Thèse soutenue

Simulations massives de Dynamique des Dislocations : fiabilité et performances sur architectures parallèles et distribuées.

FR  |  
EN
Auteur / Autrice : Arnaud Durocher
Direction : Olivier CoulaudLaurent Dupuy
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 19/12/2018
Etablissement(s) : Bordeaux
Ecole(s) doctorale(s) : École doctorale Mathématiques et informatique (Talence, Gironde ; 1991-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire bordelais de recherche en informatique - HiePACS
Jury : Président / Présidente : Denis Barthou
Examinateurs / Examinatrices : Marc Blétry
Rapporteurs / Rapporteuses : Marc Fivel, Jean-François Méhaut

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

La Dynamique des Dislocations modélise le comportement de défauts linéiques - les dislocations - présents dans la structure des matériaux cristallins. Il s'agit d'un maillon essentiel de la modélisation multi-échelles des matériaux utilisé par exemple dans l’industrie du nucléaire pour caractériser le comportement mécanique et le vieillissement des matériaux sous irradiation. La capacité des dislocations à se multiplier, s’annihiler et interagir pose de nombreux défis informatiques, notamment sur la manière de stocker et traiter de manière efficace les données de la simulation. L'objectif de cette thèse est de répondre à ces défis que posent les simulations massives de Dynamique des Dislocations dans un environnement parallèle et distribué au travers du logiciel Optidis. Dans cette thèse, je propose des améliorations au simulateur Optidis afin de permettre des simulations plus complexes en utilisant la puissance des super-calculateurs. Mes contributions sont axées sur l'amélioration de la fiabilité et de la performance d'Optidis. La mise en place d'une nouvelle interface d'accès aux données a permis de dissocier l'implémentation des algorithmes de l'optimisation des performances. Cette structure de données permet de meilleures performances tout en améliorant la maintenabilité du code, même lorsque les données sont distribuées. Un nouvel algorithme de gestion des collisions entre dislocations et de formation des jonctions fiable et performant a été mis en place. Des techniques de détection de collision empruntées aux application en temps réel et à la dynamique moléculaire sont utilisées pour accélérer le calcul. S’appuyant sur l’utilisation de la nouvelle structure de données et un traitement des collisions plus élaboré, il permet une gestion de collisions fiable et autorise l'utilisation de pas de temps plus grands. La précision du résultat a été étudiée en se comparant au code NUMODIS, et la performance d'Optidis a été mesurée sur des simulations massives contenant plusieurs millions de segments de dislocations en utilisant plusieurs centaines de cœurs de calcul, démontrant que de telles simulations sont réalisables en un temps raisonnable.