Thèse soutenue

Effet des défauts d'adhésion sur la résistance mécanique des assemblages collés

FR  |  
EN
Auteur / Autrice : Mahfoudh Taleb Ali
Direction : Julien Jumel
Type : Thèse de doctorat
Discipline(s) : Mécanique et ingénierie
Date : Soutenance le 04/05/2018
Etablissement(s) : Bordeaux
Ecole(s) doctorale(s) : École doctorale des sciences physiques et de l’ingénieur (Talence, Gironde ; 1995-....)
Partenaire(s) de recherche : Laboratoire : Institut de mécanique et d'ingénierie de Bordeaux
Jury : Président / Présidente : Véronique Lazarus
Examinateurs / Examinatrices : Eric Martin, Stéphanie Chaignaud, Martin Shanahan
Rapporteurs / Rapporteuses : Muriel Braccini, Etienne Barthel

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Le collage structural est une technique d’assemblage de plus en plus demandée aujourd’hui dans beaucoup de domaines comme l’automobile, l’aéronautique, l’aérospatial et dans d’autres domaines comme la construction, le sport et les loisirs. Cette technique très avantageuse, permet l’assemblage de matériaux semblables ou différents à l’aide d’un adhésif, la réduction importante du poids et la répartition uniforme des charges sur l’assemblage. Malgré ses avantages, le collage souffre encore de quelques inconvénients liés à l’existence de défauts dans les joints de colle. Parmi eux, il existe des défauts qui sont situés à l’interface colle/substrat comme un « kissing bond » ou un mauvais état de surface, qui restent indétectables ou difficilement détectables utilisant les techniques de contrôle non destructives. Donc, afin de prendre en compte l’existence des défauts d’adhésion dans les assemblages collés lors de la phase de conception, il est nécessaire de fournir un modèle analytique capable de prédire la propagation de fissure. Dans cette thèse, un modèle analytique qui prédit la propagation de fissure et qui évalue la résistance effective d’un assemblage collé contenant des défauts d’adhésion a été développé. Un défaut a généralement une géométrie complexe, et une étude générique est difficilement réalisable ce qui nous amène à considérer des géométries de défauts idéales. Le modèle a été vérifié par des expériences réalisées sur des éprouvettes DCB. Des simulations numériques utilisant la méthode de zone cohésive ont été réalisées également pour décrire plus complètement le processus de décohésion et simuler les essais expérimentaux. La dernière partie de ce travail a été dédiée à l’étude de la fissuration des éprouvettes en alliage de titane. Profitant de la collaboration avec Safran et Alphanov, les substrats ont subi un traitement de surface laser en laissant des zones non traitées. Le but de cette partie était de vérifier le modèle analytique proposé avec des configurations plus complexes.