〉|2ρ,

where ρ is the density of final states |f〉.
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The passage from a state to another is now reversible〈11〉 [184, 162], adding (at least) a sup-
plementary constraint on W. It can be rephrased as the move from i to f implies a move
from f to i with a non-zero probability. Moreover, the condition (II.27), named detailed bal-
ance, guarantees the invariance〈12〉 of the probability law by satisfying the equation (II.26).
We get thus a regime in which the probabilities P eq

` (` = i, f ) are compatible with the given
transition coefficients Wi→f such as they correspond to their conditional probabilities (cf.
Bayes’theorem [4]). Once the equilibrium is reached it cannot be defeated.

To summarize, the detailed balance criterion is more constrained than the global balance.
The probability flow to move from a state i to a state f is compensated by the reverse
probability flow to pass from f to i, whereas with the global balance condition, it is the
total probability flow that must be conserved (see Figure II.1), i.e., the total flow out of a
given state has to be equal to the total flow into this given state.

Figure II.1 – Representation, inspired by [132], of the balance conditions for probability
flow in Markov chain process. Each cell represent an accessible state or configuration.
The arrows denote a transition from a configuration to another and the circular ones
indicate a self -transition (from a state to itself). The total probability transition flow is
conserved for every single cell. To be consistent with the text, the blue letters denote the
initial states called i and obviously, the red letter the final state f . Left: Global balance
criterion. The sum of every moves from outside a cell to inside is equal to the sum of
all the outflows. Right: Detailed balance criterion. The states are reversible. The inflow
i→ f is automatically compensated by the reverse outflow f → i.

Note that only the global balance is required to reach the equilibrium. But during a simu-
lation, it is hard〈13〉 to ensure that this condition is satisfied while with the detailed balance,

〈11〉One speaks then of reversible Markov chain.
〈12〉The equation (II.27) implies (II.26). See the annexe A.
〈13〉By drawing a analogy with the geometry, the global balance condition has a topology more complex than

the topology characterising the detailed balance, making thus the global balance condition more difficult to
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the ratio of the transition rates is directly given by the rapport of the equilibrium probabili-
ties. A natural choice is the ratio of the Boltzmann weights〈14〉, according to equation (II.17),
leading to

Wi→f

Wf→i
=
P eq
f

P eq
i

canonical
distribution

= e−β(Ef−Ei), (II.28)

where Ef and Ei denote the energy of the final and initial configuration〈15〉, respectively.
The evaluation of the partition function is then unnecessary〈16〉 because of the linearity of
(II.25) and the compatibility with the equilibrium is furthermore totally ensured. These are
the interests of the Markov chain Monte Carlo algorithms.

b) Ergodicity

As said in the introduction of the subsection, MCMC algorithms are methods producing
Markov chains, as the name suggests, but with the particularity they are ergodic. We there-
fore think it is important to spend a bit of time on this notion on which the Monte Carlo is
based on.

A system is said ergodic, if starting from any configuration it can access to the whole
configurations in a certain time. It depends then on the transition matrix. The choice of
the strategy, namely the Wi→f , to decide the move from a state to another one is crucial
to converge toward a stationary distribution. An intuitive way, for a better understanding,
is to draw a parallel with the circulation of the money between different protagonists and
the economy of a country, by considering the probabilities Pi (t) in the master equation
(II.21) represent a quantity of money and the Wi→f a transaction rate. Note that, in the
examples show in the following, there is no creation of new money, because the matrix W
just distributes the total amount of money, which is fixed by (II.23).

For instance, let us consider a society organised in different entities: a State〈17〉, banks,
companies, workers, retired persons and etc... Roughly speaking, the economy of this soci-
ety depends on how the wealth circulates between all these entities. The case they all save
up their money is the worse case for the economy of the society. It corresponds to the very
specific (senseless) situation where only the self -transitions, i.e Wi→i = 1, are allowed (see
the graph on the left of the figure II.2), making money be useless.

use in an simulation.
〈14〉Instead of Boltzmann distribution, which is the most known, other choices can be considered, like for

example in the multi-histogram methods [62].
〈15〉With the respect to the notations of the subsection II.1.1, we have E` = H[C`] (` = i, f ).
〈16〉Actually, this is firstly true for the global balance condition, whose the detailed balance criterion being

only a restriction.
〈17〉State is written in a French way, i.e. with a capital letter, to prevent possible confusions with the states of

a physical system.
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Another foolish situation is the following, with an entity, like a firm for instance having
only expenses and almost no income. In the end, it will have no money left and money will
be bad distributed (see Figure II.2). In a realistic context, it corresponds to a firm prod-
ucts something that nobody buys, except maybe the pensioners, because people prefer once
again to keep safe their personal savings. It is really damageable for its treasury. Indeed, it
spends lots of money (salaries, taxes...) but without ever making profits. It is then impossi-
ble for the firm, and by consequence for the persons working in it, to reach a durable and
profitable equilibrium state, making it to decline.
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W
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S
→
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Figure II.2 – Representation of the circulation of money between different economic play-
ers (W for workers, R for retired persons, F for firms, S for State and B as bank) to
illustrate an unsustainable economy of a society modelled by a system with five different
possible states with a non-ergodic strategy. In terms of physics, starting from a state, certain
states will never be visited over the time and each arrow represents a possible transi-
tion with its probability transition Wi→j . Left: Only the self -transitions are authorized
(Wi→i = 1). It corresponds to the situation where every entity saves up its money. There
is then no money-flow. Right: The money will never transit over all the protagonist. It flows
essentially from the firm to the bank as repayment of loans or to its workers as salaries or
to the State as taxes. Eventually, only the retired persons, receiving their pension from the
State, participate to the commercial activity of the firm by buying what it produces. At the
end, the situation is critical for the global economy of the society, because money is bad
distributed.

A good strategy to adopt for the general interest of the society is to be sure that the money
flows between all the economic players of the society (see Figure II.3) and is at the end in-
telligently distributed. That is why, the State encourages people to consume more by taxing
or by decreasing the interest rates of their savings. Thus firms can sell what they produce
allowing them to donate a part of the benefits to their employees as salaries and to the
Sates as taxes. A steady state for a society is reached when the money circulates between
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Figure II.3 – Representation of an ergodic system with five states. Each arrow represents
a possible transaction between different economic players: W for workers, R for retired
persons, F for firms, S for State and B for banks. The system is ergodic because the
money can circulate from an entity or a person to another one and never gets stuck in a
place like a bank for instance. Every transaction coming out of the bank are loans and
those coming in are either repayement loans (with interest rates) or simply bank charges.
The State has a central role. It receives money from taxes or loans from the bank and
reverses money as social benefits (except to the banks) to help people or firms. Workers
are paid by their firms and buy what they produce and takes out sometimes a loan (dashed
arrow). They also can borrow money for the retired persons. The latter receive their
pension from the State and participiate to the benefits of the firm.

all the entities: from hand to hand (freely or not) between people, from the companies
to their employees and vice-versa and passing obviously by the State as taxes that can be
partially redistributed as social benefits for example. In other words, it is when all the
exchanges, made in different proportions and that are represented by the Wi→f , verify the
global balance. In the case where the detailed balance is verified, a transaction between two
protagonists becomes reversible and then can be cancelled.

Let us going back to a more classical and physical view of the ergodicity. We have now
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II.1. Monte Carlo methods

understood the ergodicity is the ability for a system to access to all the possible states ex-
isting. Thus, we are able to have enough informations about the system over the time〈18〉

to have the equivalence between time average and the ensemble average〈19〉 of a quantity.
About the above example, we can easily imagine that if we follow every transaction over
the time we will converge to a good approximation of the global economy. To calculate the
theoretical average, we would need to know the repartition of the money between all the
economic players, i.e the P eq

i of the equation (II.27). It is has to be agreed that it is much
easier than to follow the money step by step (in an ideal world).

In the light of the foregoing about the theoretical context in which the Monte Carlo is
taking place, we can now discuss in details about the Metropolis algorithm and its use on
the Ising spin system.

c) The Metropolis algorithm: single spin flip algorithm

The transition probabilities must be well-designed to satisfy the detailed balance equation
(II.28). Metropolis and al. [130] proposed a solution〈20〉, known as the Metropolis acceptance
rate or also Metropolis criterion, such as

Wi→f = min

(
1,
P eq
f

P eq
i

) canonical
distribution

= min
(
1, e−β(Ef−Ei)

)
. (II.29)

It appears clearly〈21〉 the acceptance rate is valid for any kind of distribution P eq. In the
canonical description, the Metropolis criterion depends only on the difference of energy
between two configurations. Basically, it means that if the energy of the final configuration
Cf is lower than the one of the initial configuration Ci, i.e. if Ef 6 Ei, then the transition
from Ci to Cf is fully accepted (Wi→f = 100%). But if it is expensive (in terms of energy) for
the system to move from a configuration to another one, i.e. if Ei < Ef , the configuration
is accepted with a probability Wi→f = e−β(Ef−Ei).
The Metropolis algorithm works as follows:

1. pick randomly a spin in the lattice (we will refer later to this operation as the a priori
choice [102] or proposed update);

2. flip the spin (attempt a move from a state i→ f )

3. draw a random number r uniformly distributed on [0, 1]; two situations :

〈18〉If the time is large enough to be sure all the states have been visited several times.
〈19〉The time average can be seen as an experimental average and the ensemble average as the theoretical

one.
〈20〉One could have choose the Glauber’s dynamic [108], with Wi→f = τ

2

[
1− th

(
βEi2

)]
= τ

1+eβEi
, that

also satisfies the detailed balance condition.
〈21〉By replacing equation (II.29) into equation (II.27).
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Chapter II. Monte Carlo method for mobile spin systems

• if r 6 Wi→f , the configuration is accepted, i.e., Cf is the next configuration of
the Markov chain;

• if r > Wi→f , the attempted move is rejected and the system remains in the same
configuration Ci; the next configuration of the Markov chain is then the same as
the current one.

The set of these three operations is called a Monte Carlo step; it only concerns one spin.
When N spins on a lattice containing N spins have been updated, we speak then of a
Monte Carlo sweep (MCS) 〈22〉. At the end of a cycle of Ns MCS, a data set {Oi}i∈[[1,Ns]] of
a physical quantity, e.g. the energy or the magnetisation, is generated. The thermodynamic
average of O can be readily computed as an arithmetic mean of the Ns values Oi (see eq.
(II.19)). To be pertinent, the calculation of the averages needs a number of cycle sufficient,
corresponding to the generation of a Markov chain long enough.

d) Application to the Ising model

Let us now apply the Monte Carlo procedure to a simple model. The first step of the
program is to define the crystalline structure; here we choose a two-dimensional square
lattice. The following step is to decide of the interactions between the spins, described, for
instance by the well known Ising model under a zero magnetic field (h = 0) ruled by the
Hamiltonian

Hi = −J
∑
〈i,j〉

SiSj − h
∑
i

Si, (II.30)

where J is the interaction exchange constant between the spins and the first sum is per-
formed over the nearest neighbours (NN), with periodic boundaries conditions. The spin Si
of a site i can take two values 1 or −1 corresponding to a spin up or a spin down, respec-
tively. If J > 0, the ground state is reached when all the spins are aligned (up or down):
one speaks then of a ferromagnetic configuration. The configuration of highest energy is
the anti-ferromagnetic configuration, i.e. the spins are alternatively in the opposite state. If
J is negative, it is the contrary.

The next stage is to choose an initial configuration and then to launch the Monte Carlo
procedure on the system to have some measurements (e.g. the energy, the magnetisation,
specific heat...). This configuration being not necessarily at the thermal equilibrium, the first
measurements are often wrong. We have to discard them and to ensure our system would
have thermalized, which means the Markov chain has reached the equilibrium distribution
P eq. The energy is calculated for each spin by summing the interactions with other spins,
i.e. here only the NN ones and the spin is flipped according to the Metropolis criterion (cf.
eq. (II.29)). We do that for every spin on the lattice until the equilibrium is reached, i.e after

〈22〉One MCS is equal to N Monte Carlo steps.
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II.1. Monte Carlo methods

several Monte Carlo sweeps〈23〉. Then, we can proceed to the calculation of the averages
of the physical quantities we are interested in. The purpose in this part is not to detail the
behaviour of the Ising system, but to see how it evolves in different situations.

On the Figure II.4 on the next page are represented some snapshots of the two dimen-
sional Ising model on a square lattice of size L = 500. The spins up are in blue and the
down in red. To each column corresponds an initial configuration and a temperature and
to each row the time (i.e. the number of MCS performed).

The first situation (first column of Figure II.4) concerns an anti-ferromagnetic configura-
tion at low temperature. The system being in the highest energy level, it tends progressively
towards the ferromagnetic state. Indeed, it is more favourable for the system to have all
the spins in the same orientation: an update aligning the spins (according to the orientation
of its neighbours) is necessarily accepted because Ef < Ei; a proposal of spin in opposite

state with its NN is rejected at low temperature because Wi→j
T→0−−−→ 0〈24〉. If we had per-

formed the simulation on a longer time we would have got a perfect blue square, meaning
the equilibrium corresponds to a ferromagnetic configuration (at low temperature).

The column in the middle (cf. Figure II.4) concerns the evolution of the system, in a
random configuration, at the critical temperature or the Curie temperature Tc. The system
(when it is in the equilibrium configuration) is characterised by a zero (global) magnetisa-
tion and the quantities like the specific heat or the susceptibility magnetic diverges in the
thermodynamic limit for an infinite size due to long range correlations〈25〉 between the spins.
It means, their states fluctuate a lot but not independently of the others. They are strongly
correlated to each other (even with those located at very long distances) giving birth to clus-
ters or domains of parallel spins persisting along the time, increasing deeply the relaxation
time τ [85]: this phenomenon is named critical slowing-down [49]. The Metropolis algorithm,
updating the system spin after spin, is not adapted for the study of the system at Tc. A wiser
choice would be to perform the simulations with a cluster flip algorithm such as proposed
by Swendsen and Wang [176] or by Wolff [186, 187], improving the relaxation time τ 〈26〉.

〈23〉cf. the previous sub-subsection II.1.3.c.
〈24〉This is why, if all the spins were initially aligned, the system would have stayed in the same configuration,
i.e. ferromagnetic. One could have seen appear, during the simulation, some spins in opposite state because
we are not at zero temperature.
〈25〉Near the critical temperature, the correlation length ξ, i.e. the distance below which the fluctuation

between two spins are correlated, increases. ξ diverges at Tc. For a finite size L system with periodic
boundaries, a phase transition occurs when ξ ∼ L. At Tc, ξ diverges [49] (for a second order phase transition).
〈26〉The relaxation time is actually proportional to the correlation length ξ, such as τ ∝ ξz ∼ Lz , where z is

the dynamic exponent [49]. Near Tc, z ∼ 2 [145] with the standard Metropolis algorithm and with a cluster flip
algorithm z ∼ 0.5 [177]. The efficiency of this kind of algorithm near Tc is obvious.
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II.2. Adaptation to the mobile spin

At high temperature (cf. snapshots of the the last columns of the Figure II.4), the system
evolves readily from a ferromagnetic to a disordered phase termed paramagnetic. Following
the same arguments, a spin flip is almost always accepted since Wi→j

T→+∞−−−−→ 1. In these
conditions, all the configurations are accessible. Theoretically, it should be possible for the
system to reach an anti-ferromagnetic phase. But the degeneracy [148] of the disordered
state being too high (compared to the one of the ordered phases), the probability〈27〉 it
happens is very low.

II.2 Adaptation to the mobile spin

We present in this section the algorithm we developed for our mobile spin systems.

II.2.1 Non micro-reversible moves

The micro-states of a system are not always reversible, i.e. the proposed update (cf. the part
II.1.3.c) from i to f is not symmetric to the reverse move from f to i. We need then to adapt
the detailed balance (see equation (II.27)) for this purpose. The probability transition can
expressed [102] as the product of two probabilities such as

Wi→f = Si→fAi→f , (II.31)

where

• Si→f denotes the selection rate of a specific state among the set of all the accessible
states, i.e. the proposed update (or a priori choice) probability,

• and Ai→f the acceptance probability of the a priori choice.

In the same manner we can show the equation (II.29) satisfies the detailed balance, we can
prove that

Wi→f = Si→f min

(
1,
P eq
f

P eq
i

Sf→i
Si→f

)
(II.32)

is also a valid transition rate satisfying the detailed balance equation (II.27). This is known
as the Metropolis-Hastings criterion [76].

II.2.2 Mobile spin algorithm

Until now, we implicitly only mentioned the spin orientation as degrees of freedom. But for
modelling our mobile spin systems (cf. chapter III), we need to add some others to take into
accounts the displacement of the spins on the lattice.

〈27〉cf. the canonical probability of degenerated states [50].
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Visit of a non empty site
at a given temperature T

Calculation of the number
Nf of neighbouring
free sites among the
Nc nearest neighbours

If Nf = 0,
then the spin does not move

If Nf 6= 0,
then the spin moves randomly

to a chosen free site

The spin state is
randomly changed

Calculation of the
Metropolis-Hastings

criterion and draw of a
random number r uniformly

distributed on [0, 1[

If r > Nf

Nc
e −∆E/kBT, the

configuration is rejected
If r 6 Nf

Nc
e −∆E/kBT, the

configuration is accepted

Figure II.5 – Diagram showing the different steps of the Monte Carlo algorithm for mobile
spin systems. These steps must be repeated until all the lattice sites have been visited
before calculating the physical quantities of the system (energy, magnetisation...)

We have performed the simulations of a partially filled lattice. The concentration c of spins
is fixed (canonical situation). It is defined by c = N/NT , where N is the number of spins
and NT = Nx × Ny × Nz the total number of lattice sites where Ni(i = x, y, z) is the
number of site in the i direction〈28〉. The spin has then here three supplementary degrees
of freedom (one by direction of possible displacement).

Now the framework of this algorithm is defined, let us explain how a step is performed.
At a given T , we visit a non empty lattice site: the algorithm counts the number Nf of
empty neighbouring sites. If this number is different from zero, the spin moves to a ran-
domly chosen (with a certain probability) free site with a randomly chosen spin state. If
Nf is equal to zero, only the state is changed. The energy of the spin is calculated and the
new configuration is accepted or not according to the Metropolis-Hastings criterion. We
go to another site and update its position and its spin state until all sites are visited. The

〈28〉This method can be applied on a three-dimensional system as well on a two-dimensional one.
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II.3. Sources of errors in Monte Carlo

algorithm is summarised thanks to the Figure II.5. Once a Monte Carlo sweep has been
realized, the physical quantities, such as the energy and the magnetisation for instance, can
be calculated.

II.3 Sources of errors in Monte Carlo

As said in the introduction of the chapter, Monte Carlo simulations allow to study physical
systems that can not be solved analytically. But the use of computers to perform calculations
implies necessarily numerical and statistical errors. It is then important to have a good
knowledge about the possible causes of these errors in order to minimize them and to
get the most accurate results. Therefore, we deal in this section with the statistical and
systematic errors in Monte Carlo [61], like the simulation time, the finite-size effects. And
because Monte Carlo methods rely on stochastic processes, we also treat the generation of
random numbers.

II.3.1 Systematic and statistical errors

a) Time effect

Autocorrelation function and relaxation times We have seen with the equation (II.19)
that the average value of a given observable O is calculated thanks to a simple arithmetic
mean, i.e. by summing the N recorded values〈29〉 On of the observable. It is then obvious
that to get a good statistic, the On must be decorrelated as far as possible. But a Markov
chain does not engender statistically independent configurations. Therefore, it can be
appropriate to evaluate the amount of correlation between configurations by calculating the
normalised time-displaced autocorrelation function〈30〉

ROO(t) ≡ 〈OnOn+t〉 − 〈On〉2

〈O2
n〉 − 〈On〉2

, (II.33)

=
1

σ2
On

[
1

N − t

N−t∑
n=1

OnOn+t −
1

(N − t)2

N−t∑
n=1

On
N−t∑
n′=1

On′
]
, (II.34)

where 〈·〉 denotes the average taken over the time-index n (estimated here by an arith-
metic sum) and the normalisation factor (the denominator) is simply the variance of the
observable. This function tells us how two measurements of O, separated by t MCS, are
correlated. By definition, we have ROO(0) = 1 and lim

t→+∞
ROO(t) = 0. Actually for systems

at the equilibrium, the autocorrelation function has an exponentially decaying behaviour

〈29〉Throughout a Monte Carlo run, with On the n−th stored value and where n ∈ [[1,N ]].
〈30〉Known in statistic as the (normalised) autocovariance function. In signal processing, this function is often

not normalised and reduced to the first term of the equation (II.34): it is a convolution product.
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for large t [28, 172] such as〈31〉

ROO(t)
t→+∞−−−−→ e−t/τ , (II.35)

where τ is the relaxation time〈32〉 (diverging around the critical temperature Tc for second
order phase transition) and is a good indicator of the average time-scale between two
independent measurements. Note that the relaxation time depends on the state of the
system and also on the observable O considered (energy, magnetisation...) and therefore τ
represents the largest one. There are two ways to obtain it; either from the equation (II.35)
leading to the exponential relaxation time τe or from the integration of the autocorrelation
function leading to the integrated relaxation time, such as

τi '
1

2
+

+∞∑
t=1

ROO(t). (II.36)

The integrated and exponential relaxation time do usually not totally coincide [91]. Actually
they do not play the same role giving thus different informations [172]. τe tells about the
number of MCS to discard before considering the Markov chain has reached an invariant
probability distribution, i.e. before the system has thermalised. Once the equilibrium is
attained, any subsequent Monte Carlo moves from a state to another one leave the system
in the equilibrium and thus any time of the simulation can be considered as the time zero t0
for the calculation of the averages. Thus t0 � τe is a sufficient condition for a system to be
well thermalised. On the other hand, τi takes place in the statistical errors of the estimation
of 〈O〉 due to the fluctuation of the stored values On. The mean squared error ε2

O
〈33〉 on

the estimated mean 〈O〉 is given by

ε2
O =

2 τi
N

[
〈O2

n〉 − 〈On〉2
]

=
〈O2

n〉 − 〈On〉2

Neff
, (II.37)

where N is still the number of recorded measurements and Neff the number of independent
measurements On that are approximatively uncorrelated after 2 τi iterations.

b) Size effect

In order to get data quickly, it might be sometimes tempting to perform simulations on
small systems leading to a high risk to have wrong results. Indeed, the size or volume
V = Ld, d being the dimension of the lattice, of a sample is a source of errors, since the
simulations are made on finite systems. To get around this, one can use periodic boundary
conditions〈34〉 (PBC) to simulate an infinite system. But this trick is not infallible and works

〈31〉This behaviour can be demonstrated with a spectral analysis of the Markov transition matrix [173] and
the time-scale τ is related to the eigenvalues of this matrix. For certain systems, like spin glass [70], the
autocorrelation function scales with a stretched exponential function [2], i.e. with e(−t/τ)

b

where 0 < b 6 1.
〈32〉Also termed autocorrelation time.
〈33〉For more details see the appendix B.
〈34〉The way how to treat boundaries of a lattice is a crucial problem in numerical simulations. Different

kinds of boundary conditions and their effects are exposed in Landau and Binder’s book [108].
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for high enough L. For instance, a Monte Carlo simulation of an Ising model on a square
lattice of size L = 10 with PBC is far from the analytical Onsager’s solution [148]. This is
shown with a finite size scaling study (see Figure II.6). We give now a short explanation
about the importance the size of the system in phase transition and about the errors it
occurs.

Figure II.6 – Plot of magnetisation M versus temperature T (in unit J/kB ) obtained by
Monte Carlo simulation of an Ising model without external magnetic field on a square
lattice of size L with periodic boundary conditions. The figure shows a finite size scaling
effect; indeed the evolution of the order parameter M depends clearly on L. For instance,
when L = 5, the magnetisation decreases slightly. But when L becomes larger and larger,
the behaviour ofM tends towards the behaviour described by the analytical solution [148],
i.e. a brutal drop to zero of the order parameter at the critical temperature Tc ' 2.27 J/kB .

When a second order phase transition truly〈35〉 occurs, the correlation length ξ, i.e. the
distance between spins below which they are correlated, diverges〈36〉 just as the relaxation
time τ , since they are linked trough the relation [85]

τ ∝ ξz ∝
(

Tc
T − Tc

)zν
, (II.38)

where Tc denotes the critical temperature, ν is a critical exponent and z the dynamic expo-
nent depending on the algorithm. But because of the finiteness of the system, the transition
takes place when ξ is the order of L〈37〉, i.e. ξ ∼ L. We understand then that if L is too

〈35〉Meaning for infinite system.
〈36〉This is known as the critical slowing down phenomenon.
〈37〉To be more accurate, with PBC, we have ξ ∼ L/2 [108].
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small, the study of a phase transition may be biased, like for instance: a bad estimation
of the transition temperature Tc, a first order phase transition looking like a second or-
der one〈38〉 (namely with continuous order parameters and characterised by scaling laws),
etc... Moreover, it appears clearly the relaxation time depends on the size of the system
[135, 15, 108] through

τ(L) ∝ Lz (II.39)

or for a first order transition through

τ(L) ∝ Lz e2σLd−1

, (II.40)

where σ denotes the interface free energy between two phases and 2Ld−1 the surface of the
interfaces with PBC; the argument of the exponential function being then the height of the
free energy barrier [152, 50]. By replacing these two last equations in the equation (II.37),
we see the errors depends now on the ratio of the size L of the system to the observation
time tobs.

II.3.2 Random numbers generator

In general terms, the generation of random numbers is a crucial point for the stochastic al-
gorithms and can constitute a source of errors in Monte Carlo simulations [124]. Indeed, the
reliability of the results in Monte Carlo simulation and the quality of the random numbers
generators are strongly correlated. The production of random numbers is still subject to an
intensive research〈39〉 and an entire thesis could be written on it, which is not the purpose
here. We provide hereafter only informations about the generators used for our simulations.

It exists different kinds of generators. The most efficient are the ones based on a phys-
ical methods such as, for example, the diode noise, the radioactivity or photonic devices
[79, 179]. But the method we used for the simulations relies on software [99] for generating
pseudo random numbers (PRNG), i.e. producing a deterministic sequence of numbers. A
PRNG must meet the following requirements to be considered as reliable :

• the distribution of random numbers has to be as close as possible to the desired
distribution (uniform in our case),

• the correlation between successive numbers must be the lowest possible,

• the period of a cycle must be preferably larger than the total amount of generated
numbers〈40〉,

〈38〉Fortunately, methods exist (besides a finite size scaling study), like the Binder cumulant [14] and the
histogram method ( see chapter III and [62]) to distinguish the order of a phase transition, to locate precisely a
critical point and to calculate the critical exponents.
〈39〉Particularly in the domain of the cryptography [151] and parallel computing [109].
〈40〉Typically equal to the number of sites times the number of Monte Carlo sweeps for a classical spin system

(i.e. with no spin moving on the lattice).
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• and the algorithm must be efficient in view of the colossal amount of random numbers
that requires a Monte Carlo simulation.

The PRNGs can be classified in different families all based on a recurrence relation, i.e.
each generated number rn is function of the previous ones, such as rn = f(r0, r1, ..., rn−1).
Linear congruential generators (LCG) are probably the simplest generators. They rely on the
sequence rn = (a × rn−1 + c) mod m, where a, c and m have to be set carefully in order
to get the longest period m. LCG were popular but show noticeable correlation between
consecutive random numbers, as for instance the (really bad) RANDU〈41〉 generator used in
the sixties. Their quality have been improved by mixing two (in the simplest case) distinct
congruential generators. A first LCG generates a list of random numbers that is shuffled
with another generator [120]. The random numbers are then drawn form the shuffled list
reducing the correlation between numbers and increasing the period. Later appears a new
class of generators based on shift of bit registers using only bitwise exclusive-or (XOR) op-
erations. These generators, known as shift register generators (SRG) are reputed to be faster
than LCGs [97, 114]. The SRG is a special type of generators of a more general family: the
lagged Fibonacci generator [126]. The XOR operation can be replaced by multiplications,
additions or other operations increasing the periodicity (2144 ∝ 1043 for the RANMAR gen-
erator). Further informations about PRNG can be found in the James’ article [90].

For the simulations, we used the Mersenne Twister algorithm [127] (MT) that meets the re-
quirement listed above. This PRNG, based on a twisted generalized shift register algorithm,
is probably one of the most used, among all the uniform generators, in numerous do-
mains〈42〉, like in Monte Carlo simulations, because of its very wide period equal to the
Mersenne prime〈43〉 M19937 = 219937 − 1, i.e. of the order of 106000. It is also reputed for its
rapidity since only 32-bits logical bit operation are performed. Moreover, the MT algorithm
assures a high k-dimensional distribution, with k = 623. The k-tuples (for which compo-
nents are made up with consecutive numbers) are equidistributed over a whole period in
an unit hypercube (of dimension k 6 623), passing thus the k-distribution test. It also
passed some of the empirical diehard tests proposed by Marsaglia [125, 89]. We performed
one them: the parking lot test [88, 108] which is easy to implement. The initial version
is such as a square with a side length of 100 units is filled by squares of one unit side
length (representing cars). 12000 points (centers of the cars) of coordinates (rn, rn+k) are
randomly drawn〈44〉. We count and plot then the numbers of cars parked in the square, i.e.
the numbers of non-overlapping squares. The purpose of this test is to highlight potential

〈41〉LCG for which rn = (65539× rn−1) mod 231.
〈42〉Except in cryptography. A sequence of random numbers can be predicted from a subsequence (long

enough) of previous generated numbers. This weakness comes from the fact these sequences are generated by
a linear recursion.
〈43〉They are prime numbers of the Mersenne sequenceMn = 2n−1, (n > 1). A necessary but not sufficient

condition for Mn to be a prime number is that n is prime too.
〈44〉Several tests can be performed with different values of k.
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Chapter II. Monte Carlo method for mobile spin systems

Figure II.7 – Parking lot test performed over 3 × 104 cars with two different genera-
tors: RANDU and Mersenne Twister (MT). A 3-dimensional distribution has been used to
generate the coordinates (rn, rn+1, rn+2) to build the graphs. Only the non-overlapping
cars, modelled by one unit length side squares, are plotted. Left: Result obtained for the
RANDU random generator. It appears clearly a correlation between numbers because of
the presence of fifteen two-dimensional stripes. The generated numbers are not random
at all. Right: Results obtained with the MT algorithm. There is no sign of correlations
between generated numbers because of the absence of striped patterns on the plot.

correlations between numbers [108]. In this case some striped patterns would appear. To
illustrate this phenomenon, we plotted (Figure II.7) the results obtained after a parking lot
test performed in three dimension with two different PRNG: the RANDU and the Mersenne
Twister, both mentioned above.

As a conclusion illustrating the importance to perform Monte Carlo simulations with a
good (i.e. in accordance with the criteria mentioned above) random numbers generator, one
can read the Coddington’s analyses [33, 34] and the article of Parisi and Rapuano [150].
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Chapter III
A toy model for the study of liquid
crystals: the Mobile Potts model

Contents

III.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
III.2 Mobile Potts Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
III.3 Mean-Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

III.3.1 Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
III.3.2 Mean-Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

III.4 Monte Carlo results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
III.4.1 Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
III.4.2 Effect of concentration . . . . . . . . . . . . . . . . . . . . . . . . . . 53
III.4.3 Surface sublimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

III.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

We introduce in this chapter an adaptation the well known Potts model. Indeed, the inter-
action between neighbouring spins is still ruled by the Potts Hamiltonian, but in our model
the spins can move on free neighbouring site. We show here the results obtained after a
mean-field analysis and also after Monte Carlo simulations.
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Chapter III. A toy model: the Mobile Potts model

III.1 Introduction

hase transition is a fascinating subject that has attracted an enormous number
of investigations in various areas during the last fifty years. Much of progress
has been achieved in the seventies in the understanding of mechanisms which
characterize a phase transition: the renormalization group shows that the nature

of a phase transition depends on a few parameters such as the space dimension, the sym-
metry of the order parameter and the nature of the interaction between particles [185, 3, 197].

There has been recently a growing interest in using spin systems to describe properties
of dimers and liquid crystals [80]. Spin systems are used in statistical physics to describe
various systems where a mapping to a spin language is possible. In two dimensions (2D)
Ising-Potts models were studied extensively [188, 144, 94]. Interesting results such as hybrid
transitions on defect lines were predicted with renormalizaton group and confirmed with
Monte Carlo (MC) simulations [53]. Unfortunately, as for other systems of interacting parti-
cles, exact solutions can be obtained only for systems up to 2D with short-range interactions
[9, 47]. We will focus in this chapter on the q-state Potts model in three dimensions (3D)
where Bazavova et al. have recently shown precise results for various values of q for the
localized Potts models [10]. High-temperature series expansions for random Potts models
have been studied by Hellmund and co-workers [178]. Other investigations have been car-
ried out on critical properties in the 3D site-diluted Potts model [140] and Potts spin glasses
[87, 6, 73, 74, 68].

We are interested here in the problem of moving particles such as atoms or molecules
in a crystal. To simplify, we consider the case of mobile q-state Potts spins moving from one
lattice site to a nearby one. The q states express the number of internal degrees of freedom
of each particle, such as molecular local orientations. We simulate the mobile 6-state Potts
model on a cubic lattice. It is known that the pure Potts model in three dimensions un-
dergoes a continuous transition for q = 2 and a first-order transition for q=3, 4, ... We use
here MC simulation and a theoretical analysis to elucidate properties of such a system. The
mobility depends on the temperature. At low temperatures, all spins gather in a solid, com-
pact phase. As the temperature increases, spins at the surface are detached from the solid
to go to the empty space forming a gaseous phase. We show that the phase transformation
goes through several steps and depends on the concentration of the Potts spins in the crystal.

The mobile Potts model presented here is expected to be equivalent to the dilute Potts
model in as far as the bulk thermodynamics is concerned. The kinematics at the interface
between the solid and the gas phases may be affected by the constraint that atoms move
only to empty neighbouring cells in the mobile model as opposed to the case where atoms
move to any other vacant cell in the diluted model.
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At a sufficiently high concentration, spins are not entirely evaporated and the remaining
solid core undergoes a transition to the orientationally disordered phase. We anticipate
here that there is only one phase transition in the model, a first-order transition from
higher-density (solid) phase with non-zero Potts order parameter to a lower-density phase
with vanishing Potts order parameter. The sublimation observed below is analogous to
surface melting, which in the melting of a solid can begin well below the bulk melting tem-
perature. Details are shown and discussed in terms of surface sublimation and melting. We
note in passing that direct studies of melting using continuous atomic motions are efficient
for bulk melting [71, 72, 20] but they have often many difficulties to provide clear results
for complicated situations such as surface melting (see references cited in Ref. [21]). Using
discrete spin displacements as in the present model we show that bulk melting and surface
sublimation can be clearly observed. We believe that these results bear essential features of
real systems.

Section III.2 is devoted to the description of our mobile Potts model. The mobile Potts
model is related to a diluted Potts model. The latter model is analysed within the mean-
field approximation for bulk properties in section III.3 below. The two models are not
identical. While in the mobile Pots model a spin can move to a void location nearby, in
the diluted model there is no constraint on the proximity of the locations of the spin and
the vacancy. The thermodynamics of two models may be identical in the long run, even
though the kinematics may be different. Section III.4 is devoted to the presentation of MC
simulation results. Concluding remarks are given in section III.5.

III.2 Mobile Potts Model

We consider a lattice of NL sites. A site i can be vacant or occupied at most by a Potts spin
σi of q states: σi = 1, 2, ..., q. Potts spins can move from one site to a neighbouring vacant
site under effects of mutual spin-spin interaction and/or of temperature T . In order to allow
for spin mobility, the number Ns of Potts spins should be smaller than NL. Let us define
the spin concentration c by c = Ns/NL. The Hamiltonian is given by the Potts model:

H = −J
∑
〈i,j〉

δσi,σj (III.1)

where J is the interaction constant between nearest neighbours (NN), denotes the Kroc-
necker delta and the sum is taken over NN spin pairs. To this simple Hamiltonian, we
can add a chemical potential term when we deal with the system in the grand-canonical
description [50] and an interaction term between neighbouring vacancies (see below).

The ground state (GS) of the system described by equation (III.1) is the one with the mini-
mum of interaction energy: each spin maximizes the number of NN of the same values. As
a consequence, all spins have the same value and form a compact solid. If the lattice is a

39



Chapter III. A toy model: the Mobile Potts model

recipient of dimension Nx × Ny × Nz, then the GS is a solid with a minimum of surface
spins (surface spins have higher energies than interior spins due to a smaller number of
NN). In a recipient with Nx = Ny < Nz with periodic boundary conditions in the xy plane
and close limits on the z direction for example, the free surface is the xy surface. We show
in Figure III.1 such an example.

Figure III.1 – Ground state (GS) of the system with Nx = Ny < Nz , where the interaction
between nearest neighbours spins is ruled by a ferromagnetic Hamiltonian (6-Potts model
here). A GS configuration is then reached when all the spins are stacked in the bottom of
the recipient and have all the same state (in blue on the figure).

When T is increased, surface spins are detached from the solid to go to the empty space.
At high T , the solid becomes a gas. The path to go to the final gaseous phase will be shown
in this chapter. We start with the bulk case and examine the surface behaviour in what
follows.

III.3 Mean-Field Theory

In this section, we present the mean-field theory for the mobile Potts model. It is more
convenient to work in the grand-canonical description. The results do not depend on the
approaches for large systems [50]. To that end we consider a vacancy as a spin with value
zero. The model becomes (q + 1)-state model. In addition, we add a chemical term in the
Hamiltonian and rewrite it in a more general manner in the following.

III.3.1 Hamiltonian

We divide the space intoM cells, of equal volume v, centred each on a site of a cubic lattice.
Any cell is either vacant or occupied by a single particle characterized by a q-value spin.
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III.3. Mean-Field Theory

neighbouring particles that have the same spin value get a lower interaction energy −J
than if they have different spin values. Zero energy is assigned to neighbouring cells that
have at least a vacancy. We assign an energy −K to neighbouring cells that are occupied
irrespective of their spin values. In the grand canonical ensemble we allow for fluctuating
number of particles and include in the Hamiltonian a single site (cell) term proportional to
the chemical potential H if there is a particle at the cell. This model can be described by
assigning at each site a (q + 1)-Potts spin σ = 0, 1, ..., q. The zero value corresponds to
vacancy while the values 1, 2,..., q correspond to a particle having a spin. The Hamiltonian
is

− H
kBT

= J
∑
〈i,j〉

δσi,σj

[
1− δσi,0

][
1− δσj,0

]
+K

∑
〈i,j〉

[
1− δσi,0

][
1− δσj,0

]
+H

∑
i

[
1− δσi,0

]
, (III.2)

where the two first sums are performed over all the NN and the third one over each site.
This corresponds to the grand canonical ensemble: fixed temperature T , chemical potential
H = µ/kBT and volume V .

III.3.2 Mean-Field Theory

The mean-field theory of the diluted Potts model [95] is exact for the equivalent-neighbour
lattice. The thermodynamic grand potential Φ divided by NC is proportional to the pressure:

−pv =
Φ

NC
= −kBT

lnZ
NC

= kBT min(Ψ) (III.3)

where

Ψ =
J

2

(
q∑

σ=1

m2
σ

)
− ln

(
1 +

q∑
σ=1

eJmσ+H

)
. (III.4)

Obviously, min(Ψ) represents the free energy of the system. The two main tricks to deter-
mine Ψ [95] are to write the grand partition function Z as a Gaussian integral (Hubbard-
Stratonovich transformation) and to apply the saddle point method. Note also that the
above equations are for K = 0 and that the minimum of Ψ = lnZ/NC is taken because we
are at the equilibrium. The optimization equations are

mσ =
eJmσ+H

1 +
q∑̀
=1

eJm`+H
, (III.5)
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for σ = 1, ..., q. The mσ gives the average number of particles of spin σ normalized by the
total number of sites (cells) NC. The number of particles normalized by NC is

n =

q∑
σ=1

mσ =

q∑
σ=1

e(Jmσ+H)

1 + e(Jm1+H) + e(Jm2+H) + · · ·+ e(Jmq+H)
. (III.6)

Assuming the ordering of the Potts spin to occur in state 1, we parameterize〈1〉 the mσ’s as
follows

m1 =
n

q
+ (q − 1)m and m2 = m3 = · · · = mq =

n

q
−m, (III.7)

where m is the local dimensionless magnetisation. The optimization equation (III.6) is now

n =
eJ(n

q
+(q−1)m)+H +(q − 1) eJ(n

q
−m)+H

eJ(n
q

+(q−1)m)+H +(q − 1) eJ(n
q
−m)+H +1

,

=
eJ(n

q
−m)+H(eJqm +q − 1)

eJ(n
q
−m)+H(eJqm +q − 1) + 1

(III.8)

and starting from (for instance)

mq =
n

q
−m, (III.9)

the optimization equation (III.5), by inserting equation (III.7) in it, becomes now

mq

n
= 1− qmq

n
,

= 1−

[
eJ(n

q
−m)+H(eJqm +q − 1)

eJ(n
q
−m)+H(eJqm +q − 1) + 1

]−1
q eJ(n

q
−m)+H

eJ(n
q
−m)+H(eJqm +q − 1) + 1

s,

=
eJqm−1

eJqm +q − 1
. (III.10)

In the following we denote X = qm/n. The energy u scaled by NC, number of cells, is

u = −1

2

q∑
σ=1

m2
σ,

= −1

2

e2J(n
q
−m)+2H(e2Jqm +q − 1)(
1 +

q∑̀
=1

eJm`+H
)2 ,

= −1

2

e2Jqm +q − 1

(eJqm +q − 1)2
n2. (III.11)

〈1〉Such as the mσ satisfy the condition:
q∑

σ=1
mσ = 1.
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In order to express the energy in function of X , we look for a second-order polynomial
such as

αX2 + βX + γ =
e2Jqm +q − 1

(eJqm +q − 1)2
, (III.12)

where X is given by equation (III.10). By identification, we determine the coefficients α, β
and γ giving thus

α = 1− 1

q
, β = 0 and γ =

1

q
, (III.13)

and it comes finally that

u = −1

2

n2

q

[
(q − 1)X2 + 1

]
. (III.14)

The specific heat at fixed number of particles n is

Cv =
∂u

∂T
= −n2 q − 1

2q

∂X2

∂T
. (III.15)

The second optimization equation, equation (III.8), provides a formula for the chemical
potential, since H = µ/T . Thus, by taking the natural logarithm of n, we get

H = ln

(
n
[
eJ(n

q
−m)+H(eJqm +q − 1) + 1

])
− ln

(
eJm +q − 1

)
− J n

q

(
1− qm

n

)
(III.16)

and by noticing that

1

1− n
= eJ(n

q
−m)+H(eJqm +q − 1) + 1 and

1−X
q

=
1

2
eJqm +q − 1, (III.17)

it comes

µ = T ln

(
n

1− n

)
+ T ln

(
1−X
q

)
− n(1−X)

q
, (III.18)

by setting J = 1/T . The pressure p is obtained from equation (III.3). Thanks to the
expression of the energy u and the equation (III.17), we reach

pv = −n
2

2q

[
1 + (q − 1)X2

]
− T ln(1− n). (III.19)

Note in the disordered (gas) phase X = 0 and n � 1. The equation of state reduces to
the ideal gas equation pv = nT . The entropy S normalized by M is obtained from the
thermodynamic Euler equation

S =
u+ pv − µn

T
, (III.20)

= −n ln(n)− (1− n) ln(1− n)− n ln

(
1−X
q

)
− n2

qT

[
(q − 1)X2 +X

]
. (III.21)
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The model exhibits a first-order phase transition tied to the Potts q-state transition. In Fig-
ure III.2 we show n by curve 1 (red) and the order parameter Q = qm (see equation III.10)
by curve 2 (blue) as functions of T for fixed chemical potential µ = −0.4 (Figure III.2b).
Increasing the chemical potential reduces the discontinuity in n as seen for µ = −0.3 (Fig-
ure III.2a). While, decreasing the chemical potential below µ = −0.5 destroys order at all
temperatures as seen for µ = −0.51 (Figure III.2c).

Figure III.2 – Average number of particles per site n (curve 1, red, left scale) and order
parameter Q = qm (curve 2, blue, right scale) versus temperature T for different chemical
potential µ: (a) µ = −0.3, (b) µ = −0.4, (c) µ = −0.51. For small µ, the order parameter
show a discontinuity (first-order phase transition) that is reduced when µ is increased,
while decreasing µ destroys totally the order. Indeed for µ = 0.51 the order parameter is
constant and equal to zero.

This is understood by comparing the energy of any pair (i, j) in the ordered (solid) phase
Ei,j = J + 2H to the energy in the disordered (gaseous) phase Ei,j = 0. The two energies
cross when H = −0.5J , or when µ = −0.5.

The phase diagram in the (T, µ) plane shown in Figure III.3 includes an ordered (solid)
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phase (low T and high µ) and a disordered (gas) phase. The two phases are separated
by a line of first-order transitions. In the limit of large chemical potential the number of

Figure III.3 – Phase diagram in the plane (T, µ). The solid red line is a first-order
transition line. Above this line, i.e. low temperature T and high chemical potential µ,
the system is in an ordered phase (solid), while under the red line, it corresponds to a
disordered phase (gas).

vacancies becomes negligible and thus the model reduces to the q-state Potts model. As a
result the transition line approaches T = 0.25.

The phase diagram in the temperature-pressure plane is shown in Figure III.4. The zone
above the red line corresponds to the region in which the system is in a solid phase. While
below this line, the system is in a gaseous phase (high temperature region).

Figure III.4 – Phase diagram in the plane (T, p). The red line brands the separation
between the solid phase (above the line; low temperature and high temperature) and the
gas phase (below the line; high temperature).

Isotherms pressure p versus n are shown in Figure III.5. For T = 0.25 there is no phase
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transition while for T = 0.23, 0.2, 0.18 the first-order transitions line is crossed. As a result,
we see the gap in the density n. The higher n branch corresponds to the ordered solid.
Note that the solid exists only for n large enough (n > 0.95). In other words the presence
of 5% vacancies destroys the solid. This is summarized in the phase diagram in the (T, n)

Figure III.5 – Isotherms (p, n) are shown by thick curves for T = 0.25 (curve 1, violet),
0.23 (curve 2, green), 0.2 (curve 3, blue) and 0.18 (curve 4, red). Thin broken lines indicate
discontinuities of n. The system exhibits a first-order phase transition for T < 0.25.The
higher n branch corresponds to a solid phase while the lower branch to a gas.

Figure III.6 – Phase diagram in the plane (T, n). The red squares and blue circles lines
represent the densities of the solid and of the gas, respectively. The region between the
red line and the blue line correspond to a solid phase. Below the blue line, i.e. at high
temperature, the system is in gaseous phase. The coalescence point occures at T = 0.25
and corresponds to the infinite chemical potential limit, i.e. no vacancies.

plane shown in Figure III.6. The two lines represent the densities of the solid (red squares)
and of the gas (blue circles). The two branches coalesce at a temperature of 0.25. Note that
this is not a critical point but the end of the thermodynamic space as it occurs in the limit
of infinite chemical potential (i.e. no vacancies).

46



III.3. Mean-Field Theory

Entropy and energy versus temperature and chemical potential are shown in Figure III.7.
The fundamental equation, chemical potential as a function of temperature and pressure, is
concave as required by the second law of thermodynamics (thermodynamic stability). It is
a continuous function and the first-order transitions manifest as discontinuities in slope of
the chemical potential when graphed against temperature and pressure (Figure III.8).

Figure III.7 – Entropy (left) and energy (right) as functions of temperature and chemical
potential.Note that the entropy is a concave function, which is in accord with the second
law of thermodynamics. Indeed, the equilibrium of a system is reached when the entropy
is maximal.

Figure III.8 – Surface in the space temperature T , pressure P and chemical potential µ. The
discontinuity in slope of µ is sign of first-order transition.
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III.4 Monte Carlo results

In this section, we present our results from MC simulations. The method has been largely
described in the chapter II. Note that in our simulations, we used 105 MCS/spin to equili-
brate the system before averaging physical quantities over the following 106 MCS/spin. We
have verified that longer MC run times do not change the results. We used various system
sizes and shapes to examine finite-size and shape effects on the results.

III.4.1 Transition

We study here the melting behaviour of a solid contained in a recipient described in section
III.2. The recipient has the dimension Nx = Ny < Nz and is filled with molecules (Potts
spins) in the lower part of the recipient. The number of filled layers is smaller than Nz (Fig-
ure III.1). Molecules under thermal effect can be evaporated from the upper surface to the
empty space. To study the behaviour of such a system, we choose to heat the system from
low to high T . Cooling the system from a random initial configuration, namely molecules
in a gas state with positions distributed over all space, will result in a compact solid phase
at low temperature but the surface of this solid is not so flat so that the system energy is
about 5% higher than the GS energy shown in Figure III.1. However, the system behaviour
at higher T as well as the phase transition are the same as obtained by heating. We will
show this later.

Let us show now results for a lattice of 15 × 15 × 30 sites where only the fifteen first
layers in the z direction are filled (c = 50%) in the GS configuration shown in Figure III.1.
As said above, this configuration corresponds to the one with a minimal free surface when
the system is in the solid state.

Our simulation in real time shows that when T increases atoms on the surface are pro-
gressively evaporated. The solid core of the system remains in a Potts spin order, though
its volume is little by little reduced with increasing T . At a high enough value of T , say
Tc, the Potts orientational order of the solid core is broken. However, the spins still stay in
the solid state up to a very high T when the whole system melts to a gas (or liquid) phase.
We will show later evidence of such a change of the system at several T with snapshots and
corresponding distributions of the NN number.

The magnetisation M versus T is displayed in Figure III.9 and is defined as follow [49]

M =
1

q − 1

[
q

Ns

max
j∈[[1,q]]

(
Ns∑
i=1

δj,σi

)
− 1

]
. (III.22)

For an ordered system, i.e. containing only one kind of spin σ,M = 1 while for a disordered
system q kinds of spins are present in the same proportion 1/q, then M = 0.
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M in Figure III.9 indicates a perfect order at low T . When T is increased M decreases
linearly with T : a careful examination of the system dynamics reveals that this regime cor-
responds to the evaporation of surface spins. This regime ends with a discontinuity of M
at a transition temperature Tc ' 1.234.

Figure III.9 – Magnetization M versus temperature T (in unit of J/kB ) for a lattice of
15 × 15 × 30 sites with a spin concentration c = 50%. The system is completely ordered
at T = 0, then surface spins are little by little evaporated with increasing T . The phase
transition of spin orientations of the solid core occurs at Tc ' 1.234.

The discontinuity at Tc indicates a first-order phase transition. We have verified this
by recording the energy histogram P (U) at the transition temperature Tc = 1.234. The
double-peak structure shown in Figure III.10 confirms the first-order character of the tran-
sition. Note that disordered evaporated atoms, namely atoms outside the system solid core,
do not participate in the transition.

Figure III.10 – Energy histogram P (U) recorded at Tc = 1.234 for a lattice 15× 15× 30
with concentration c = 50%. It represents the probability P of observing a state of energy
U . The presence of the two peaks, i.e. two co-existing phases, indicates that the transition
is of first-order.
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We have studied the finite-size effect on the transition at c = 50%. Since the shape of
the recipient has a strong effect on the phase transition as seen below, we have kept the
same recipient shape to investigate the finite-size effect: to compare results at the same
concentration with those of the lattice 15×15×30 sites, we have used lattices of 10×10×20,
20×20×40, 25×25×50, 30×30×60 and 35×35×70 sites in which half of the recipient is
filled with spins, namely c = 50%. In Figure III.11 the magnetisation, the energy, the specific
heat and the magnetic susceptibility versus T for several sizes is shown.

Figure III.11 – Comparison of the evolution of (a) the magnetisationM , (b) the energy per
spin U , (c) the specific heat CV and (d) the magnetic susceptibility χ versus the temperature
of a half-filled lattice Nx × Ny × Nz for several sizes Nx = Ny = Nz/2 = 10 (red void
circles), 15 (blue filled circles), 20 (green void diamonds), 25 (black stars), 30 (magenta
crosses) and 35 (sky-blue void squares). For the small box, i.e for Nx = 10, the transition
looks like to a second-order phase transition because of the finite-size effect, while for the
other sizes of box the discontinuities suggest first-order transitions.

Figure III.11 shows that the transition looks like a second-order transition when the size of
the box is small. This is a well-known finite-size effect: when the linear size of a system is
smaller than the correlation length at the transition, the system behaves as a second-order
transition. We have to use therefore a finite-size scaling to ensure that the transition is of
first-order. To do this, let us show the transition temperatures for systems at various sizes
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in Figure III.12. By fitting simulation results with the finite-scaling formula

Tc(L) = Tc(∞) +
A

Lα
, (III.23)

we find the following best non-linear least mean square fit with the relative change of the
last (8th) iteration less than −1.30954× 10−10, such as

Tc(∞) = 1.35256± 0.004089 (0.3023%), α = 2.9, (III.24)

A = −2335.24± 170.9(7.316%). (III.25)

This is shown by the continued line in Figure III.12.

Figure III.12 – Transition temperature versus lattice size Nx ×Ny ×Nz at concentration
c = 50% where Nx = Ny = Nz/2, with Nz = 30, 40, 50, 60, 70 and 80.

Several remarks can be made concerning these results:

• The value of α indicates that, within statistical errors, Tc(L) does scale with the
system volume L3 as it should for a first-order transition [7, 10],

• Our value of Tc(∞) is in excellent agreement with that found for the localized model

Tc = 1.35242± 0.00001, (III.26)

obtained with the state-of-the-art multi-canonical method [10] with periodic boundary
conditions in three directions (note that in the original paper the authors have used a
factor 2 in the Hamiltonian),

• The fact that our system follows the same finite-size scaling as the localized model
confirms that the transition observed in our mobile model is triggered by the ori-
entational disordering of Potts spins in the remaining solid core at the transition
temperature.
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Following the last argument, it is then obvious that if the quantity of matter remaining in
the solid phase is so small due to the evaporation, then there is no transition. This should
be seen if we lower the concentration.

Before showing the effect of concentration, let us show a snapshot in the case of c = 50%

in Figure III.13. The transition scenario discussed above is seen in these snapshots: the
observed transition is that of Potts orientational order in the solid core. Note that unlike the

Figure III.13 – Simulation for a half filled lattice size 35×35×70 (concentration c = 50%):
(a) Snapshot of the system at T = 1.3128 close to the transition. Each color corresponds to
a spin state. i.e. to a specific orientation. (b) R vs Z , R being the percentage of lattice sites
having Z nearest neighbours, at T = 1.3128. Note that the solid phase is well indicated
by the number of sites with 6 neighbours.

crystal melting where atoms suddenly quit their low-T equilibrium positions to be in a liq-
uid state, our model shows that the passage to the gaseous phase takes place progressively
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with slow evaporation, atom by atom, with increasing T .

Before showing the concentration effect let us compare results of heating and cooling. As
said above, cooling the system from an initial configuration where molecules are distributed
at random over the whole space results in a compact solid phase at low T shown in Figure
III.1. However, this is realized only if we do a slow cooling: the final configuration at a
temperature is used as initial configuration for a little bit lower temperature and so on. A
rapid cooling will result in a solid with an irregular form having flat surfaces of various
sizes.

III.4.2 Effect of concentration

Let us examine now results of simulations with smaller concentrations. The absence of the
phase transition is seen when we decrease the concentration down to c = 20%. As we can
see in Figure III.14, at low temperatures, in all cases the system is in a condensed state.
As T increases, the magnetisation decreases faster at lower concentrations. All atoms are
evaporated for small concentrations below the Potts transition temperature. Note, however,

Figure III.14 – Effect of concentration: (a) Magnetization versus temperature for a lattice
15 × 15 × Nz where Nz = 20 (red void circles) , 30 (blue filled circles) , 40 (green
diamonds), 50 (black stars) , 60 (magenta crosses). For each case, only the fifteen first
layers are filled, corresponding to concentrations 15/Nz . (b) Transition temperature versus
the recipient height Nz .

that for low concentrations, there is no transition but the magnetisation disappears only
when the very small solid core disappears, namely at T ' 1.1.

III.4.3 Surface sublimation

Let us show the results using the system size 20 × 20 × 40 with 50%. To appreciate the
surface sublimation, we show also the results of the localized model where spins stay each
on its site. Figure III.15 shows the total magnetisation and the energy per spin.
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Figure III.15 – (a) Total magnetisation M and (b) energy per spin U versus T . Red
void circles indicate results of localized spins and blue filled circles indicate those of the
completely mobile model. Between these two limits, green void diamonds, black stars
and magenta crosses correspond respectively to the cases where one, two and four surface
layers are allowed to be mobile.

We show in Figure III.16 the diffusion coefficient D for the cases where one, two and four
layers are allowed to be mobile. D is defined as the cumulative sum of the displacement’s
distance between the new and the old position (at each MC step) of a spin. The sum is per-
formed over all the spin. As seen, the evaporation is signalled by the change of curvature
of D. Only when all layers are allowed to be mobile that the transition becomes really of
first-order with a discontinuity.

Figure III.16 – Diffusion coefficient D versus T . Red void circles (lowest curve) indicate
results of localized spins and blue filled circles (topmost curve) indicate those of the com-
pletely mobile model. Between these two limits, from below green void diamonds, black
stars and magenta crosses correspond respectively to the cases where one, two and four
surface layers are allowed to be mobile.

The magnetic susceptibility and the heat capacity are shown in Figure III.17 where the
same observation is made: only when all layers are allowed to be mobile that the sublima-
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tion is a first-order transition. Note that the small peaks at low T correspond to the surface
evaporation.

Figure III.17 – (a) Magnetic susceptibility χ and (b) heat capacity CV versus T . Red
void circles indicate results of localized spins and blue filled circles indicate those of the
completely mobile model. Between these two limits, green void diamonds, black stars
and magenta crosses correspond respectively to the cases where one, two and four surface
layers are allowed to be mobile.

We show in Figure III.18 the layer magnetisation for the first four layers in the cases where
four surface layers are mobile. As seen, the layer next to the solid substrate is retained by
the latter up to the bulk transition occurring at Tc ' 1.330. Other layers are evaporated
starting from the first layer, at temperatures well below Tc.

Figure III.18 – Layer magnetisations for the first four layers: red void circles, blue filled
circles, green diamonds and black stars are the magnetisations of the first, second, third
and fourth layers, respectively. The solid retains the fourth layer, i.e. the closest to the
solid, up to the bulk transition that occurs at Tc = 1.330. The three other layers on the
top evaporate at temperature well below Tc. They are not retained by the first layer.

To close this section let us compare the results obtained for two system shapes 20× 20× 40

and 40 × 20 × 20 with concentration c = 50%. It is obvious, when we look at the Figure
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III.19, that the second shape has a larger free surface which facilitates the evaporation. As
a consequence, there is no first-order transition because the solid core disappears at a tem-
perature lower than the Potts transition temperature Tc ' 1.330 at the size 20 × 20 × 40.

Figure III.19 – (a) Magnetization, (b) energy and (c) diffusion coefficient for two system
shapes 20×20×40 (red void circles) and 40×20×20 (blue filled circles) at concentration
c = 50%. It appears clearly, there is no phase transition for the lying box 40 × 20 × 20,
because this kind of shape offers a larger free surface.

III.5 Conclusion

In this chapter, we studied the properties of the mobile Potts model by the use of a mean-
field theory and Monte Carlo simulations. The two methods confirm the first-order char-
acter of the phase transition in the bulk with q = 6. As discussed in the Introduction, the
mean-field approach does not consider the real-time dynamics of the particles on the lattice
sites. Rather, it considers the average numbers of particles per site. In other words, it is
equivalent to taking the spatial average first before considering the interaction between the
particles uniformly distributed on lattice sites. Such a mean-field average is often used while
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dealing with disordered systems (dilution, bond-disorder, ...). In MC simulations, the local
environment of each particle is first taken into account before calculating its average over
all particles. During the MC averaging, all local situations are expected to be taken into
account in the final results. Hence the mean-field approximation takes the spatial average
before the ensemble average, while in MC simulations the calculation is first done for each
spatial particle configuration and the statistical average is next made over configurations.
Furthermore the mean field approximation is applied to the diluted Potts model which is
somewhat different than the mobile Potts model. In the MC simulations of the mobile
Potts model a particle can be moved to a nearby vacant site while in the diluted Potts
model a particle could be moved to a vacant site anywhere on the lattice. This difference is
expected to be important for the kinetics but not for the thermodynamics of the two models.

From a finite-size scaling we showed that the transition of an evaporating solid belongs
to the q = 6 localized Potts model. The reason is that a portion of the low-T solid phase
of the mobile Potts model still remains solid at the transition temperature of the localized
Potts model so that the orientational disordering of Potts spins occurs in this solid portion
before the complete melting. Mean-field results for various parameters in the phase space
are shown and discussed. In particular, we showed that there exists a threshold value of
the chemical potential above which there is a solid-gas transition. Monte Carlo simulations
have been carried out to studied the surface evaporation behaviour: we found that atoms
are evaporated little by little from the surface at temperatures much lower than the bulk
transition. We believe that the model presented in this chapter, though simple, possesses
the essential evaporation properties.

In the next chapter, we are interested in the generation of specific topological phases whose
vorteces. This study is completed successfully with a model based on Dzyaloshinskii-Moriya
interaction and classical MC simulations (i.e spin are fixed on the lattice).
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Chapter IV
Spin systems with
Dzyaloshinskii-Moriya interaction:
magnons and skyrmions
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In this chapter, we are interested in specific structures present in liquid crystals, like
skyrmions and the disclinations lines (specific to the nematic mesosphase). We model these
structure thanks to Dzyaloshinskii-Moriya interaction. In a first time, we look at spin-waves
excitations in thin films by using the Green functions method. Then, we apply a mag-
netic field orthogonal to the film, leading to the apparition of crystal of skyrmions and
stripes structures. They are exhibited thanks to classical (no particle moving) Monte Carlo
Metropolis simulations.
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IV.1 Introduction

kyrmions have been extensively investigated in condensed matter physics [63]
since its theoretical formulation by T. H. R. Skyrme [170, 171] in the context
of nuclear matter. There are several mechanisms and interactions leading to
the appearance of skyrmions in various kinds of matter. The most popular

one is certainly the Dzyaloshinskii-Moriya (DM) interaction which was initially proposed
to explain the weak ferromagnetism observed in antiferromagnetic Mn compounds. The
phenomenological Landau-Ginzburg model introduced by I. Dzyaloshinskii [55] was micro-
scopically derived by T. Moriya [137]. This demonstration shows that the DM interaction
comes from the second-order perturbation of the exchange interaction between two spins
which is not zero only under some geometrical conditions of non-magnetic atoms found
between them. The order of magnitude of DM interaction, D, is therefore, perturbation
theory obliges, small. The explicit form of the DM interaction will be given in the next
section. However, we can think that the demonstration of Moriya [137] is a special case and
the general Hamiltonian may have the same form but with different microscopic origin.

The DM interaction has been shown to generate skyrmions in various kinds of crystals.
For example, it can generate a crystal of skyrmions in which skyrmions arrange themselves
in a periodic structure [161, 26, 105, 106]. Skyrmions have been shown to exist in crystal
liquids [22, 111, 1] as well as quantum Hall systems. A single skyrmion has also been found.
Effects of skyrmions have been investigated in thin films [59, 192]. Artificial skyrmion lat-
tices have been devised for room temperatures [69]. Experimental observations of skyrmion
lattices have been realized in MnSi in 2009 [139, 8] and in doped semiconductors in 2010
[194] . Needless to say, many potential applications using properties of skyrmions are ex-
pected in the years to come. At this stage, it should be noted that skyrmion crystals can
also be created by competing exchange interactions without DM interactions [77, 147]. So,
mechanisms for creating skyrmions are multiple.

We note that spin-wave excitations in systems with a DM interaction in the helical phase
without skyrmions have been investigated by many authors [84, 154, 195, 174, 136].

In this chapter, we study :

• the magnon spectrum and the low-temperature behaviour of a thin film with a DM
interaction in zero field. Surface effects as well as the film thickness effect are outlined.
The method used is the self-consistent Green function technique.

• a skyrmion crystal created by the competition between the nearest-neighbour (NN)
ferromagnetic interaction J and the DM interaction of magnitude D under an applied
magnetic field H. We show by Monte Carlo (MC) simulation that the skyrmion crystal
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is stable at finite temperatures up to a transition temperature Tc where the topological
structure of each skyrmion and the periodic structure of skyrmions are destroyed.

The chapter is organized as follows. The first part is devoted to the study of magnons in
thin films. In this part, we show several examples with a combination of frustration and
surface effects where the spin configurations are non collinear. We will show in section
IV.2.2 how to calculate physical properties at temperature T = 0 and at finite T using a
Green function method in the case of DM interaction [55, 137] in thin films.

The second part is devoted to skyrmion crystals generated by an applied magnetic field.
Section IV.3.1 is devoted to the description of the model and the method to determine the
ground state (GS). It is shown that our model generates a skyrmion crystal with a perfect
periodicity at temperature T = 0. The GS phase diagram in the space (D,H) is pre-
sented. Results showing the stability of the skyrmion crystal at finite T obtained from MC
simulations are shown in section IV.3.2. We show in this section that the relaxation of
the skyrmions is very slow and follows a stretched exponential law. The stability of the
skyrmion phase is destroyed at a phase transition to the paramagnetic state. Concluding
remarks are given in section VI.4.

IV.2 Magnons in thin films

IV.2.1 Introduction

Surface effects in magnetic materials have been intensively investigated since the sixties due
to an enormous number of industrial applications [196, 18, 45, 117, 118, 11, 86, 49].

Theoretically, magnetic systems with collinear spin configurations in the bulk state or in
thin films have been well understood [54, 46]. Calculations of spin waves and their physical
effects have been well carried out with no difficulty [49]. Phase transitions in those systems
have been well analysed by renormalization group [185] and Monte Carlo (MC) simulations
[15]. However, systems with non collinear spin configurations are more difficult to treat. The
first of those systems is the helimagnetic magnets [191, 182, 75, 156] in which neighbouring
spins make a turn angle due to competing interactions between spins. More generally, we
have newly called "frustrated spin systems" systems in which competing interactions are at
the origin of highly degenerate and/or non collinear ground state (GS) spin configurations,
partial disorder at finite temperatures, re-entrant phenomena, multiple phase transitions,
disorder lines, ... [48]. There are much difficulties to deal with these systems.

On the other hand, surface effects in materials have also induced additional difficulties
in the study of materials at nanometric scale. The breaking of the translational invari-
ance at the surface gives rise to modifications of surface interactions and surface geometry
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[142, 141, 50]. Surface effects are strong when the the system becomes very small at the
nanometric scale, they can modify completely the bulk properties of the materials.

IV.2.2 Magnons with Dzyaloshinskii-Moriya interaction

a) Theoretical formulation

The DM interaction has been initially introduced to explain the weak ferromagnetism ob-
served in some antiferromagnetic Mn compounds. The phenomenological theory intro-
duced by Dzyaloshinskii [55] has been microscopically demonstrated by Moriya [137] who
has shown that the DM interaction results from a second-order perturbation of the spin-
orbit coupling. The form of the Dzyaloshinskii-Moriya interaction between two spins Si
and Sj is

Hij
DM = Dij ·

(
Si × Sj

)
(IV.1)

where the operators · and × denote respectively the scalar and the cross product. Dij and
S` (with ` = i, j) are then vectors such as

S` = Sx` êx + Sy` êy + Sz` êz, (IV.2)

Dij = Dx
ij êx +Dy

ij êy +Dz
ij êz, (IV.3)

with êµ (µ = x, y, z) unit vectors in the direction of the µ-axis. Dij is a vector which results
from the displacement of non magnetic ions located between Si and Sj , for example in
Mn-O-Mn bonds in the historical papers [55, 137]. The direction of Dij depends on the
symmetry of the displacement [137].

The DM interaction given by equation (IV.1) is antisymmetric with respect to the permuta-
tion of Si and Sj . From this expression, we write a full Hamiltonian for a crystal with the
sum performed on all spin pairs 〈i, j〉 as follows

HDM =
∑
〈i,j〉

Dij ·
(
Si × Sj

)
. (IV.4)

We see that if Dij = Dji then whatever the angle between Si and Sj is, the sum is zero.
The non-zero contribution of the DM interaction is possible only if Dij 6= Dji. One of the
choices of Dij is the following

Dij = D
(
ri × rj

)
, (IV.5)

where D is a constant. The vectors ri and rj connect the spins Si and Sj to the non-
magnetic ion as shown in Figure IV.1. We see that with this choice Dij = −Dji. Note that
changing the orientation of one of the vector, for example rj , will not change this results.
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Figure IV.1 – Example of a geometry to define Dij : large gray circle is the non-magnetic
ion, red small circles are spins, vectors ri and rj are defined as indicated. See text for
comments.

To show a simple case of effects caused by the DM interaction, we consider a thin film of
simple cubic (SC) lattice of N layers of lateral dimension L × L stacked in the y direction
perpendicular to the film surface.

We will see below that the GS configuration is planar in the xz film planes with the following
Hamiltonian

H = He +HDM , (IV.6)

with HDM given by the equation (IV.4) and He by

He = −
∑
〈i,j〉

Jij Si · Sj, (IV.7)

where Jij and Dij (cf. equation (IV.4)) are the exchange and DM interactions, respectively,
between two Heisenberg spins Si and Sj of magnitude S = 1/2 occupying the lattice sites
i and j.

We consider the case where the in-plane and inter-plane exchange interactions between
NN are both ferromagnetic and denoted by J// and J⊥, respectively. The DM interaction is
supposed to be between NN in the plane with a constant D.

Due to the competition between the exchange J term which favours the collinear con-
figuration, and the DM term which favours the perpendicular one, we expect that the spin
Si makes an angle θij with its neighbour Sj . Therefore, the quantization axis of Si is not
the same as that of Sj . Let us call ζ̂i the quantization axis of Si and ξ̂i its perpendicular
axis in the xz plane. The third axis η̂i, perpendicular to the film surface, is chosen in such
a way to make (ξ̂i, η̂i, ζ̂i) an orthogonal direct frame.

Note that it is very important to call the quantization axis z because the standard com-
mutation relations we shall use below are defined with the z as the quantization axis. This
quantization axis lies on ζ̂i.
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ζ̂i

ξ̂i

ζ̂j

ξ̂j

Szj

Szi

θij

Figure IV.2 – Local coordinates in the xz-plane. The spin quantization of Si and Sj are
ζ̂i and ζ̂j , respectively.

Writing Si and Sj in their respective local coordinates, one has

Si = Sxi ξ̂i + Syi η̂i + Szi ζ̂i, (IV.8)

Sj = Sxj ξ̂j + Syj η̂j + Szj ζ̂j, (IV.9)

where we have 
ξ̂j = cos θij ξ̂i − sin θij ζ̂i,

ζ̂j = sin θij ξ̂i + cos θij ζ̂i, (IV.10)

η̂j = η̂i.

We choose the vector Dij perpendicular to the xz plane, namely

Dij = D eij η̂i (IV.11)

where eij = +1 (−1) if j > i (j < i) for NN on the ξ̂i or ζ̂i axis, according to the choice
Dij = −Dji. Note that eji = −eij .

Using the local-energy minimization [50, 142], we can determine the GS of the Hamilto-
nian (IV.6). Starting from the energy Ei of a spin Si at lattice site i with its NN (in the same
layer) , with

Ei = −J// Si · Sj +D
(
ri × rj

)
·
(
Si × Sj

)
, (IV.12)

〈1〉
= −J// cos θ +D sin θ, (IV.13)

and by minimizing this energy such as

dEi
dθ

= J// cos θ +D sin θ = 0, (IV.14)

〈1〉Note that, we have used here the fact spins are normalized: ‖S`‖ = 1 (` = i, j). Remark also that, in the
equation (IV.13), D has absorbed the norm of ri and rj .
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it comes that the minimum angle between two NN is given by

θ = arctan

(
−D
J//

)
. (IV.15)

We can also calculate the GS by the numerical steepest-descent method [142] if the Hamil-
tonian is more complicated. The GS is shown in Figure IV.3. Before showing the results, let

Figure IV.3 – (a) The ground state is a planar configuration on the xz plane. The figure
shows the case where θ = π/6 (D = −0.577), J// = J⊥ = J = 1 ; (b) a zoom is shown
around a spin with its nearest neighbors.

us introduce the following anisotropy between Si and Sj to stabilize the angle determined
above between their local quantization axes Szi and Szj :

Ha = −
∑
〈i,j〉

Iij S
z
i S

z
j cos θij, (IV.16)

where Iij is taken to be positive, small compared to J//, and limited to NN. For simplicity,
we take Iij = I1 for all NN pairs in the xz plane. As will be seen below, this anisotropy
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helps stabilize the SW spectrum of thin films T = 0. The total Hamiltonian is thus

H = He +HDM +Ha. (IV.17)

By expanding H in local coordinates thanks to the equations (IV.10) and by using the
relations

Sx =
1

2

(
S+ + S−

)
, (IV.18)

Sy =
1

2i

(
S+ − S−

)
, (IV.19)

where S+ and S− are the quantum spin operators〈2〉 defined by

S±|S,m〉 = ~
√
S (S + 1)−m(m± 1) |S,m± 1〉, (IV.20)

with S the spin amplitude and m its component along the z-axis, being an eigenvalue of
the operator Sz, such as

Sz|S,m〉 = ~m|S,m〉 (with − S < m < S), (IV.21)

we reach

H =−
∑
〈i,j〉

Jij

{
1

4
(cos θij − 1)

(
S+
i S

+
j + S−i S

−
j

)
+

1

4
(cos θij + 1)

(
S+
i S
−
j + S−i S

+
j

)
+

1

2
sin θij

(
S+
i + S−i

)
Szi −

1

2
sin θij S

z
i

(
S+
i + S−i

)
+ cos θij S

z
iS

z
j

}
−
∑
〈i,j〉

D

4

{(
S+
i + S−i

) (
S+
j + S−j

)
+ 4SziS

z
j

}
eij sin θij

−
∑
〈i,j〉

Iij S
z
iS

z
j cos θij. (IV.22)

b) Spin waves and layer magnetisation

We calculate now some properties of the present model such as spin-wave spectrum and
layer magnetisations. We use the general Green’s function formulation for non-collinear
magnets given above to obtain calculate thermodynamic properties. It is very important to
emphasize that the local coordinates are necessary in this part because they allow one to
use the commutation relations between spin operators of a spin which are valid only when
the z spin component is defined on its quantification axis. This method has been applied
for bulk helimagnets [75, 156]. A short introduction about the Green functions and their
utilisation in condensed matter can be found in appendix D.

〈2〉Notice here that the operators Sx, Sy and Sz are in bold unlike in the expression (IV.8) for example.
This is because we deal, for the following, with the quantum definition of these operators and not simply with
the classical coordinates of the spin vector S. It will make sense in the following subsection about the Green
functions.
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In view of the Hamiltonian (IV.22) , a natural choice to choose the appropriate opera-
tors to evaluate the Green functions are the quantum spin operators S+ and S−. One
define thus the two retarded Green functions, for our whole system, as

GR
k`(t, t

′) =
〈〈
S+
k (t);S−` (t′)

〉〉
= −i θ(t− t′)

〈[
S+
k (t),S−` (t′)

]〉
, (IV.23)

FR
k`(t, t

′) =
〈〈
S−k (t);S−` (t′)

〉〉
= −i θ(t− t′)

〈[
S−k (t),S−` (t′)

]〉
, (IV.24)

where the operators S±j act on the site j (with j = k, `) and where[
S+
k ,S

−
`

]
= 2Szk δk,` (IV.25)[

Szk,S
±
`

]
= ±S±` δk,`. (IV.26)

and the equations of motion read〈3〉

i~
∂GR

k`

∂t
(t, t′) = 2 〈Szk〉 δk,` δ(t− t′)−

〈〈[
H,S+

k (t)
]

;S−` (t′)
〉〉
, (IV.27)

i~
∂FR

k`

∂t
(t, t′) = −

〈〈[
H,S−k (t)

]
;S−` (t′)

〉〉
. (IV.28)

By expanding the commutators
[
H,S±k (t)

]
, using a Tyablikov decoupling and then by ap-

plying a space-time Fourier transform on the equations (IV.27) and (IV.28) , we get a set of
two linear coupled equations yielding to the following matrix equation〈3〉

M(E)h = u, (IV.29)

where M(E) is a square matrix of dimension (2N × 2N)〈4〉, h and u are the column
matrices which are defined as follows (according to the above equation)

E +A1 B1 C1 0 0

−B1 E −A1 B2 C2

−C1 −B2

0 −C2

0

CN

E +AN BN

0 0 − CN −BN E −AN







g1,n′

f1,n′

...

gn,n′

fn,n′

...

gN,n′

fN,n′



=



2 〈Sz1 〉 δ1,n′

0

...

2 〈SzN 〉 δN,n′

0



(IV.30)

〈3〉 Cf. the appendix D for the demonstration.
〈4〉N being the total number of layers.
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with E = ~ω, g and f the Fourier transforms of GR and FR respectively and

An = −4J//

[
2 〈Szn〉(1 + dn) cos θ − γ 〈Szn〉 (cos θ + 1)

]
−2J⊥

[
〈Szn−1〉+ 〈Szn+1〉

]
+ 4D (2− γ) 〈Szn〉 sin θ, (IV.31)

Bn = 4J// γ 〈Szn〉 (cos θ − 1)− 4Dγ 〈Szn〉 sin θ, (IV.32)

Cn = 2J⊥ 〈Szn〉, (IV.33)

and where n ∈ [[1, N ]], dn = I1/J// and

γ =
cos (kx a) + cos (kz a)

2
,

kx and kz the components in the xz planes of the wave vector k// and a the lattice constant.
Let us have a brief remark about the extrem layers :

• if n = 1 (surface layer), then there are no n− 1 terms in the matrix coefficients,

• if n = N , then there are no n+ 1 terms.

Besides, we have distinguished the in-plane NN interaction J// from the inter-plane NN one
J⊥.

The calculation of the Green functions allow us to determine the spin-wave spectrum and
to evaluate the layer magnetisation and other properties [113]. The spectrum is obtained by
solving det(M) = 0, i.e. by looking for the eigenvalues of M. The thermal average of the
magnetisation of the n-th layers for a system where S = 1/2, is given by〈5〉

〈Szn〉 =
1

2
−
〈
S−n S

+
n

〉
, (IV.34)

where 〈S−n S+
n 〉 is given by the following spectral theorem [49]

〈
S−i S

+
j

〉
= lim

ε→0

1

π2

∫ π

0

∫
R

i

2π

gn,n′(ω + iε)− gn,n′(ω − iε)
eβ~ω−1

eik//·(ri−rj) dω d2k//, (IV.35)

ε being an infenitesimal positive constant. By expressing the gn,n′ by applying the Cramer’s
rule on the matrix equation (IV.30) and with some calculations detailed in the Appendix D,
we can show that the layer magnetisation can be reduced to

〈Szn〉 =
1

2
− 1

π2

∫ π

0

N∑
i=1

det(Mn(Ei))

(eβEi −1)
∏
i 6=j

(Ei − Ej)
d2k//, (IV.36)

〈5〉Let us remark that the operators are not written in bold anymore. Indeed, we deal here with the vector
spins components as we do numerically. The scale operators S− and S+ are tied to the spin components Sx

and Sy by the relations (IV.18) and (IV.19).
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where Ei = ~ωi are the pole of the Green functions and Mn denotes the matrix formed by
replacing the n−th column of M by the vector u.

For simplicity we take dn = d for all layers. Due to the presence of the surface, the
spin-wave spectrum at T = 0 is stabilized (no imaginary frequency) only with an amount
of anisotropy larger than a critical value dc. This value of dc depends on the value of D,
namely the angle θ. Figure IV.4 shows dc as a function of θ.

Figure IV.4 – Value dc above which the SW energy E(k = 0) is real as a function of
θ (in radian), for a 4-layer film. Note that no spin-wave excitations are possible near the
perpendicular configuration θ = π/2. See text for comments.

Figure IV.5 – Spin-wave spectrum E(k) versus k ≡ kx = kz for a thin film of 8 layers:
(a) θ = π/6 (in radian) (b) θ = π/3, using d = dc for each case (dc = 0.012 and 0.021,
respectively). Positive and negative branches correspond to right and left precessions. Note
the linear-k behaviour at low k for the large θ case.

In Figure IV.5 the spin-wave spectrum for a 8-layer film θ = π/6 and θ = π/3 using d = dc
for each case. As seen, for the small angle case, E(k) ∝ k2 as k → 0 just as in ferro-
magnets. However for large angle, the lowest branch of the spin-wave spectrum behaves as
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E(k) ∝ k as in antiferromagnets. Note that there are no surface modes detached from the
the spectrum. Using the spectrum we calculate thermodynamic properties. We see that (not
shown) the layer magnetisations for two values of θ for comparison. We see that larger an-
gles increase the transition temperature. The layer magnetisation is smallest at the surface
and increases toward inside.

It is interesting to examine the spin length at T = 0. We know that for non-collinear
magnets, there is a correction to the classical GS configuration due to quantum fluctua-
tions. These quantum fluctuations reduce the spin length. Figure IV.6 shows the reduced
spin length S0 layer by layer as a function of θ. As seen, the larger θ the smaller S0. The

Figure IV.6 – Spin length S0 at T = 0 of the first 4 layers as a function of θ, for N =
8, d = 0.1. Red circles, blue void circles, green void triangles and magenta squares
correspond respectively to the first, second, third and fourth layer.

Figure IV.7 – Surface effect: (a) spin-wave spectrum E(k) versus k = kx = kz for a thin
film of 8 layers: θ = π/6, d = 0.2, Js// = 0.5, Js⊥ = 0.5, the gap at k = 0 is due to d. The
surface-mode branches are detached from the bulk spectrum. (b) Layer magnetisations
versus T for the first, second, third and fourth layer (red circles, green void circles, blue
void circles and magenta filled squares, respectively).
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present model does not show localized surface modes unless the surface exchange interac-
tion differs from the bulk one. We show an example in Figure IV.7a where the spectrum
has two surface branches originating from the two surfaces of the film. These low-energy
modes strongly reduce the surface magnetisation as seen in Figure IV.7b.

The critical temperature Tc is shown in Figure IV.8 as a function of the film thickness
N . The 3D value is approached for films of 20 layers.

Figure IV.8 – Critical temperature Tc versus the film thickness N calculated with θ = π/6
and d = 0.1. For the infinite thickness (namely 3D), Tc ' 2.8 which is displayed by the
horizontal blue line.

IV.3 Skyrmion Crystal

IV.3.1 Model and Ground State

Theoretical and experimental investigations on the effect of the DM interaction in var-
ious materials have been extensively carried out in the context of weak ferromagnetism
observed in perovskite compounds (see references cited in references [167, 56]). As said
in the Introduction, the interest in the DM interaction goes beyond the weak ferromag-
netism. It has been shown that the DM interaction is at the origin of topological skyrmions
[139, 192, 194, 122, 115, 163] and new kinds of magnetic domain walls [78, 160]. The in-
creasing interest in skyrmions results from the fact that skyrmions may play an important
role in the electronic transport which is at the heart of technological application devices [63].

In this chapter, we consider for simplicity the two-dimensional case where the spins are
on a square lattice in the xy plane. We are interested in the stability of the skyrmion crys-
tal generated in a system of spins interacting with each other via a DM interaction and a
symmetric isotropic Heisenberg exchange interaction in an applied field perpendicular to
the xy plane. All interactions are limited to NN. The full Hamiltonian is given by

71



Chapter IV. Spin systems with Dzyaloshinskii-Moriya interaction

H = −J
∑
〈i,j〉

Si · Sj +
∑
i

∑
µ=x,y

D êµ ·
[
Si × (Si+µ − Si−µ)

]
−H

∑
i

Szi , (IV.37)

where the DM interaction and the exchange interaction are taken between NN on both x
and y directions. Rewriting it in a more convenient form, we have

H = −J
∑
〈ij〉

Si · Sj +D
∑
i

[
Syi (Szi+x − Szi−x)− Szi (Syi+x − S

y
i−x)

−Sxi (Szi+y − Szi−y) + Szi (Sxi+y − Sxi−y)
]
−H

∑
i

Szi . (IV.38)

For the i-th spin, one has

Hi = −Si ·Hi = −
(
Sxi H

x
i + SyiH

y
i + SziH

z
i

)
, (IV.39)

where the local-field components are given by

Hx
i = J

∑
NN

Sxj +D(Szi+y − Szi−y), (IV.40)

Hy
i = J

∑
NN

Syj −D(Szi+x − Szi−x), (IV.41)

Hz
i = J

∑
NN

Szj +D(Syi+x − S
y
i−x)−D(Sxi+y − Sxi−y) +H. (IV.42)

To determine the ground state (GS), we minimize the energy of each spin, one after another.
This can be numerically achieved as the following. At each spin, we calculate its local-field
components acting on it from its NN using the above equations. Next we align the spin in
its local field, i.e. taking

Si =
1√

(Hx
i )2 + (Hy

i )2 + (Hz
i )2

(Hx
i êx +Hy

i êy +Hz
i êz) . (IV.43)

The denominator is the modulus of the local field. In doing so, the spin modulus is nor-
malized to be 1. As seen from equation (IV.39), the energy of the spin Si is minimum. We
take another spin and repeat the same procedure until all spins are visited. This achieves
one iteration. This algorithm is known as the steepest descent algorithm. We have to do a
sufficient number of iterations until the system energy converges. For the skyrmion case, it
takes about one thousand iterations to have the fifth-digit convergence.

An example of GS are shown in Figure IV.9: a crystal of skyrmions is seen using D = 1 and
H = 0.5 (in unit of J = 1). Note that we use here an example of large D for clarity, but we
will show later that the skyrmion crystal exists for very small D.
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(a)

(b)

Figure IV.9 – Ground state for D/J = 1 and H/J = 0.5 (in unit of J = 1). We can
observe a crystal of skyrmions. (a): Skyrmion crystal viewed in the xy plane. (b) top: a 3D
view. (b) bottom: Zoom of the structure of a single vortex. The value of Sz is indicated on
the color scale.

In Figure IV.10(a) on the following page we show a GS at H = 0 where domains of long
and round islands of up spins separated by labyrinths of down spins are mixed. When H
is increased, vortices begin to appear. The GS is a mixing of long islands of up spins and
vortices as seen in Figure IV.10(b) obtained with D = 1 and H = 0.25. This phase can be
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Chapter IV. Spin systems with Dzyaloshinskii-Moriya interaction

called labyrinth phase or stripe phase.

(a) (b)

(c)

Figure IV.10 – (a): Ground state for D/J = 1 and H/J = 0 (in unit of J = 1), a mixing
of domains of long and round islands. (b): Ground state for D/J = 1 and H/J = 0.25 (in
unit of J = 1), a mixing of domains of long islands and vortices. The latters are due to
the increase of H . These structure can be termed labyrinth phase. (c): Experimental obser-
vation (with a transmission electronic microscope) of a cholesteric liquid crystal (LC). The
fingerprints structure is similar to the figure above. The dark and bright lines correspond
to the region where molecules of LC are parallel and perpendicular, respectively, to the
image plane (cf. article of Mitov and al. [134]).

It is interesting to note that skyrmion crystals with texture similar to those shown in Figures
IV.9 and IV.10 have been experimentally observed in various materials [192, 69, 139, 193],
but the most similar skyrmion crystal was observed in two-dimensional Fe(0.5)Co(0.5)Si by
Yu and al. [194] and also in liquid crystals [134] (cf. Figure IV.10(c)) using both transmission
electron microscopy (TEM).

We have performed the GS calculation taking many values in the plane (D,H). The phase
diagram is established in Figure IV.11. Above the blue line is the field-induced ferromagnetic
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IV.3. Skyrmion Crystal

Figure IV.11 – Phase diagram in the (D,H) plane for a lattice size 100× 100. The region
above the blue line corresponds to the field-induced ferromagnetic phase, while below
the red line it corresponds to labyrinth phase, i.e. a phase with rectangular domains and
skyrmions. The narrow grey band is the region of the skyrmion crystal phase.

phase. Below the red line is the labyrinth phase with a mixing of skyrmions and rectangular
domains. The skyrmion crystal phase is found in a narrow region between these two lines,
down to infinitesimal D.

In the following section, we are interested in the stability of the skyrmion crystal phase
as the temperature (T ) is increased from zero.

IV.3.2 Stability at finite temperatures

In this section, we show results obtained from MC simulations on a sheet of square lattice
of size N×N with periodic boundary conditions. The first step is to determine the GS spin
configuration by minimizing the spin energy by iteration as described above. Using this GS
configuration, we heat the system from T = 0 to a temperature T during an equilibrating
time t0 before averaging physical quantities over the next 106 MC steps per spin. The time
t0 is the waiting time during which the system relaxes before we perform averaging during
the next tf .

The definition of an order parameter for a skyrmion crystal is not obvious. Taking ad-
vantage of the fact that we know the GS, we define the order parameter as the projection
of an actual spin configuration at a given T on its GS and we take the time average. This
order parameter is thus defined as

M(T ) =
1

N2(tf − t0)

∑
i

∣∣∣∣∣
tf∑
t=t0

Si(T, t) · S0
i (T = 0)

∣∣∣∣∣ (IV.44)

where Si(T, t) is the i-th spin at the time t, at temperature T , and S0
i (T = 0) is its state

in the GS. The order parameter M(T ) is close to 1 at very low T where each spin is only
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weakly deviated from its state in the GS. M(T ) is zero when every spin strongly fluctuates
in the paramagnetic state. The above definition ofM(T ) is similar to the Edward-Anderson
order parameter used to measure the degree of freezing in spin glasses [131]: we follow each
spin with time evolving and take the spatial average at the end.

Figure IV.12 – Red circles: order parameter defined in equation (IV.44) versus T , for
H = 0.5 andN = 1800, averaged during tf = 105 MC steps per spin after an equilibrating
time t0 = 105 MC steps. Blue crosses: the projection of the Sz on S0

z of the ground state
as defined in equation (IV.44) but for the z components only. The magnetisation M does
not vanish totally because of the applied field.

We show in Figure IV.12 the order parameter M versus T (red data points) as well as the
average z spin component (blue data points) calculated by the projection procedure for the
total time t = 105 + 106 MC steps per spin. As seen, both two curves indicate a phase
transition at Tc ' 0.26 J/kB . The fact that M does not vanish above Tc is due to the effect
of the applied field. It should be said that each skyrmion has a center with spins of negative
z components (the most negative at the center), the spins turn progressively to positive z
components while going away from the center.

We can also define another order parameter: since the field acts on the z direction, in
the GS and in the skyrmion crystalline phase we have both positive and negative Sz . In
the paramagnetic state, the negative Sz will turn to the field direction. We define thus the
following parameters using the z spin-components

Q+(T ) =
1

N2(tf − t0)

∑
Szi >0

tf∑
t=t0

Szi (T, t) (IV.45)

Q−(T ) =
1

N2(tf − t0)

∑
Szi <0

tf∑
t=t0

Szi (T, t) (IV.46)

Figure IV.13 on the next page shows Q+ and Q− versus T . As seen, at the transition Q+

undergoes a change of curvature and Q− becomes zero. All spins have positive Sz after the
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Figure IV.13 – Order parameters defined in Eqs. (IV.45)-(IV.46) versus T , for H = 0.5 and
N = 800, t0 = 105, tf = 106. Red circles: total positive z component (Q+(T )). Green
circles: total negative z component Q−(T ). Blue circles: total z component. After the
transition, all spin have positive z component.

transition due to spin reversal by the field.

The results obtained at the end of the simulation may depend on the overall time t = t0+tf .
In simple systems, the choices of t0 and tf can be guided by testing the time-dependence
of physical quantities, and the values of t0 and tf are chosen when physical quantities do
not depend on these run times. However, in disordered systems such as spin glasses and in
complicated systems such as frustrated systems, the relaxation time is very long and out of
the reach of simulation time. In such cases, we have to recourse to some scaling relations in
order to deduce the values of physical quantities at equilibrium [153, 146]. We show below
how to obtain the value of an order parameter at the infinite time.

Figure IV.14 – Cf. page 78 for the legend.
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Figure IV.14 – The order parameter M defined by equation (IV.44) versus MC time t in
unit of 1000 MC steps per spin, for H = 0.5 and N = 800 (a) T = 0.01, values of fitting
parameters α = 0.6, A = 0.008±0.00001, τ = (364±19)×103, c = 0.984505±0.00012;
(b) T = 0.094, α = 0.6, A = (0.0653±0.0013), τ = (277±36)×103, c = (0.822±0.018);
(c) T = 0.17, α = 0.8, A = 0.31± 0.01, τ = (891± 100)× 103, c = 0.43± 0.017.

In order to detect the dependence of M(T ) on the total MC time t = t0 + tf , we cal-
culate the average of M(T ) over 106 MC steps per spin, after a waiting time t0 as said
above. We record the values of M(T ) in different runs with t0 varying from 104 to 106 MC
steps per spin. We plot these results as a function of different total time t in Figure IV.14 for
three temperatures.

As said above, to find the value extrapolated at the infinite time, we use the stretched
exponential relaxation defined by

M(T, t) = A e−(t/τ)α + c (IV.47)

where t is the total simulation time, α is the stretched exponent, A a temperature-dependent
constant, and τ the relaxation time. Note that this definition, without the constant c, has
been used by many previous authors in the context of spin glasses [37, 2, 13, 175, 123]. We
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have introduced c which is the infinite-time limit of M(T ). We have taken t from 104 to
106 MC steps per spin in the simulation. At the infinite-time limit, c is zero for T � Tc,
and c 6= 0 for T < Tc. Figure IV.14 shows M(T, t) as a function of time t in unit of 103

MC steps per spin, for three temperatures T = 0.01, 0.094 and 0.17. As seen, the fit with
equation (IV.47) presented by the continuous line is very good for the whole range of t.

Several remarks can be done about the results :

• The precision of all parameters are between 1% to 5% depending on the parameter.

• The value of α can vary a little bit according to the choice and the precision of the
other parameters in the fitting but this variation is within a very small window of
values around the value given above. For example, at T = 0.17, α can only be in the
interval [0.8 ± 0.02]. The value of α can vary with temperature as seen here: at low
T , α = 0.6, and at a higher T , we have α = 0.8. This variation has been seen in other
systems, in particular in spin glasses [143].

• The relaxation time, within statistical errors, is approximatively constant at low T ,
but it increases rapidly when T tends to Tc as seen in the value of τ at T = 0.17.
This increase is a consequence of the so-called critical slowing-down when the system
enters the critical region.

Let us show M(T ) as a function of T in Figure IV.15 using the results of different run times
from t = 104 + 106 MC steps per spin to t = 106 + 106. The values of at infinite time
for each T deduced from equation (IV.47) is also shown. We see that while the total time
105 + 106 MC steps per spin is sufficient at low T , it is not enough at higher T . That was
the reason why we should use equation (IV.47) to find the value of M(T ) at infinite time to
be sure that the skyrmion crystal is stable at finite temperatures.

Figure IV.15 – The order parameter M(T ) versus T for several waiting times t, for H =
0.5 and N = 800: from above t = 105, 2× 105, 106, ∞ (by fitting with equation (IV.47)).
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We have studied finite-size effects on the phase transition at Tc and we have seen that from
N = 800, all curves coincide: there is no observable finite size effects for N > 800. The
present 2D skyrmion lattice phase therefore remains stable for the infinite dimension, unlike
the ferromagnetic Heisenberg model in 2D [129]. Note that the nature of the ordering at
low T and the phase transition observed here, in spite of the vortex nature of skyrmions,
are not those of the Kosterlitz-Thouless vortex mechanism observed in ferromagnetic XY
spin systems [100, 101] since our vortices are stable without changing their position up to the
transition temperature.

IV.4 Conclusion

In the first part of this chapter, we have studied the magnon spectrum and low-temperature
behaviour of a thin film with a DM interaction. We would emphasize the importance of
the use of local coordinates because the commutation relations between spin operators are
expressed for a spin lying on its quantization axis. The results show that the DM interaction
affects strongly the low-energy spin-wave frequencies: it has the k2 behaviour for a weak
interaction, but the k behaviour for a strong interaction. Note that the spin-wave spectrum
is symmetric, in spite of the fact that the DM interaction is antisymmetric with respect to
the permutation of two spins. Indeed, due to the antisymmetry of the vector Dij , the energy
of a spin pair E(i, j) = Dij · Si × Sj is invariant with respect to the permutation i
 j.

In the second part of this chapter, we have shown that the competition between a ferromag-
netic interaction J and a Dzyaloshinskii-Moriya interaction D under an applied magnetic
field H in two dimensions generate a skyrmion crystal in a region of the phase space
(D,H). The spin model is the classical Heisenberg model. We have numerically deter-
mined the ground state by minimizing the local energy, spin by spin, using an iteration
procedure. The skyrmion lattice is then heated to a finite temperature by the use of Monte
Carlo simulations. We have shown that the skyrmion lattice is stable up to a finite tem-
perature Tc beyond which the system becomes disordered. We have also shown that the
relaxation follows a stretched exponential law. We believe that such a stability can be ex-
perimentally observed in real systems.

Perhaps, our model is the simplest model able to generate a skyrmion crystal without the
need to include more complicated interactions such as long-range dipolar interactions, easy
and uniaxial anisotropies [106, 115, 193]. Note that other authors have shown that skyrmion
crystals can also be generated only with frustrated short-range interactions without even the
DM interaction [77, 147]. So, we have to keep in mind that there are many interaction mech-
anisms of different nature which can generate skyrmion crystals. The origin of a skyrmion
crystal determines its structure, its stability, its dynamics and in short its properties (see
a discussion on this point in [193]). Experiments can be used therefore to determine the
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interaction mechanism which is at the origin of the formation of a skyrmion crystal.
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In this chapter, we are interested in the dynamics leading to the formation of two mesophases
(nematic and smectic) of liquid crystals upon cooling from an isotropic phase. For this study,
we used the mobile Potts model described in a previous chapter.
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V.1 Introduction

ematic and smectic ordering has been subject of intensive investigations since
the discovery of liquid crystals (LC) [41]. Most of theoretical studies have used
Frank’s free energy [67, 31, 32] which cannot show the formation of the smectic
and nematic ordering when the temperature varies. There is no statistical study

of systems of molecules constituting liquid crystals.

Consider a system of N molecules interacting with each others. Experimentally, we know
that temperature variation can create different kind of ordering in LC such as nematic,
smectic, etc... But there is absence of theoretical study starting with such an assembly of
molecules with a macroscopic Hamiltonian. In particular, there is no investigation on the
dynamics of how nematic and smectic ordering are reached from isotropic phase when the
temperature decreases.

This motivates the study presented in this chapter. Here, we use the mobile Potts model
with appropriate interactions allowing to generate the nematic and smectic ordering.

As we know that the nematic phase is the closest phase to the liquid phase and the most
common. It has no long-range positional order but a global orientational order. As for
the smectic phase, it is the contrary. Indeed, it is the phase that looks like the most to
a crystalline solid and for which molecules are ordered in equidistant layers. It shows a
long-range positional order (at least in one direction) and also an orientational order.

We will first describe the model in the following section and then we show the results
obtained by Monte Carlo (MC) simulations.

As we will be seen, we succeed in obtaining nematic and smectic ordering, by following
the motion of molecules.

V.2 Method of simulation

The model used in this chapter is similar to the one used in the chapter III, i.e. it is based
on a mobile Potts model but with different kinds of interactions. Indeed, we still consider
a system of Ns Potts spins on a simple cubic lattice with NL sites. Each site i can thus be
vacant or occupied at most by a spin σi having q states (σi = 1, 2, ..., q). A spin can thus
move from one site to a neighbouring empty site thanks to the effects of the interactions
and/or the temperature T . Obviously, the concentration of spins c = Ns/NL must be lower
than one to permit their motion.

We fix a concentration c low enough to allow the motion of spin inside the recipient.
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The use of periodic boundary conditions in three directions reduces the size effect. We use
several recipient volumes to test the validity of our results and we see that results do not
qualitatively change.

The simulation is carried out as follows: we generate the positions and the orientations
of the spin randomly in the recipient, we update each spin position and orientation at the
same time by using the Metropolis algorithm (as explained in chapter II) applying to its old
and trial energies. The position update is done by moving the spin to a nearby vacant site
with a probability for the simple cubic lattice. The motion of each spin is therefore driven
by just the interaction with its neighbours at a given temperature T . We start thus from
a random configuration, from the disordered phase, and we slowly cool the system with an
extremely small interval of T .

As usual, we discard a large number of MC steps per spin to equilibrate the system be-
fore averaging physical quantities over a large number of MC steps. We calculate in general
the energy, the specific heat, an appropriate order parameter and its fluctuations (namely,
susceptibility), the average coordination number, and the diffusion coefficient. For the smec-
tic phase, the order parameter is the layer magnetisation, while for the nematic phase it is
just the total magnetisation without long-range position ordering (no lines, no planes).

We record all physical quantities and the motion of molecules as the time evolves.

In the following, we consider that a spin can reach q = 6 different states, i.e. two states per
spatial direction.

V.3 The smectic phase

V.3.1 Model

The Hamiltonian used to model the smectic LC is given by

H = −
∑
〈i,j〉

Jij δσi,σj (V.1)

where 〈i, j〉 denotes the NN. Jij is the spin-spin exchange interaction such as

Jij =

{
J// > 0, in-plane interactions between NN,

J⊥ < 0, inter-plane interactions between NN.

The in-plane and inter-plane exchange interactions are then ferromagnetic and anti-ferromagnetic,
respectively. The use of an antiferromagnetic between planes is to avoid a correlation be-
tween adjacent planes: the antiferromagnetic interaction favours different spin orientations
between NN planes.
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V.3.2 Results

Let us show in Figure V.1 snapshots taken in the isotropic phase and in the final phase
at T = 0.1 with J// = 3.0, J⊥ = −1.0. As seen, the low-T phase is smectic with ordered
planes but no correlation in the perpendicular direction. A video showing the cooling of the
system is available here. Another video showing the evolution of the system during a cycle
in temperature, i.e. after heating and then cooling down the temperature, can be viewed at
here. The video shows the dynamics leading to the formation of the smectic phase.

Figure V.1 – Snapshot of the system at two different temperatures. Spins are contained in
a box with periodic boundary conditions. There is NL = 15 × 15 × 30 = 6750 sites and
2025 spins, i.e. a spin concentration equal to c = 30%. Each colored point corresponds to
a spin state. Left: Initial configuration of the system at a high temperature T = 5. The
system is completely disordered. Right: Final configuration at low temperature T = 0.1.
The system was cooled down from the disordered phase. Spins are staged in independent
layers and within a layer all the spins have the same orientation (color). It corresponds to
a smectic phase.

The energy per molecule U and the diffusion coefficient D are shown in Figure V.2 versus
T . We see clearly that there is a transition from the isotropic state to the smectic ordering
at Tc ' 1.40 where U and D change the curvature.

It should be noted that for other ferromagnetic values of J//, we obtain the same results
with a shift in the value of Tc. Let us show in Figure V.3 the histogram of the coordination
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V.3. The smectic phase

(a) Energy U versus temperature T . (b) Diffusion coefficient D versus temperature T .

Figure V.2 – Evolution of energy and diffusion coefficient as functions of temperature.
The spin concentration c is c = Ns/NL = 30%, with NL = 15 × 15× 30. The exchange
interactions are J// = 3.0, J⊥ = −1.0.

number of the lattice sites in the smectic phase. As seen all of them has 4 neighbours,
indicating a planar or smectic phase phase. The antiferromagnetic interaction in the z
direction prevents two adjacent planes from having the same orientation.

Figure V.3 – Histogram showing the percentage R of sites having Z nearest neighbors at
T = 0.1, i.e. corresponding to the snapshot at the bottom in the Figure V.1. Spins are
distributed such as they have only 4 neighbors, meaning they are staged in layers.

The order parameter of the smectic phase is the layer magnetisations. Different layers have
slightly different magnetisations, with more or less order but they all show the transition at
Tc. Two typical layer magnetisations are shown in Figure V.4 on the next page together with
their susceptibilities.

Other recipient sizes and values of interactions give the same qualitative results. The only
constraint of the model is the in-plane interaction is ferromagnetic and the inter-plane one
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(a) Magnetization M versus temperature T , for
two layers (the third in red and the fourteenth
in blue).

(b) Magnetic susceptibility χ versus temperature T .

Figure V.4 – Evolution of magnetisation and susceptibility as functions of temperature.
The spin concentration c is c = Ns/NL = 30%, with NL = 15× 15× 30. The exchange
interactions are J// = 3.0, J⊥ = −1.0.

is antiferromagnetic.

V.4 The nematic phase

V.4.1 Model

To model the nematic phase, we use also the mobile Potts model as above and in chapter
III, except that the interactions are given by the following Hamiltonian

H = −J1

∑
〈i,j〉

δσi,σj − J2

∑
〈〈i,j〉〉

δσi,σj − Az
∑
i

Szσi , (V.2)

where the two first sums are performed over the nearest neighbours (NN) and the next-
nearest neighbours (NNN), respectively. δ is the Kronecker delta and J1 and J2 denote the
exchange interactions between spins and are chosen such as the interactions between NN
are antiferromagnetic (J1 < 0), and ferromagnetic for the NNN (J2 > 0). The last sum is
performed over all the sites and corresponds to a slight anisotropy along the z-direction.
To each state σi is associated a 3-components normalized vector Sσi . S

z
σi

is then the z-
component of the spin σi.

We explain the choice of the above Hamiltonian which is guided by the following nematic
phase:

• there should not be molecules sticking to each other by mutual NN interaction, the
NN antiferromagnetic interaction is to thus avoid the formation of ordered aggregates
at low T ;
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V.4. The nematic phase

• the NNN ferromagnetic interaction between further neighbours allows for a direc-
tional ordering observed in nematic phase;

• the small single-ion anisotropy is introduced to break the degeneracy of the three
direction.

The method of simulation is shown above, and physical quantities are recorded with time
evolution.

V.4.2 Results

We show in Figure V.5 snapshots taken in the isotropic phase and in the final phase at
T = 0.1 with J1 = −1, J2 = 2.0. At low-T the nematic phase is found molecules oriented
in the z direction without positional ordering. A video showing the cooling of the system
and the dynamics leading to the formation of the nematic phase is available here.

Figure V.5 – Snapshot of the system at two different temperature. Spins are contained in a
box. There isNL = 15×15×30 = 6750 sites and 2025 spins, i.e. a spin concentration equal
to c = 30%. Each colored point corresponds to a spin state. Left: Initial configuration of
the system at high temperature T = 3. The system is completely disordered. Right: Final
configuration at low temperature T = 0.1 obtained by a slow cooling. Note that that there
is no positional order like for liquids. It corresponds to a nematic phase. A video showing
the cooling of the system is available here.

The internal energy per molecule and the diffusion coefficient D are shown in Figure V.6.
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Chapter V. Potts model to study the dynamics of nematic and smectic liquid crystals

One observes that there is a transition from the isotropic phase to the nematic phase at
Tc ' 2.20, with the change of curvature of U and D.

(a) Energy U versus temperature T . (b) Diffusion coefficient D versus temperature T .

Figure V.6 – Evolution of energy U and diffusion coefficient D versus T . The spin
concentration c is c = Ns/NL = 30%, with NL = 15×15×30. The exchange interactions
are J1 = −1.0, J2 = 2.0 and the anisotropy is equal to Az = 0.5.

We show in Figure V.7 the orientational order parameter which is in fact a sum of all
spins averaged with time evolution. The susceptibility is also show. these quantities confirm
the sharp transition mentioned above.

(a) Magnetization M versus temperature T . (b) Magnetic susceptibility χ versus temperature T .

Figure V.7 – Evolution of the orientational order parameter and its susceptibility as func-
tions of T . The spin concentration c is c = Ns/NL = 30%, with NL = 15× 15× 30. The
exchange interactions are J1 = −1.0, J2 = 2.0 and the anisotropy is equal to Az = 0.5.
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Note that the irregularities observed in the energy (cf. Figure V.6), in the magnetization
and then obviously magnetic susceptibility (cf. Figure V.7) at low temperature are due to
the algorithm and are not physical. In the current MC algorithm used here, the state and
the position of the spin are updated at the same time. But, the correlation times are not the
same. By proceeding in two steps, i.e. by updating first the state and then position, there
are no longer irregularities at low temperature.

The histogram of the coordination number is shown in Figure V.8 where one sees that
molecules have no NN as it should be in a nematic phase.

Figure V.8 – Histogram showing the percentage R of sites having Z nearest neighbors at
T = 0.1, i.e. corresponding to the snapshot on the right in the Figure V.5. Spins have
distributed such as they have no neighbors.

V.5 Conclusion

In this chapter, we have shown that by choosing the appropriate interactions for the Potts
Hamiltonian we can get the nematic and smectic ordering from the isotropic phase by de-
creasing the temperature.

For both systems, we have considered Potts spins moving in three dimensional recipients
with periodic boundary conditions in all directions. Various physical quantities, such as
energy, order parameters and diffusion coefficient, as functions of temperature have been
calculated

For the smectic phase, it suffices to take a strong in-plane ferromagnetic interaction and
an antiferromagnetic interaction in z direction. Upon cooling the system from the isotropic
phase, the molecules gathered in independent planes constituting thus a smectic structure.

To simulate nematic phase, we obviously had to take other kinds of interactions into account.
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Indeed, we have chosen antiferromagnetic interactions between the NN and a stronger fer-
romagnetic interaction between NNN. We also have added a slight anisotropy following the
z component of each spin. When cooling the system from the liquid phase, i.e. isotropic
phase, molecules have all the same direction but no long-range positional ordering of any
kind, namely no chains or planes.
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We study in this chapter properties of a nanodot embedded in a support by Monte Carlo
simulation. The nanodot is a piece of simple cubic lattice where each site is occupied by a
Heisenberg spin. We take into account the short-range exchange interaction between spins,
a long-range dipolar interaction, an uniaxial anisotropy. We show that the ground-state
configuration is a vortex. Finite-temperature properties are studied. We show the surface
melting and determine thermodynamic behaviour such as layer magnetizations as functions
of temperature. The liquid phase is also studied and discussed in relation of nematic and
smectic phases.
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VI.1 Introduction

n finite systems such as magnetic thin films and nanodots, spin configurations
are often non uniform near the surface. The ground-state (GS) structure results
from the competition between interactions in the system. The combination of
the frustration [48] resulting from competing interactions and the boundary

effects in finite systems gives rise to unexpected phenomena [49]. Among the competing
forces, let us focus on the dipolar interaction which favors an in-plane spin configuration
in flat samples, and the perpendicular anisotropy which tends to align spins in the per-
pendicular axis. The perpendicular anisotropy is known to arise with a large magnitude
in ultrathin films [196, 18]. Note that, in thin films with Heisenberg and Potts models, the
competing dipolar interaction and perpendicular anisotropy causes a spin re-orientation
transition at a finite temperature [165, 81]. There has been a great number of other works
treating the dipolar interaction in the the presence of a perpendicular anisotropy in 2D
monolayers and thin films. All of them found various ground states (GS) such as in-plane,
out-of-plane and non-uniform strip-domain configurations. Let us mention a few of them:
in reference [190] an analytical calculation has been performed at zero temperature (T ) to
find GS by varying the uniaxial surface anisotropy in a monolayer and in thin films (i.e.
infinite lateral dimension). In references [138, 119, 180], Monte Carlo (MC) simulations have
been carried out for monolayers and thin films at finite T where reorientation phase transi-
tions have been found. Except in reference [180] where all transitions are of second order,
the two other works found first- and second-order transitions depending of the ratio of
perpendicular anisotropy to dipolar strength. In reference [128], the authors used micro-
magnetic simulations to calculate the T = 0 configurations for wires and disks. They did
not consider finite-T behaviours. The absence of works dealing with ultrathin dots at finite
T has motivated the present work.

In this chapter, we focus on the case of a small magnetic nanodot with Heisenberg spins.
Various GS configurations have been observed in such nanosystems [159], depending on the
size of the sample, the ratio between the exchange and dipolar interactions, and the type of
the lattice. Systems in which the core vortex structure occurs hold much promise from the
commercial point of view; the occurrence of this structure has already been demonstrated
experimentally [168, 157, 183] by different imaging techniques. A major advantage of core
vortex structures is the central region (core) of nonzero perpendicular magnetization, the
polarization of which is stable at room temperature (as shown by Shinjo and al. [168]). In-
terestingly, core magnetization reversal [96, 189] can be realized in two ways, by applying a
strong magnetic field perpendicular to the surface of the sample, or a short pulse of magnetic
field parallel to it. This property of magnetic nanodots opens the door to their application
in magnetoresistive random access memory (MRAM).

The current development of a technology that allows to obtain nanosamples with a very
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strong perpendicular anisotropy [44, 104, 82] has inspired us to investigate, with the use of
MC simulations [108, 24], the behaviour of the core vortex structure, so interesting from the
point of view of applications, under the impact of giant perpendicular anisotropy.

The GS structure found for a nanodot can be considered as a single skyrmion [170]. There
are several mechanisms and interactions leading to the appearance of skyrmions in vari-
ous kinds of matter. The most popular one is certainly the Dzyaloshinskii-Moriya (DM)
interaction which was initially proposed to explain the weak ferromagnetism observed in
antiferromagnetic Mn compounds. The phenomenological Landau-Ginzburg model intro-
duced by I. Dzyaloshinskii [55] was microscopically derived by T. Moriya [137]. The DM
interaction has been shown to generate skyrmions in various kinds of crystals [83, 51, 52].

In this chapter, we study a nanodot embedded in an undeformable, non magnetic crys-
tal. The dot can be heated to high temperatures to melt. Experimentally, one can imagine
periodic arrays of such a dot embedded on a crystal plane and transport properties of itin-
erant spins across such a plane can be studied in the presence of dots. Itinerant spins are
scattered by magnetic dots and desired transport properties can be obtained by modifying
dot structures.

In this chapter, thanks to MC simulations, our purpose is

• to investigate the GS configuration in magnetic nanodots taking into account the
short-range exchange interaction, the long-range dipolar interaction and the perpen-
dicular anisotropy,

• to study the nature of the ordering and the phase transition at finite temperatures in
such nanodots,

• and to study melting behaviour.

The chapter is organized as follows. Section VI.2 is devoted to the determination of the GS,
while section VI.3 shows MC results of finite-temperature behaviours. Concluding remarks
are given in section VI.4.

VI.2 Ground state

VI.2.1 Model and method of ground-state determination

Let us consider a dot of size N×N×Nz with the cubic lattice where N is the x and y linear
dimension, and Nz the height (z direction). Each lattice site is occupied by a Heisenberg
spin. The Hamiltonian of the system is assumed to have the standard form:

H = −
∑
〈i,j〉

Jij Si · Sj −
∑
i 6=k

D

‖rik‖3

[(
Si · êik

)(
Sk · êik

)
− Si · Sk

]
, (VI.1)
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where Jij denotes the exchange integral between two nearest neighbours (NN) sites i and j,
D is the dipolar coupling parameter, S` (|S`| = 1,∀` = i, j or k) is the spin at `-site and
rik is the position vector connecting the spins at the i-th and k-th sites and êik = rik/‖rik‖
is a unit vector. The first sum is performed over all the NN spin pairs and the second over
all the spin pairs.

The dipolar energy is calculated from the expression included in the Hamiltonian (VI.1)
without any numerical approximations; in particular we do not introduce the cut-off radius,
since this has been shown [159, 181] to affect quantitatively the calculation results in a sen-
sible manner.

The ground state (GS) is calculated using the steepest method algorithm. As explained
in the subsection IV.3.1 on page 71, for a spin on site i we calculate its local field Hi, such
as

Hi =
∑
〈i,j〉

Jij Sj +
∑
k 6=i

D

‖rik‖3

[(
Sk · êik

)
êik − Sj

]
(VI.2)

and then we align the spin in its local field, i.e. taking Si = Hi/‖Hi‖. This operation is
repeated until all spins have been visited achieving thus one iteration. We performed 2000

iterations until for getting the system energy converged. Moreover, we start from different
configurations to unsure it does not converge to a local minima.

(a) Projection on xy plane (b) Projection on xz plane

Figure VI.1 – Ground state (GS) of the nanodot. The lattice size is 15 × 15 × 12 with a
spin concentration equal to c = 30% and with a dipolar interaction D = 0.7. The GS
exhibits a vortex around the center of the dot. The spins lie in the xy plane at the border
except around the vicinity of the center where they have a non-zero z component.
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In the following, Jij = J⊥ = 1 between NN in the z direction and Jij = J// = 4 between
in-plane NN. As will be seen below, another choice will not change physically our results
but the value range of D to have vortex changes.

The GS exhibits a vortex around the dot center as shown by the Figure VI.1. The spins
lie in the xy plane at the border of the dot but go out of the xy plane at the dot center to
give rise to a non-zero z component. The vortex occurs only when D is larger a certain
value. For instance, for four layers and J⊥ = 1 and J// = 4, D should be larger than 0.20.

VI.3 Melting: Mobile Spin Model

VI.3.1 Model and method

In this section, we embed the dot in a recipient of the same lateral size N but the height is
much larger than the thickness L of the dot, namely the recipient of size N ×N ×Nz . The
recipient is not deformable with temperature. The empty space in the z direction, namely
Nz − L allows the dot to melt to become a liquid at high temperature (T ).

Let us define the concentration c by c = L/Nz . The mobile spin model consists in as-
suming that a spin can move from one lattice site to a nearest site. MC simulation is used
to update the spin position and the spin orientation. The spin position is updated whenever
there are vacant sites next to it, at the same time with the orientation update, using the
Metropolis algorithm.

We start the simulation using the GS state configuration and we heat the system to a
temperature T . As usual, we discard a large number of MC steps to equilibrate the system
before averaging physical quantities over a large number of MC steps. Physical quantities
which are calculated include the energy, the magnetization, the heat capacity and the mag-
netic susceptibility as functions of T for different c, different sizes of the recipient. We have
also calculated the diffusion coefficient, which is the sum of the mean square of the distance
made by each spin at each T . We have also computed the mean value of the number of
nearest neighbours as a function of T . We recall some definitions, like The total energy

E = 〈H〉 (VI.3)

and the Edwards-Anderson order parameter QEA defined by

QEA =
1

NT (tf − t0)

∑
i

∥∥∥∥∥
tf∑
t=t0

Si(t)

∥∥∥∥∥ , (VI.4)

where 〈·〉 indicates the thermal average with NT being the total number of spins. Note that
the QEA is calculated by taking the time average of each spin before averaging over all
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spins of the system. This order parameter is very useful in the case of disordered systems
such as spin glasses [131] or doped compounds: it expresses the degree of freezing of spins
independent of whether the system has a long-range order or not [49].

To study the change of behaviour, we adopt the following method by supposing that

• all spins are localized on their site and study this case as the behaviour of the solid
model;

• spins on one, two, three, ... layers (starting from the top) are mobile and study the
partial; melting process

• all spins are mobile. This case corresponds to the full melting when going to high
enough T .

Figure VI.2 – Effect of the concentration. The lattice size of the system is: 15 × 15 × 12
with an interaction exchange in-plane and between layers equal to J// = 4 and J⊥ = 1,
respectively. The blue curve corresponds to a spin concentration equal to c = 50% with
a magnetic dipole-dipole interaction equal to D = 0.3. The green curve corresponds to
c = 0.3% and D = 0.7. The red curve corresponds to c = 25% and D = 1.

In Figure VI.2 are shown the results of the energy as a function of T for various L, namely
various liquid concentration c with a choice of J// = 4 and J⊥ = 1. All spins are mobile. It
is interesting to note that the three energy curves have the same transition temperature Tc,
a kind of fixed point independent of L.

The Edwards-Anderson order parameter shown in Figure VI.3(a) confirms that the tran-
sition is at the same temperature within statistical errors. We show in Figure VI.3(b) the
diffusion coefficient. We see here that the spins start to move after the transition at Tc from
the vortex configuration to disordered phase.
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(a) Edwards-Anderson order parameter vs T (b) Diffusion coefficient vs T

Figure VI.3 – Effect of the concentration. The lattice size of the system is: 15 × 15 × 12
with an interaction exchange in-plane and between layers equal to J// = 4 and J⊥ = 1,
respectively. The blue curve corresponds to a spin concentration equal to c = 50% with
a magnetic dipole-dipole interaction equal to D = 0.3. The green curve corresponds to
c = 0.3% and D = 0.7. The red curve corresponds to c = 25% and D = 1.

VI.3.2 Comparison with a localized-spin system

We show here the case of a system of localized spins to compare with the mobile spins shown
above. Figure VI.4 shows the energy for three thicknesses of the dot. Unlike the full melting
case shown above, the transition occurs at a different temperature for a different thickness.
This is well-known in magnetism of thin film: the transition temperature increases with
increasing thickness [49].

Figure VI.4 – No mobile spin. The lattice size of the system is: 15 × 15 × 12 with an
interaction exchange in-plane and between layers equal to J// = 4 and J⊥ = 1, respectively.
The blue curve corresponds to a spin concentration equal to c = 50%, i.e. 6 layers, with
a magnetic dipole-dipole interaction equal to D = 0.3. The green curve corresponds to
c = 30% (4 layers) and D = 0.7. The red curve corresponds to c = 25% (3 layers) and
D = 1.
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In addition to the Edwards-Anderson order parameter, we can define an order parameter
in the case of no long-range GS ordering: if the GS is well defined by a numerical method,
then we can project the actual spin configuration of at a given T at a given time on the GS.
Needless to say, if the spin configuration is not strongly deviated from the GS, the order
parameter is close to 1. This has already been used in chapter IV and is defined as:

QP (T ) =
1

NT (tf − t0)

∑
i

∣∣∣∣∣
tf∑
t=t0

Si(T, t) · S0
i (T = 0)

∣∣∣∣∣ (VI.5)

where Si(T, t) is the i-th spin at the time t, at temperature T , and S0
i (T = 0) is its state

in the GS. The order parameter QP (T ) is close to 1 at very low T where each spin is only
weakly deviated from its state in the GS. QP (T ) is zero when every spin strongly fluctuates in
the paramagnetic state. The above definition of QP (T ) is similar to the Edward-Anderson
order parameter used to measure the degree of freezing in spin glasses [131]: we follow each
spin with time evolving and take the spatial average at the end.

We show in Figure VI.5 the Edwards-Anderson order parameter QEA and the projection
order parameter QP as functions of T . These confirm the difference of Tc for different L.

(a) Edwards-Anderson order parameter vs T (b) Projection order parameter QP vs T

Figure VI.5 – No mobile spin. The lattice size of the system is: 15 × 15 × 12 with an
interaction exchange in-plane and between layers equal to J// = 4 and J⊥ = 1, respectively.
The blue curve corresponds to a spin concentration equal to c = 50%, i.e. 6 layers, with
a magnetic dipole-dipole interaction equal to D = 0.3. The green curve corresponds to
c = 0.3% (4 layers) and D = 0.7. The red curve corresponds to c = 25% (3 layers) and
D = 1.

VI.3.3 Effect on the number of layers that can melt

Let us show now the case where spins in one, two or more layers are mobile. This allows
us to follow the melting progressively. Though artificial, this procedure corresponds to a
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reality when the surface layer melts first, then the second layer, ... with increasing T [21].

Figure VI.6 shows the energy and the diffusion coefficient. The case of localized spins
is also shown for comparison. One sees that the transition temperature decreases as the

(a) Energy vs T (b) Diffusion coefficient vs T

Figure VI.6 – Effect of the number of layers that can melt. The lattice size of the system
is: 15× 15× 12 with an interaction exchange in-plane and between layers equal to J// = 4
and J⊥ = 1, respectively and D = 0.7. The concentration is fixed to c = 30%, i.e. 4
filled layers. The red curve corresponds to a localized-spin system. The green curve
corresponds to the two first layers (starting from the top) can melt; the blue curve to three
mobile layers and the cyan curve to four mobile layers.

(a) Edwards-Anderson order parameter vs T (b) Projection order parameter QP vs T

Figure VI.7 – Effect of the number of layers that can melt. The lattice size of the system
is: 15× 15× 12 with an interaction exchange in-plane and between layers equal to J// = 4
and J⊥ = 1, respectively and D = 0.7. The concentration is fixed to c = 30%, i.e. 4 filled
layers. The red curve corresponds to a freezed system. The green curve corresponds to
the two first layers (starting from the top) can melt; the blue curve to three mobile layers
and the cyan curve to four mobile layers.
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number of mobile layers increases. Note that the case of a system of completely localized
spins has a very high Tc.

Figure VI.7 on the preceding page shows the Edwards-Anderson order parameter and the
order parameter QP . Several remarks are in order

• for a system of completely localized spins or a system of completely mobile spins,
there is only one transition,

• when a number of layers are mobile, the system has a partially ordered system: the
localized layers are still ordered but the mobile layers are already disordered. This
causes a step in the order parameters observed in Figure VI.7.

Finally, we show in Figure VI.8 the occupation rate of each layer in the system in the case
c = 30% (4 fully occupied layers). As seen, al low T only the first four layers are occupied,
but after the melting, all layers have the same occupation rate as expected in the liquid
phase.

Figure VI.8 – Occupation rate per layer c` versus temperature.The lattice size of the
system is: 15× 15× 12 with an interaction exchange in-plane and between layers equal to
J// = 4 and J⊥ = 1, respectively and D = 0.7. The concentration is fixed to c = 30%, i.e.
4 filled layers.

VI.4 Conclusion

In this chapter, we have studied a dot where the lattice sites are occupied by Heisenberg
spins. The dot is embedded in a close recipient which allows to conserve the number of
spins. We have taken into account the in-plane and perpendicular exchange interactions
and the long-range dipolar interaction without cut-off. The confined geometry of the dot
and the competition between exchange interactions and the dipolar interaction gives rise
to a ground state which is a vortex around the dot center with the spins at the center go
out of the xy plane. We have studied the melting of such a dot with increasing temperature
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VI.4. Conclusion

and found that, among other results, the melting to the liquid phase takes place at the
same temperature regardless of the system size. This is not the case of order-disorder phase
transition in a solid film.
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Chapter VII. Conclusion

Gneneral overwiew

n this thesis an ensemble of works has been studied with the aim to have a
better understanding of properties of liquid crystals (LC). Some works deal di-
rectly with LC models and other works deal with problems related in one way
or in another to properties of LC. In order to carry out this work, various and

sophisticated methods have been employed: mean-field theory, spin-wave theory, Green’s
functions (GF) techniques and Monte Carlo (MC) simulations.

After a global Introduction (chapter I), we introduced MC methods for mobile spin sys-
tems (chapter II). The standard MC for localised spin systems cannot be applied to systems
of mobile spins.

As an application of the mobile spin algorithm, we have studied a model of liquid crys-
tals using the Potts spin model. At low temperatures (T ) the model exhibits a solid phase
and at high enough temperatures the crystal melts into a liquid phase. The results of the
simulations show a first-order phase transition in the bulk and a surface sublimation at the
same time. These results have been confirmed by a mean-field theory. We have studied in
details the surface sublimation.

The fourth chapter is devoted to spins systems with a Dzyaloshinskii-Moriya (DM) per-
pendicular interaction in competition with a ferromagnetic exchange interaction . It is
known that these interactions give rise to topological excitations like skyrmions and stripes
structures observed in LC. We studied in this chapter the spin-wave excitation in thin films.
Using the spin-wave spectrum, we have calculated properties at T = 0 (quantum fluctua-
tions) and at finite temperatures. Surface effects on layer magnetisations have been shown at
finite T . With an applied magnetic field perpendicular to the film surface, we have observed
a crystal of skyrmions. We have shown that it is stable up to high temperatures. We have
also shown that the relaxation follows a stretched exponential law which has been found in
disordered systems such as spin glasses.

In chapter V, we studied the dynamics of a mobile Potts model to find how the LC or-
derings such as nematic and smectic phases are dynamically formed by the motion of
molecules. It is very important to note the choice of appropriate interactions is crucial to
realize each kind of LC phases. We have recorded video to show how such structures are
formed upon cooling from the isotropic phase. We have calculated various physical quanti-
ties which confirm a transition from a liquid phase to a LC phase.This is the first time such
a direct observation has been realized.

The chapter VI is devoted to a study of the effect of dipolar interaction in nanodots with
the Heisenberg spin model. A ground state (GS) is determined by the minimization of the
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energy, indicating a vortex around a dot center. The spins at the dot border lie in the plane,
but they go out of the plane at the center of the dot, giving rise to a non-zero z spin com-
ponent. This may have interesting applications in magnetic recording. We have studied the
effect of temperature on the vortex and shown that the dot melts sharply at a temperature
Tc. The melting temperature Tc surprisingly does not depend on the system size. This is
very different with the case of localized spins, where the transition temperature increases
with increasing film thickness. This work is the first step in direction to a complete model
of helicoidal LC.

Numerous interesting results of this thesis have been published. Recent results on nanodots
and on the dynamic formation of nematic and smectic phases are subject of publications
(preprints).

The works of this thesis pave the way for future investigations with models closer to re-
ality.
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We introduce here the basic knowledges about the Markov chains required to understand
the mechanisms hidden behind the Markov Chain Monte Carlo (MCMC) methods, such as
the Metropolis algorithm. We only deal with homogeneous and discrete-time Markov chains.
For more details, one can refer to the Ross’ book [162].
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Appendix A. Markov chains

A.1 Introduction

et us consider a discrete sequence of a random variables (Xn)n∈N, where Xn

represents the state of a system at time n. This sequence constitutes a Markov
chain if the evolution of the system at time n + 1 depends only on the present
state n and not on the previous states, i.e. the past. This is known as the

Markov property. In the next sections, X denotes a Markov chain, which means the se-
quence X = (Xn)n∈N satisfies this property.

In the following, we consider S as a discrete space in which the random variables Xn

can take k discrete values :

Xn ∈ {x0, x1, x2, ..., xk}. (A.1)

We also consider only the time-homogeneous Markov chains for which the evolution of Xn+1

given Xn does not depend on the time n. The Markov chain is then governed by the
transition matrix and by the initial transition probability law of the random variable X0.
The probability law of the random variable Xn at time n is defined by a row vector πn such
as

πn = (P(Xn = x0),P(Xn = x1), ...,P(Xn = xk)) and
∑
xi∈S

πn(xi) = 1, (A.2)

where πn(xi) = P (Xn = xi) denotes an element of π.

Remark A.1 (Notations). We use here the traditional notation P for the transition matrix
and π for the probability distribution. It corresponds respectively to the matrix W and the
probability distribution P in the sub-subsection II.1.3.a.

A.2 Discrete-time Markov Chains

A.2.1 Definitions

We give here basic definitions about Markov chains for a better understanding.

Definition A.1. A matrix P = (P(xi, xj), (xi, xj) ∈ S2) is called stochastic if all entries are
positive and their sum on each line is equal to 1, i.e,

P(xi, xj) > 0 and
∑
xj∈S

P(xi, xj) = 1,∀(xi, xj) ∈ S2. (A.3)

P is also termed transition matrix or Markov matrix.

Remark A.2. Equation (A.3) can be written as the product of the transition matrix by a
column vector 1 having all its entries equal to 1, such as

P · 1 = 1. (A.4)

This relation means λ = 1 is an eigenvalue of P and 1 its eigenvector.
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Remark A.3 (Notations). P(xi, xj) denotes the probability transition from a realisation xi
to xj . It corresponds to an ith row and jth column element Pij of the matrix, such as
P(xi, xj) = Pij = Pi→j (according to the notations used in II.1.3.a).

Definition A.2 (Markov chain). Let P be a stochastic matrix. A sequence of random
variable (Xn)n∈N with values in S is termed Markov chain characterized by a transition
matrix P, if for all n ∈ N and x ∈ S , we have

P (Xn+1 = x|Xn, ..., X0) = P (Xn+1 = x|Xn) = P(Xn, x). (A.5)

The expression (A.5) means that the element P(xn, x) is a conditional probability of x given
xn and its totally equivalent to

P (Xn+1 = x|Xn = xn, ..., X0 = x0) = P (Xn+1 = x|Xn = xn) = P(xn, x), (A.6)

for all realisations x0, ..., xn ∈ S such as P (Xn = xn, ..., X0 = x0) > 0.

Example A.1. Example of a basic Markov chain with two accessible states such as S = {x0, x1}.

x0 x1

P
(x

0
,
x
0
) P

(x
1
,
x
1
)

P(x0, x1)

P(x1,x0)

Figure A.1 – Example of directed graph of a transition matrix P, where the nodes are
elements belonging to S and each directed arc is labelled by a probability transition.

Proposition A.1. The probability law of a Markov chain is entirely characterised by its
transition matrix P and the probability law of X0, π0. Moreover, for all n ∈ N∗ and
x0, ..., xn ∈ S , we have

P (X0 = x0, ..., Xn = xn) = π0(x0)
n∏
`=1

P(x`−1, x`), (A.7)

where π0(x0) is the first element of the vector π0, such as π0(x0) = P (X0 = x0).
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Proof A.1. Let n ∈ N∗ and x0, ..., xn ∈ S . If P (X0 = x0, ..., Xn = xn) > 0, then
by using the formula of the conditional probabilities, we have :

P (Xn = xn|X0 = x0, ..., Xn−1 = xn−1) =
P (X0 = x0, ..., Xn = xn)

P (X0 = x0, ..., Xn−1 = xn−1)
,

P (Xn−1 = xn−1|X0 = x0, ..., Xn−2 = xn−2) =
P (X0 = x0, ..., Xn−1 = xn−1)

P (X0 = x0, ..., Xn−2 = xn−2)
,

...

P (X1 = x1|X0 = x0) =
P (X0 = x0, X1 = x1)

P (X0 = x0)
.

By multiplying all these equalities between them and using the equation (A.6), we
reach

P (X0 = x0, ..., Xn = xn)

P (X0 = x0)
=

n∏
i=1

P(xi−1, xi)⇔ P (X0 = x0, ..., Xn = xn) = π0(x0)

n∏
i=1

P(xi−1, xi).

A.2.2 Chapman-Kolmogorov equation

In the first section, we gave an idea of what is a time-homogeneous Markov chain. We now
give here a mathematical definition:

Definition A.3. A time-homogeneous Markov chain is one that does not depend on time
and its transition probabilities are independent of time n, such as ∀n ∈ N and (xi, xj) ∈ S2,

P (Xn+1 = xj|Xn = xi) = P (Xn = xj|Xn−1 = xi) = P(xi, xj), (A.8)

that yields to the m-step transition probabilities

P(m)(xi, xj) = P (Xn+m = xj|Xn = xi) , (A.9)

with m ∈ N and P(0)(xi, xj) = δi,j .

From equation (A.9), we can deduce the Chapman-Kolmogorov :

P(m)(xi, xj) =
∑
xk∈S

P(n)(xi, xk)P
(m−n)(xk, xj). (A.10)
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Proof A.2. Let us start from equation (A.9)

P(m)(xi, xj) = P(Xn+m = xj |Xn = xi)
〈1〉
= P

(
Xn+m = xj ,

⋃
xk∈S

X` = xk|Xn = xi

)
,

=P

( ⋃
xk∈S

(
Xn+m = xj , X` = xk

)
|Xn = xi

)
.

Two different realisations of X` can not occur in the same time (they are incompat-
ible), their intersection two by two is then equal to the empty set. It yields

P(m)(xi, xj) =
∑
xk∈S

P(Xn+m = xj , X` = xk|Xn = xi),

=
∑
xk∈S

P(Xn+m = xj , X` = xk, Xn = xi)

P(Xn = xi)
.

Using the equation (A.6), it comes

P(m)(xi, xj) =
∑
xk∈S

P(Xn = xi)P(Xn+m = xj |X` = xk)P(X` = xk|Xn = xi)

P(Xn = xi)
,

=
∑
xk∈S

P(`−n)(xi, xk)P
(m+n−`)(xk, xm).

If ` = m, we find the expression (A.10).

For convenience, we can write the Chapman-Kolmgorov equation as a matrix product :

Pm = Pm−nPn, (A.11)

where we assume the corollary P(m) = Pm, that can be easily proved by induction〈2〉. We
can then determine the probability law πn+m at time n+m of Xn+m from πn

πn+m = πnPm. (A.12)

This equation yields to an important consequence. Indeed, knowing the initial distribution
π0, we get

πn = π0Pn,∀n > 0, (A.13)

or in an equivalent manner,

P (Xn = xj) =
∑
xi∈S

P (X0 = xi) Pn (xi, xj) ,∀(xi, xj) ∈ S2. (A.14)

〈1〉This equation means there is a probability to pass from a position xi at time n to xj at m+ n. For that
one must be somewhere at time n < ` < m + n. There are different possible paths leading to (or leaving) a
position X`. One must then sum over all the paths to calculate the probability to transit from xi to xj passing
by X`.

〈2〉 P(2) = P× P = P2,P(3) = P× P(2) = P3, ...,P(m+1) = P× P(m) = Pm+1.
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A.2.3 Irreducibility (ergodicity)

We now want to study all the possible paths of a Markov chain. For that, we are going to
classify the different states of the chain in different classes. We introduce here the notions of
irreducibility or ergodicity that are important for Monte Carlo simulations.

We will say two states belong to the same class if they communicate. We give here a definition
of this notion.

Definition A.4. Let xi and xj be two states of the finite space S .
A state xj is said accessible from xi, noted xi  xj if it exists n ∈ N such as P(n)(xi, xj) > 0,
i.e. we can reach the position xj starting from xi with a positive probability in a finite time
n. We will say xi and xj communicate, noted xi! xj , if we have xi  xj and xj  xi.

We are now able to define the ergodicity of a Markov chain.

Definition A.5 (Ergodicity or irreducibility). A Markov chain, or its transition matrix, is
said ergodic or irreducible if there is only one class, i.e, if all the states communicate with
each others. In other words, if we have xi! xj for all (xi, xj) ∈ S . If it exists a power Pn

of P such as

Pn(xi, xj) > 0,∀(xi, xj) ∈ S2, (A.15)

i.e. if all the entries of P are strictly positive, the chain is said regular.

Obviously a regular Markov chain is irreducible, but the reverse is not true (see the example
A.3). In terms of physics, a system is ergodic if all the states of the space phase can be visited
over time, that is why this notion is primordial in Monte Carlo simulations.

Remark A.4 (Mixing time). One could naively think that more a system is ergodic faster the
chain will converge on a stationary distribution. But this is not that simple. Indeed the
mixing time, i.e. the time needed for a chain to reach the equilibrium, is actually a vast
research domain in mathematics [12, 112].

Remark A.5 (Ergodicity and aperiodicity). In the literature, one can find another (historical)
definition of the ergodicity: a positive recurrent (see definition A.9) and aperiodic〈3〉 chain is
often called an ergodic chain [169]. Actually the concept of ergodicity has nothing to do
with periodicity and any positive recurrent chains is ergodic (as defined in definition A.5).

Example A.2. Let us consider two finite states Markov chains characterised by their transition
matrix P1 and P2. The set of accessible states, for each of them, is S = {x0, x1, x2, x3}. P1 and

〈3〉The period dxi of a state xi ∈ S is defined as dxi = gcd{n ≥ 0|P(xi, xi) > 0}, where gcd denotes
the greatest common divisor. It means xi is periodic with period d, if d is the smallest integer such as
P(n)(xi, xi) = 0 for all n non-multiple of d. If d = 1, the state is said aperiodic. If for all the states of S , d is
equal to one, the chain is said aperiodic.
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P2 are defined by

P1 =



0 1 0 0

1/2 1/4 1/4 0

0 1/8 3/4 1/8

2/3 0 0 1/3


, P2 =



0 1 0 0

3/4 1/4 0 0

1/8 0 7/8 0

0 0 1/9 8/9


and their directed graphs are showed on the figure A.2. The matrix P1 is irreducible as we can
see on the graph on the left of the figure. Indeed, there is only one class; it is possible to get to any
state from any state. It exists a time n = 3 such as all the entries of P3

1 are strictly positive, i.e.
regular. But this is not the case for P2. The states x2 and x3 are not accessible from x0 and x1;
and x3 is not accessible from the other states (see the graph on the right of the figure). The chain
is not irreducible; there are three classes: {x3} {x2} {x0, x1}.

x0

x1

x2

x3 1/4

7/8

1/3

1

1/2

1/
41/8

2/
3

x0

x1

x2

x3 1/4

7/8

8/9

1

3/4

1
/
8

1/9

Figure A.2 – Directed graphs of two Markov chains. Left: All the states communicate; the
Markov chain is then irreducible. Right: The states x2 and x3 are not accessible form x0
and x1. Moreover x3 is inaccessible from x2. The chain is then not irreducible.

Example A.3 (Ehrenfest model). This simple system is motivated by the thermodynamic and
the statistical physics in order to model the repartition of gas molecules between two containers.
The model can be expressed in this way : there are N discernible balls, numbered from 1 to N ,
shared among two urns. We draw randomly a number, equally distributed, between 1 and N and
we move the corresponding ball into the other urn. To study its evolution over time, this system
can be described by a Markov chain with the state space S = {0, 1, 2, ..., N}, where the state
number correspond, for instance, to the number of the balls contained in the red urn, i.e. the right
one on the Figure A.3.
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0 1 2 3

1 2/3 1/3

12/31/3

Figure A.3 – Ehrenfest model with three balls. Let S = {0, 1, 2, 3} be the state space of
system. Each state of S correspond to zero, one, two or three balls contained in the red
urn, respectively. Top: Representation of the Ehrenfest’s urns for each state. Down: The
oriented graph of the Markov chain associated to the model. The red arrows correspond
to a move from the blue urn to the red one. The blue arrows are for the opposite moves.

As we can see on the graph, all the sates are accessible from the others in a finite time. The
transition matrix is ergodic but not regular. The number of balls in the red urn is alternatively
odd and even. Each alternate elements of the matrix are then always equal to zero for all time n.
For example with n = 1 and n = 2, we have:

P(1) =



0 1 0 0

1/3 0 2/3 0

0 2/3 0 1/3

0 0 1 0


, P(2) =



1/3 0 2/3 0

0 7/9 0 2/9

2/9 0 7/9 0

0 2/3 0 1/3


.

A.2.4 Stationary distribution and reversibility

When we do Monte Carlo simulations, we need to thermalize the system to reach the equilib-
rium, i.e., the stationary distribution before to calculate the averages (cf. the subsubsection
II.1.3.d). In other words, we perform the procedure during a time long enough so that the
probability law πn of the Markov chain converges on an invariant distribution π.

Definition A.6. A probability distribution π is said to be stationary (or invariant) for the
Markov chain of transition matrix P if

π = π P, (A.16)

i.e., if π is a left-eigenvector of P associated to the left-eigenvalue λ = 1.
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The meaning of stationary distribution is explicit here. Indeed, we have

πPn = (πP) Pn−1 = ... = πP = π, (A.17)

i.e. at any time the distribution is constant. Thus to determine the stationary distribution,
one just need to solve a linear system.

Remark A.6. It can be easily proved that the module of the eigenvalue λ = 1 is the spectral
radius of the transition matrix P and its associated eigenvector is strictly positive. Under
certain conditions on P, the stationary distribution is moreover unique.

Remark A.7. The equation (A.16) is sometimes termed global balance equation.

Definition A.7. A Markov chain with a stationary distribution π is time-reversible if and
only if

π(xi)P(xi, xj) = π(xj) P(xj, xi),∀(xi, xj) ∈ S2. (A.18)

The equation (A.18) is known as the detailed balance. It means the rate at which the process
moves from a state xi to a state xj is equal to the rate at which it goes from xj to xi. If
we assume Xn = xi and Xn−1 = xj , the transition from xj to xi going forward in time
is equivalent to the opposite transition (xi → xj ) going backward in time. In one way
(xj → xi), it is like we are looking forward in time and in the other way it is like to look
backward in time.

Lemma A.1. If a distribution probability π satisfies the time-reversibility condition, then
π is invariant.

Proof A.3. Starting from equation (A.18), let us sum over all the realisations
xi ∈ S : ∑

xi∈S
π(xi)P(xi, xj) =

∑
xi∈S

π(xj) P(xj , xi),∀xj ∈ S,

=π(xj)
∑
xi∈S

P(xj , xi),

=π(xj) (cf. equation (A.3)) .

The last equation can be written in matrix form: π = πP. According to the
definition A.6, π is an invariant probability distribution.

The time-reversibility condition is an essential condition of the Metropolis algorithm; it
ensures us that a stationary distribution π is reached.

Example A.4 (Ehrenfest model (part 2)). Let us find the stationary distribution π of the
Ehrenfest model characterised by the transition matrix P(1) introduced in the example A.3. The
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equation (A.16) gives us a set of four linear equations. By posing π = (α0 α1 α2 α3), with αk ∈ R
being the probability to have k = 0, 1, 2 or 3 ball(s) in the red urn (cf. Figure A.3), it yields

π = πP(1)

3∑
k=0

αk = 1
⇒ π =

(
1

8

3

8

3

8

1

8

)
.

The stationary distribution can then readily be calculated with little calculations. A smarter
analysis shows it follows a binomial distribution B

(
3, 1

2

)〈4〉, i.e. αk =
(

3
k

) (
1
2

)3
. One can easily

check the chain satisfies the equation (A.18); it is then reversible. One could have guessed it in
view of the oriented graph A.3.

A.2.5 Asymptotic theorem

In this section, we show two important results of the Markov chain. The first one concerns
the uniqueness of the stationary distribution and the second one is about the convergence
on the ensemble average of the time averages. But we first briefly introduce some definitions
and properties that lead us to these results.

Definition A.8 (Hitting time). The first hitting time of a Markov chain X is the random
variable Txi given by

Txi = inf{n > 1|Xn = xi}, (A.19)

i.e. the time (number of transitions) needed for chain to return to the state xi.

Let fxi = P (Txi < +∞|X0 = xi) be the probability that the process returns in the state xi
starting from xi. Another way to define fxi is

fxi = P (∃n > 1, Xn = xi|X0 = xi) . (A.20)

Definition A.9 (Recurrent, transient and absorbing states).

1. If fxi = 1, the state xi is said recurrent or persistent: starting from the position xi, we
are sure to go back to xi;

2. If fxi < 1, the state xi is said transient: starting from the position xi, there is a non
zero probability to return to xi;

3. If P (xi, xi) = 1, the state xi is said absorbing : once we are at the position xi, we
cannot leave it.

Remark A.8. If all the states of a Markov chain are recurrent (transient, respectively) the
chain is then qualified of recurrent (transient, respectively).

〈4〉For the general case with N balls, the probability law is B
(
N, 12

)
, i.e. αk =

(
N
k

) (
1
2

)N
, with k ∈ [[0, N ]].
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Before to define the positive and null recurrent states, we need to introduce the notion of
mean recurrence time defined as the expected value µxi of the return time Txi such as

µxi = E [Txi |X0 = xi] . (A.21)

It is not because the first hitting time is finite that it has a finite expectation.

Definition A.10 (Positive and null recurrent states). Let xi be a recurrent state. If the mean
recurrence time is finite, i.e. if µxi < +∞, the state xi is said positive recurrent. Otherwise
µxi = +∞, the sate xi is said null recurrent.

Remark A.9. A chain is said positive recurrent (null recurrent) if all the states are positive
recurrent (null recurrent).

Theorem A.1. If a Markov chainX with a finite space is irreducible, X is necessary positive
recurrent.

To simulate a system with Monte Carlo procedures, we only consider irreducible (ergodic)
Markov chain with a finite space. According to the last theorem, it means we work only
with positive recurrent Markov chain and leads us naturally to the two important following
theorems.

Theorem A.2. A positive recurrent and irreducible Markov chain has an unique probabil-
ity distribution π given by

π(xi) =
1

µxi
, ∀xi ∈ S. (A.22)

Remark A.10. A positive recurrent chain has then a probability distribution π strictly posi-
tive.

Theorem A.3 (Ergodic theorem). Let X = (Xn)n∈N be a irreducible and positive recurrent
Markov chain with state space S . For any functions h : S → R, such as (π, |h|) < ∞〈5〉 ,
we have:

1

n+ 1

n∑
`=0

h (X`)
a.s−−−−−→

n→+∞
E [h(X0)] =

∑
xi∈S

h(xi)π(xi). (A.23)

This theorem is essential in Monte Carlo simulations. Indeed, it allows to estimate the
expected value of a random variable h(X0) thanks to the time average h(X`) with ` ∈ N.
The time averages and the ensemble averages become equivalent. It is similar to the law of
large numbers for the Markov chains. The proof of the theorem and further information
can be found here [16, 17, 93].

〈5〉(π, |h|) denotes the scalar product, such as (π, |h|) =
∑
xi∈S
|h(xi)|π(xi). In a continuous state space S ,

we would have (π, |h|) =

∫
S

|h|dπ, i.e. h ∈ L1(π).
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Appendix A. Markov chains

Remark A.11. Thus the term ergodic has two definitions in appearance (at least for the
physicists): it denotes the fact all the states of a system are visited over time and the
equivalence of the two types of averages as described just above. That is because this
theorem concerns only irreducible Markov chain (cf. definition A.5).

A.2.6 Generalisation to continuous space state

The previous results can be generalised to a continuous space state S . But instead of a
two-dimension transition matrix P, we consider a function ℘ of two continuous variables
which is the density probability of the transition law and obviously, the discrete sums be-
come integrals.

For instance, if πn(x) = P(Xn = x) represents, at time n, the density probability asso-
ciated to the random variable Xn, then at time n + 1, the density probability associated to
the law of Xn+1 is given by

πn+1(y) =

∫
πn(x)℘(x, y) dx, (A.24)

where (x, y) ∈ S 2. This is the analogue of the equation (A.12).

A.3 Continuous-time Markov chain

In the previous section, we only studied discrete-time Markov chain. They can be ex-
tended to the continuous-time Markov chain. As their discrete-time analogues, they are also
characterised by the Markov property. The equivalent of the definition A.5 in the case of
continuous-time Markov chains is

P(X(t+ s) = xj|X(s) = xi, X(u)) = P(X(t+ s) = xj|X(s) = xi), (A.25)

where (s, t, u) ∈ R3 such as 0 6 t, 0 6 u 6 s and (xi, xj) ∈ S2. The probability distribution
π becomes also a continuous function of time, such as

π(t) = (P(X(t) = x0),P(X(t) = x1), ...,P(X(t) = xk)) , (A.26)

with x0, x1, ..., xk ∈ S .

The purpose of this appendix being not to study the time-continuous Markov chains, we
do not deal with this topic in details here (cf. [162] for further information).
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Appendix B
Monte Carlo error analysis

Contents
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We introduce here the statistical errors occuring and we show the importance of the corre-
lation time during a Monte Carlo simulation.
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Appendix B. Monte Carlo error analysis

B.1 Statistical error and correlation time

e are interested, in this appendix, in the statistical error εŌ on the estimator
Ō of the theoretical average of a quantity (observable) O, noted 〈O〉. During
a Monte Carlo simulation, the estimator chosen is an arithmetical mean. In
other words, it is defined from a set E of N different measurements Oi of the

observable such as E = {Oi}i∈[[1,N ]] and

Ō =
1

N

N∑
i=1

Oi. (B.1)

By performing Ω simulation runs, in order to get Ω different sets of measurements EΩ, one
can have an estimation of the mean squared error εŌ through

εŌ =
〈(
Ō − 〈O〉

)2
〉

Ω

=
〈(
Ō −

〈
Ō
〉

Ω

)2
〉

Ω

=
〈
Ō2
〉

Ω
−
〈
Ō
〉2

Ω
, (B.2)

where 〈·〉Ω denotes an average taken over Ω runs and
〈
Ō
〉

Ω
is the estimator of 〈O〉 and

where the last term is obtained by applying the König-Huygens theorem〈1〉.

Then by inserting the equation (B.1) into the equation (B.2), it yields

εŌ =
1

N 2

N∑
i=1

N∑
j=1

〈OiOj〉Ω −
1

N 2

N∑
i=1

〈Oi〉Ω
N∑
j=1

〈Oj〉Ω

=
1

N 2

{
N∑
i=1

( 〈
O2
i

〉
Ω
− 〈Oi〉2Ω

)
− 2

N−1∑
i=1

N∑
j=i+1

(
〈OiOj〉Ω − 〈Oi〉Ω 〈Oj〉Ω

)}
, (B.3)

where we have separated the diagonal and off-diagonal terms to pass from the first to the
second line.

Let us assume the system has reached the equilibrium and therefore all the measurements,
made during the MC runs, follow the Boltzmann equilibrium distribution. Then any time t
can be considered as a time zero for the calculation of averages leading thus to a translational
time invariance

〈OiOj〉Ω = 〈O0Ot〉Ω = 〈OnOn+t〉Ω ,∀n ∈ N and t = j − i. (B.4)

〈1〉Let X be a random variable and E [X] its expected value. The variance of X , noted Var(X), is given
by

Var(X) = E
[
(X − E [X])

2
]

= E
[
X2 − 2XE [X] + E [X]

2
]

= E
[
X2
]
− 2E [X]E [X] + E [X]

2

= E
[
X2
]
− E [X]

2
.

Note that we have considered in the text the equivalence: E [·] = 〈·〉.
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B.1. Statistical error and correlation time

Moreover, at the equilibrium, the individual variances σ2
Oi

= 〈O2
i 〉Ω − 〈Oi〉

2
Ω
do not depend

on time [91], having thus

1

N 2

N∑
i=1

σ2
Oi

=
σ2
Oi

N
(B.5)

With the help of the above equations (B.4), it comes

εŌ =
1

N

{〈
O2
i

〉
Ω
− 〈Oi〉2Ω +

2

N

N−1∑
t=1

(N − t)
(
〈O0Ot〉Ω − 〈O0〉Ω 〈Ot〉Ω

)}
,

=
1

N

{
σ2
Oi

+ 2
N−1∑
t=1

(
1− t

N

)(
〈O0Ot〉Ω − 〈O0〉Ω 〈Ot〉Ω

)}
, (B.6)

where the factor (N − 1) is the number of terms of the sum over j, in the equation (B.3),
for each fixed value of the index i, which is equivalent to the number of times we have the
equality j − i = t〈2〉.

The equation (B.6) can be expressed thanks to the normalised autocorrelation function,

ROO(t) =
〈OnOn+t〉Ω − 〈On〉Ω 〈On+t〉Ω

〈O2
n〉Ω − 〈On〉

2
Ω

, (B.7)

allowing to determine the amount of correlation between configurations. By definition this
function decreases over time such as ROO(0) = 1, meaning configurations are entirely
correlated, and lim

t→+∞
ROO(t) = 0, i.e. they are no longer correlated〈3〉. Thus, considering

the translational invariance and inserting the equation (B.7) into (B.6), it comes that

εŌ =
σ2
Oi

N

[
1 + 2

N−1∑
t=1

(
1− t

N

)
ROO(t)

]
. (B.8)

Let us now introduce the proper integrated correlation time defined by

τ iO =
1

2
+
N∑
t=1

(
1− t

N

)
ROO(t), (B.9)

for which the correction t/N is often omitted when N → +∞, giving thus

τ iO '
1

2
+

+∞∑
t=1

ROO(t). (B.10)

〈2〉For instance, if N = 4, there are two terms such as t = j − i = 2 : 〈O1O3〉Ω = 〈O2O4〉Ω = 〈O0O2〉Ω.
〈3〉Because having configurations statistically independent, it implies: 〈OnOn+t〉Ω = 〈On〉Ω 〈On+t〉Ω =

〈On〉2Ω.
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Appendix B. Monte Carlo error analysis

Finally, the mean squared error can be expressed as

εŌ = 2 τ iO
〈O2

i 〉Ω − 〈Oi〉
2
Ω

N
, (B.11)

= 2 τ iO
σ2
Oi

N
. (B.12)

We see clearly the error due to temporal correlations trough the correlation time and that
for totally uncorrelated measurements, i.e. ROO(t) = 0, the error is reduced to the classical
formula of statistics. It can also be expressed in function of the number of independent
measures Neff = N /2 τ iO, by

εŌ =
σ2
Oi

Neff
. (B.13)

Neff describes the statistical efficiency and shows that every 2τ iO iterations the measure-
ments can be considered as uncorrelated .

B.2 Numerical error analysis methods

The purpose of this appendix being to give the mathematical justification of the equation
(II.37) and to highlight the relation between the statistical error and the correlation time, we
just cite here the name of several methods dedicated to the error analysis.

As we have seen in the previous section, to calculate the statistical error on the estima-
tor Ō of the quantity 〈O〉 we need to perform several sets of measurements. There are
different methods allowing to get the error of these sets such as the jacknife, the boostrap
or the blocking analysis method [133, 57].
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Appendix C
Metropolis criterion: a non
normalised transition probalility
matrix?

Contents
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The Metropolis strategy, to make the Markov chain converge on an equilibrium probability
distribution, has been discussed at length in chapter II. But by looking closer, it seems
that the Metropolis criterion do not verify the elementary rule of probabilities, namely
probabilities are normalised.
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Appendix C. Metropolis criterion: a non normalised transition probalility matrix?

C.1 A brief reminder of the theoretical framework

et us remind quickly several equations of the chapter about the Monte Carlo
method. We have seen that Metropolis Monte Carlo relies on discrete-time
Markov chains, i.e. the state of the chain at a given time depends only on the
previous state. The evolution of theses chains over time are governed by the

following master equation

dPf
dt

(t) =
∑
i 6=f

[
Wi→fPi (t)−Wf→iPf (t)

]
, (C.1)

where Pi denotes the probability for a system to be in a state i and Wi→f is the transition
probability to move from a state i to f . To be more specific, Wi→f is an element of
the transition matrix W. The purpose of the algorithm being to find a way to reach an
equilibrium probability distribution, such as Pi (t)

t>1−→ P eq
i , it comes naturally

dP eq
f

dt
=
∑
i 6=f

[
Wi→fP

eq
i −Wf→iP

eq
f

]
= 0, (C.2)

known as the global balance equation. A trivial solution of the equation (C.2) leads to the
detailed balance condition

Wi→fP
eq
i = Wf→iP

eq
f , ∀(i, f). (C.3)

One of the possible strategies for constructing the transition matrix so that it satisfies the
above condition (C.3) is

Wi→f = min

{
1,
P eq
f

P eq
i

}
, ∀(i, f). (C.4)

This is known as the Metropolis criterion and means that if a system has a higher probability
to be in a configuration f than a configuration i, then the transition from i to f occurs with
a probability equal to 1. Otherwise the transition takes place with a probability equal to the
ratio of P eq

f to P eq
i .

C.2 Metropolis criterion and transition matrix

All the entries of the transition matrix represent a probability transition and then, by
definition, the sum over all elements on each line is equal to one, i.e.,∑

f

Wi→f = 1, ∀f. (C.5)

The Metropolis criterion (C.4) should also satisfy this equation, but as we will see below,
this is not always true.
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C.2. Metropolis criterion and transition matrix

Let us assume we are in a canonical description and that the probabilities follow a Boltzmann
distribution, such as

Wi→f = min
{

1, e−β(Ef−Ei)
}
, ∀(i, f), (C.6)

and that we want to perform a simulation, based on a Metropolis algorithm, on a system
with a set E of possible moves from configuration i to f divided into two subsets such as

E = A ∪ B, (C.7)

where :

• A is the set of energetically favorable transitions, i.e. Ef 6 Ei and then Wi→f = 1,
according to (C.6),

• and B the set of transitions such as Ei < Ef hence Wi→f = e−β(Ef−Ei), according to
(C.6).

Thus, the sum in the equation (C.5) can be split into two sums, such as∑
i∈E

Wi→f =
∑
i∈A

Wi→f +
∑
i∈B

Wi→f (C.8)

=
∑
i∈A

1 +
∑
i∈B

e−β(Ef−Ei) (C.9)

= λf . (C.10)

It is obvious that λf is a constant greater or equal to one and that the relation (C.5) is
not satisfied. To get normalised probabilities, we have to redefine then the elements of the
transition matrix, such as

W̃i→f =
Wi→f

λf
. (C.11)

During a simulation, it is (almost) impossible to determine the λf ; it could be a problem.
But the matrix W̃ satisfies the master equation (C.1) and given the expression of the entries
of the normalised transition matrix, namely

W̃i→f =
1

λf
min

(
1, e−β(Ef−Ei)

)
, (C.12)

we are sure that the probabilities will reach the same equilibrium distribution as with (C.6)
through the detailed balance equation, which is linear.

Let us go back to the master equation with :

dPf
dt

(t) =
∑
i 6=f

[
W̃i→fPi (t)− W̃f→iPf (t)

]
, (C.13)

=
1

λf

∑
i 6=f

[
Wi→fPi (t)−Wf→iPf (t)

]
, (C.14)
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where to pass from the first to the second line, we have used the equation (C.11). We now
introduce a dilated time τ = t/λf such as the equation (C.14) can be written as

dPf
dτ

(τ) =
∑
i 6=f

[
Wi→fPi (τ)−Wf→iPf (τ)

]
. (C.15)

Thus, starting from (C.13), we finally get a master equation with non normalised probabil-
ities Wi→f , affecting then the repartition of the probabilities in the non stationary regime.
However, when Ṗf = 0 is satisfied, the same probability distribution is reached indepen-
dently of the kind of matrix used, i.e. W or W̃. Then there is no specific problem as for the
non normalisation of the transition matrix. Note that an analogous analysis can be done for
the Metropolis-Hastings criterion leading to a similar conclusion.
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Green’s functions
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This appendix deals with the Green functions. A first part is dedicated to their use to solve
linear differential problems. Then it is shown how they can be applied on a simple quantum
mechanic case to lead us to their necessary adaptation for the quantum field theory.
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Appendix D. Green’s functions

D.1 Classical Green’s functions

he Green functions (GF) have been introduced by the physicist Georges Green
in the first half of the nineteenth century. His works permit to create the first
mathematical theory of electricity and magnetism. The GF are now commonly
used in other fields like in sotchastic processes theory, quantum mechanic and

quantum field theory, where they are termed propagators. They were initially used for solving
linear differential equations of the type

D f(t) = h(t), (D.1)

where D is a continuous linear differential operator〈1〉, f an unknown function we are look-
ing for and h a given function. By analogy with signal processing, h and f can be seen as
a source and an output signal〈2〉, respectively. To find f is then equivalent to find how to
invert the action of D. Obviously, in some cases, one can solve this kind of equations in
a classical way, but in some tricky cases it can be convenient (or even mandatory) to use
Green’s functions and therefore to treat this problem in terms of distributions〈3〉.

Let us suppose that D, in addition to be continuous and linear, is shift invariant〈4〉. Then it
can be expressed as a convolution product〈5〉 and it exists thus a distribution D such as [4]

h = D f = D ∗ f, (D.2)

where ∗ denotes the convolution operator. We define the Green function as every distribu-
tion G satisfying

DG = D ∗G = δ, (D.3)

with δ the Dirac distribution〈6〉. From this equation, it comes that

• δ being the neutral element of the convolution product, then G is the inverse distri-
bution of D and then can also be seen as the inverse operator of D.

〈1〉D =

m∑
n=0

an
∂n

∂tn
, (n,m) ∈ N2.

〈2〉The equations of motion are a good illustration. In this case, D corresponds to a second order time
derivative operator, h to the set of forces applied on the system and f to the position of the studied object
over time.

〈3〉Also called generalised functions in mathematical analysis. Distributions allow to find solutions of partial
differential equations that do not admit classical solutions in terms of functions or whose initial conditions
are distributions (for instance in electrostatic, a charge density locally dropped off on single point, i.e a Dirac
distribution).

〈4〉It means that T , a translation operator, and D commute, such as: T [Df ] = D [T f ] = T h.
〈5〉Indeed we have: Df = D [δ ∗ f ] = Dδ ∗ f = δ ∗Df = D ∗ f .
〈6〉Abusively defined by physicists as:

∫
R δ(t − t

′)f(t′) dt′ = f(t). This notation is abusive because the
notion of integral concerns only functions and because the integral here lets assume that δ is defined continu-
ously over an interval, which is absolutely not true by definition. A rigorous definition must be done with the
distribution theory: 〈δa, ϕ〉 = ϕ(a), with a ∈ R, φ ∈ D and where D is the set of test functions, i.e. the set of
smooth functions of R with values in C with compact support.
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• the Green function is the response of a system to a Dirac impulse. One speaks then
of impulse response.

Thanks to the equation (D.3) and by convoluing (D.2) with G, the solution of the differential
equation (D.1) reads

f = G ∗ h. (D.4)

The difficulty of this method lies in the determination of the Green function G. An usual
method is to take the Fourier transform (FT) of the equation (D.3) to reach the algebraic
form

F [D ∗G] = D̂ · Ĝ = 1, (D.5)

in order to get Ĝ and then to take the invert FT such as we get〈7〉

G = F−1

[
1

D̂

]
. (D.6)

Note that the circumflex denotes the FT of D and G, and that F is the FT operator.

D.2 Quantum Green’s functions

D.2.1 Schrödinger equation and propagators

The Green functions are then really adapted to solve the time-dependent Schrödinger equa-
tion, defined by

i~
∂ψ

∂t
(r, t) = Hψ(r, t), (D.7)

where H is a time-independent Hamiltonian and ψ a wave function. Indeed, in order to
solve the above equation, it comes that we can define a Green function G such as[

i~
∂

∂t
−H

]
G(r, t; r′, t′) = δ(t− t′) δ(r− r′), (D.8)

yielding to the self-consistent solution [25, 107]

ψ(r, t) =

∫
dr′
∫

dt′G(r, t; r′, t′)ψ(r′, t′), (D.9)

for t′ < t. This can be easily checked by applying the operator
[
i~ ∂

∂t
−H

]
on the wave

function (D.9). We can also note that G plays the role of a propagator because it makes evolve

〈7〉As shown in the footnote 〈5〉, D = Dδ, which implies that we are able (in most of the cases) to calculate
its Fourier transform. Because of the properties of δ and those of the FT on the derivatives, it comes that D̂
is a polynomial of the same order as D.
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ψ from a position and time (r′, t′) to (r, t) . Actually, by expressing the wave function in
the Schrödinger picture〈8〉 , i.e. thanks to the time operator evolution U such as

ψ(r, t) = U(t− t′)ψ(r, t′) = e−
i
~ (t−t′)H ψ(r, t′), (D.10)

and by using the completeness relation〈9〉 and by expressing ψ(r, t) with bra-ket notations
as

ψ(r, t) = 〈r|ψ(t)〉, (D.11)

it comes naturally

ψ(r, t) =

∫
〈r| e−

i
~ (t−t′)H |r′〉〈r′|ψ(t′)〉 dr′. (D.12)

Thus, by identification, the Green function G reads

G(r, t; r′, t′) = θ(t− t′)〈r| e−
i
~ (t−t′)H |r′〉, (D.13)

where θ denotes the Heaviside function〈10〉 ensuring thus the propagation from time t′ < t.
Note that G is indeed a solution〈11〉 (up to a factor i) of the equation (D.8) [107].

D.2.2 Single-particle quantum Green’s function

After to have been introduced in quantum mechanics, Green’s functions and their appli-
cations have been extended as propagators in quantum field theory notably by Richard
Feynman and its path integrals formalism leading the equation (D.9) to another interpre-
tation, i.e. being the sum over the probability amplitudes for a particle to take a specific
path to transit from (r, t) to (r′, t′). Later, because the second quantisation is more adapted
(implicitly than the first quantisation) for the study of quantum many-body systems, he re-
defined the quantum propagator that yields to the so-called single-particle retarded Green’s
function such as [25, 107]

GR(r, t; r′, t′) = −i θ(t− t′)
〈[

Ψ(r, t),Ψ†(r′, t′)
]
B,F

〉
, (D.14)

〈8〉For a time-independent Hamiltonian, the equation (D.8) yields to the solution (D.10).
〈9〉∫ |r′〉〈r′| dr′ = 1.
〈10〉 The Heaviside step function θ is defined as

θ(t− t′) =

{
1, for t′ < t,

0, otherwise.

〈11〉It can be easily checked by reminding that ∂θ
∂t (t − t

′) = δ(t − t′) and by rewriting G in function of
eigenstates |n〉 on which H acts (H|n〉 = En|n〉) such as

G(r, t; r′, t′) = θ(t− t′)
∑
n

〈r| e− i
~ (t−t′)En |n〉〈n|r′〉 = θ(t− t′)

∑
n

e−
i
~ (t−t′)En ϕn(r)ϕ

∗
n(r
′),

where the completeness relation had been used and where the ϕn(r) = 〈r|n〉 are the eigenfunctions of the
Hamiltonian.
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where 〈·〉 denotes the thermal average, [ · ]
B,F

a commutator or anti-commutator〈12〉 de-
pending on the nature of the field operator Ψ (bosonic or fermionic). It is obviously termed
retarded because of the θ(t−t′) factor. In equivalent way, we can define the advanced Green
function〈13〉

GA(r, t; r′, t′) = i θ(t′ − t)
〈[

Ψ(r, t),Ψ†(r′, t′)
]
B,F

〉
. (D.15)

In the same manner that the Green function (D.13) is solution of the Schrödinger equation,
the many-body Green function (D.14) (and then (D.15)) is solution of similar differential
equation [25], the equation of motion such as

i~ ∂tGR(r, t; r′, t′) = ~ ∂tθ(t− t′)
〈[

Ψ(r, t),Ψ†(r′, t′)
]
B,F

〉
+ ~ θ(t− t′)

〈[
∂tΨ(r, t),Ψ†(r′, t′)

]
B,F

〉
, (D.16)

= ~ δ(t− t′) δ(r− r′) + i θ(t− t′)
〈[[
H,Ψ(r, t)

]
,Ψ†(r′, t′)

]
B,F

〉
,

(D.17)

where we have used the fact that the derivative of the step function is a Dirac distribu-
tion,

[
Ψ(r, t),Ψ†(r′, t′)

]
B,F

= δ(r − r′) and also that the time-derivative of an operator
in Heisenberg picture〈14〉 is reduced to

[
H,Ψ(r, t)

]
. This equation of motion allows us to

calculate the evolution in time of the Green functions. As shown with the equation (D.17),
the dynamics totaly depends on the Hamiltonian and a way to determine it is to apply the
Fourier transform (FT) on both side of the equality.

Note also that the Green functions can be evaluated by considering other operators than Ψ.
Indeed in the chapter IV, we deal with the quantum spin operators S+ and S−.

D.3 Some calculations

In this subsection, we just give the results of certain calculations of the section IV.2.2.b on
page 66.

〈12〉The bosonic commutator
[
A,B

]
B
=
[
A,B

]
= AB−BA and the fermionic anti-commutator

[
A,B

]
F
={

A,B
}
= AB +BA.

〈13〉Let us remark that GA =
(
GR
)†

for fermionic operators and GA = −
(
GR
)†

for bosonic operators.
〈14〉Note that the Schrödinger and Heisenberg representation are totally equivalent. Indeed, we have

〈A〉(t) = 〈ψ|AH(t)|ψ〉 = 〈ψ(t)|AS |ψ(t)〉,

where |ψ(t)〉 = e−
i
~Ht |ψ(0)〉 = e−

i
~Ht |ψ〉, while the subscripts H and S denote the Heisenberg and

Schrödinger pictures, respectively. Consequently, we get AH(t) = e
i
~HtAS e

− i
~Ht, yielding thus to

∂AH
∂t

(t) =
i

~

{
e
i
~HtHAS e−

i
~Ht− e

i
~HtAS H e−

i
~Ht
}
=
i

~
[
H, AH(t)

]
,

for a time-independent Hamiltonian and where we have used the fact that
[
e±

i
~Ht,H

]
= 0.
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D.3.1 Equation of motion

We want to calculate the equations of motion :

i~
∂GR

k`

∂t
(t, t′) = 2 〈Szk〉 δk,` δ(t− t′)−

〈〈[
H,S+

k (t)
]

;S−` (t′)
〉〉
, (D.18)

i~
∂FR

k`

∂t
(t, t′) = −

〈〈[
H,S−k (t)

]
;S−` (t′)

〉〉
. (D.19)

Depending on the Hamiltonian, the calculations of the commutators can be laborious. We
only deal here with the expansion of

[
H,S+

k (t)
]〈15〉, where H = He + HDM + Ha. The

expanded expression of the Hamiltonian is given by the equation (IV.22). By using the
relations [

S+
k ,S

−
`

]
= 2Szk δk,` (D.20)[

Szk,S
±
`

]
= ±S±` δk,`, (D.21)

[AB,C] = [A,C]B + A [B,C] , (D.22)

let us calculate the following commutators:

[
Ha,S

+
k

]
=

[
−
∑
〈i,j〉

Iij S
z
iS

z
j cos θij,S

+
k

]
,

= −
∑
〈i,j〉

Iij

{[
Szi ,S

+
k

]
Szj + Szi

[
Szj ,S

+
k

]}
cos θij,

= −
∑
〈i,j〉

Iij

{
S+
k S

z
j δik + SziS

+
k δjk

}
cos θij,

= −I1

{∑
j

S+
k S

z
j cos θkj +

∑
i

SziS
+
k cos θki

}
,

= −I1

∑
i

{
SziS

+
k cos θki + SziS

+
k cos θki

}
,

= −2I1

∑
i

S+
k S

z
i cos θki, (D.23)

where we have used the fact two operators acting on different sites commute and where
we have played with the dummy variables to gather the sums in order to get the two last
equations. We have also set Iij = I1.

For the other terms of
[
H,S+

k (t)
]
, we proceed exactly in the same way and we reach[

HDM ,S+
k

]
= D

∑
i

{
− Szk

(
S+
i + S−i

)
+ 2S+

i S
z
k

}
eki sin θki, (D.24)

〈15〉The method being exactly the same with S−k (t).
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[
He,S

+
k

]
= −

∑
i

Jik

{
(1− cos θki)S

−
i S

z
k − (1 + cos θki)S

+
i S

z
k

− sin θki S
z
k −

1

2
sin θki

(
S+
k S

+
i + S+

k S
−
i − 2S+

k S
+
i

)
+ 2 cos θki S

+
k S

z
i

}
. (D.25)

The commutators
[
Ha,S

±
k

]
and

[
He,S

±
k

]
make appear, in the equations (D.18) and (D.19),

terms such as 〈〈SziS+
k ;S−` 〉〉 and 〈〈S

±
i S
±
k ;S−` 〉〉. We use a Tyablikov decoupling, to simplify

the expressions of the above equations of motion, such as:

〈〈SziS+
k ;S−` 〉〉 ' 〈S

z
i 〉〈〈S+

k ;S−` 〉〉, (D.26)

〈〈S±i S±k ;S−` 〉〉 ' 〈S
±
i 〉〈〈S±k ;S−` 〉〉 ' 0. (D.27)

Szi is the constant of motion whereas the average value of the operator S±i is zero with time.
Indeed spins rotate around a z-axis by keep their z component constant; the transverse
spin wave motions (relative to Sxi , S

y
i and then S±i ) are then null in average.

In the same way, the
[
HDM ,S±k

]
leads to following Green’s functions terms

〈〈SzkS±i ;S−` 〉〉 ' 〈S
z
k〉〈〈S±i ;S−` 〉〉. (D.28)

By using the above equations, the equation of motion (D.18) becomes

i~
∂GR

k`

∂t
(t, t′) =−

∑
i

{
− 2〈Szi 〉

[
I1 + Jki

]
cos θkiG

R
k`

+ 〈Szk〉
[
D sin θki + Jki(1 + cos θki)

]
GR
ki

+ 〈Szk〉
[
D sin θki − Jki(1− cos θki)

]
FR
ki

}
+ 2 〈Szk〉 δk,` δ(t− t′). (D.29)

In order to overcome the difficulties relative to the derivative term, we introduce the inverse
time and two-dimensional Fourier transforms as follows:

GR
k`(t, t

′) =
1

π2

∫ π

0

d2k//

1

2π

∫ +∞

−∞
dω eiω(t−t′) ĜR

mn(ω,k//) eik//·(ri−rj), (D.30)

where ĜR denotes the FT of the Green’s function GR, k// is a wave vector in the xz plane
and n,m = 1, ..., N are the layer ordering numbers (1 being the first layer and N the last
one)〈16〉 Note that the first integral is performed in the first zone of Brillouin.

Inserting the equation (D.30) into (D.29) and by putting gmn = ĜR
mn(ω,k//) and by pro-

cessing exactly in the same manner for the second equation of motion (D.19), we get the set
of equations defined by the linear system (IV.30).

〈16〉It is important to note that the k and ` subscripts of GRk` denote the sites on which the GF is applied and
not the layer ordering.

135



Appendix D. Green’s functions

D.3.2 Layer magnetisation

We show in this subsection the different step to calculate the layer magnetisation given by
the equation (IV.36)

The layer magnetisation for spins system such as S = 1/2 is given by

〈Szn〉 =
1

2
−
〈
S−n S

+
n

〉
, (D.31)

where n ∈ [[1, N ]] denote the layer’s numbering and 〈S−n S+
n 〉 is given by the following

spectral theorem

〈
S−i S

+
j

〉
= lim

ε→0

1

π2

∫ π

0

∫
R

i

2π

gn,n′(ω + iε)− gn,n′(ω − iε)
eβ~ω−1

eik//·(ri−rj) dω d2k//, (D.32)

ε being an infinitesimal positive constant. Inserting equation (D.32) into (D.31), it comes
that

〈Szn〉 =
1

2
− lim

ε→0

1

π2

∫ π

0

d2k//

∫
R

i

2π

gn,n(ω + iε)− gn,n(ω − iε)
eβ~ω−1

dω (D.33)

where the gn,n can be expressed, according to the Cramer’s rule, as

gn,n =
det(Mn)

det(M)
. (D.34)

Mn denotes the matrix formed by replacing the n−th column of M by the vector u (M and
u being given by the equation (IV.30)). By expressing M in a basis such as it becomes a
diagonal matrix, we have then

M =
N∏
i=1

(E − Ei), (D.35)

meaning that Ei are the poles of the GF. By performing a partial fraction expansion, it
comes thus

gn,n =
det(Mn)∏
i

(E − Ei)
=

N∑
i=1

fn(Ei)

E − Ei
=

N∑
i=1

 fn(Ei)∏
j

(E − E`)
∏
`6=i

(E − Ej)

 , (D.36)

where the subscript j and ` are such (j, `) ∈ [[i, N ]]2. From this equation, we get

N∑
i=1

[
fn(Ei)

∏
6̀=i

(E − Ei)

]
= det(Mn). (D.37)

Thus, by putting E = Ei and by identification we reach

fn(Ei) =
det(Mn(Ei))∏
j 6=i

(Ei − Ej)
(D.38)
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and the GF can finally be rewritten as

gn,n =
N∑
i=1

det(Mn(Ei))

(E − Ei)
∏
j 6=i

(Ei − Ej)
. (D.39)

We now insert the equation (D.39) in (D.33). By using the fact that

lim
ε→0

(
1

x− iε
− 1

x+ iε

)
= 2iπδ(x), (D.40)

with x = (E − Ei) here, we get the expression (IV.36), i.e.

〈Szn〉 =
1

2
− 1

π2

∫ π

0

N∑
i=1

det(Mn(Ei))

(eβEi −1)
∏
i 6=j

(Ei − Ej)
d2k//. (D.41)
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