Thèse soutenue

Utilisation de données cliniques pour la construction de modèles en oncologie

FR  |  
EN
Auteur / Autrice : Thibaut Kritter
Direction : Olivier SautClair Poignard
Type : Thèse de doctorat
Discipline(s) : Mathématiques appliquées et calcul scientifique
Date : Soutenance le 01/10/2018
Etablissement(s) : Bordeaux
Ecole(s) doctorale(s) : École doctorale de mathématiques et informatique (Talence, Gironde ; 1991-....)
Partenaire(s) de recherche : Laboratoire : Institut de mathématiques de Bordeaux
Jury : Président / Présidente : Hermine Biermé
Examinateurs / Examinatrices : Olivier Saut, Clair Poignard, Hermine Biermé, Florence Hubert, Philippe Moireau, Annabelle Collin, François Dufour, Élizabeth Moyal
Rapporteurs / Rapporteuses : Florence Hubert, Philippe Moireau

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

Cette thèse présente des travaux en lien avec l’utilisation de données cliniques dans la construction de modèles appliqués à l’oncologie. Les modèles actuels visant à intégrer plusieurs mécanismes biologiques liés à la croissance tumorale comportent trop de paramètres et ne sont pas calibrables sur des cas cliniques. A l’inverse, les modèles plus simples ne parviennent pas à prédire précisément l’évolution tumorale pour chaque patient. La multitude et la variété des données acquises par les médecins sont de nouvelles sources d’information qui peuvent permettre de rendre les estimations des modèles plus précises. A travers deux projets différents, nous avons intégré des données dans le processus de modélisation afin d’en tirer le maximum d’information. Dans la première partie, des données d’imagerie et de génétique de patients atteints de gliomes sont combinées à l’aide de méthodes d’apprentissage automatique. L’objectif est de différencier les patients qui rechutent rapidement au traitement de ceux qui ont une rechute plus lente. Les résultats montrent que la stratification obtenue est plus efficace que celles utilisées actuellement par les cliniciens. Cela permettrait donc d’adapter le traitement de manière plus spécifique pour chaque patient. Dans la seconde partie, l’utilisation des données est cette fois destinée à corriger un modèle simple de croissance tumorale. Même si ce modèle est efficace pour prédire le volume d’une tumeur, sa simplicité ne permet pas de rendre compte de l’évolution de forme. Or pouvoir anticiper la future forme d’une tumeur peut permettre au clinicien de mieux planifier une éventuelle chirurgie. Les techniques d’assimilation de données permettent d’adapter le modèle et de reconstruire l’environnement de la tumeur qui engendre ces changements de forme. La prédiction sur des cas de métastases cérébrales est alors plus précise.