Thèse soutenue

Nouvelles approches pour le design de composites multiferroïques nanostructurés de type (1-3)

FR  |  
EN
Auteur / Autrice : Sergey Basov
Direction : Catherine ElissaldeLuc Piraux
Type : Thèse de doctorat
Discipline(s) : Physico-Chimie de la Matière Condensée
Date : Soutenance le 30/01/2018
Etablissement(s) : Bordeaux en cotutelle avec Université catholique de Louvain (1970-....)
Ecole(s) doctorale(s) : École doctorale Sciences et Environnements (Talence, Gironde ; 1999-....)
Partenaire(s) de recherche : Laboratoire : Institut de chimie de la matière condensée de Bordeaux (Pessac)
Jury : Président / Présidente : Valérie Vigneras
Examinateurs / Examinatrices : Catherine Elissalde, Valérie Vigneras, Eric Bousquet, Nathalie Viart, Sandrine Payan, Mario Maglione, François Roulland, Kristiaan Temst, Bernard Nysten
Rapporteurs / Rapporteuses : Eric Bousquet, Nathalie Viart

Résumé

FR  |  
EN

Les matériaux multiferroïques sont des matériaux multifonctionnels qui possèdent simultanément des propriétés magnétiques et ferroélectriques. Les perspectives d’applications sont ainsi très nombreuses dans les domaines de l’électronique (mémoires, dispositifs spintroniques et hyperfréquences). Le nombre restreint de matériaux multiferroïques monophasés a conduit au développement de nanostructures multiferroïques artificielles constituées d'oxydes ferroélectriques et ferrimagnétiques. Ce travail de thèse est axé sur l'effet magnétoélectrique (ME), obtenu pour de telles hétérostructures via la contrainte, qui permet de manipuler la polarisation spontanée ou l’aimantation par l’application d’un champ magnétique (effet ME direct) et d’un champ électrique (effet ME converse) respectivement. Les effets ME peuvent être observés à température ambiante grâce aux effets d’interfaces et de contraintes dans les nanocomposites multiferroïques. La combinaison de matériaux piézoélectriques PbZr0.52Ti0.48O3 (PZT), Ba0.7Sr0.3TiO3 (BSTO), BaTiO3 (BTO) et de matériaux magnétostrictifs CoFe2O4 (CFO) a été largement exploitée pour l’élaboration de nanocomposites multiferroïques. Les travaux issus de la littérature montrent l’existence d’un fort couplage magnétoélectrique à température ambiante dans des films minces épitaxiés (systèmes de connectivité 2-2), mais un verrou est l’effet de « bride » (clamping effect) induit par le substrat. La conception d'architectures innovantes est un défi dans le domaine des nanocomposites multiferroïques. Ce travail est axé sur les composites de type (1-3) au sein desquelles des nanostructures ferrimagnétiques CoFe2O4 unidimensionnelles (1) sont incorporées dans des couches tridimensionnelles PZT, BTO et BSTO (3). De nouvelles approches ont été envisagées pour concevoir trois types de matériaux: i) des réseaux de nanofils CFO unidirectionnels entourés de nanotubes PZT imprégnés dans des membranes d'alumine; ii) des nanopilliers CFO incorporés dans des couches minces de BTO, BSTO et PZT; ii) des réseaux de nanofils CFO interconnectés 3-D intégrés dans une matrice PZT. Nos principaux objectifs visent i) la maîtrise de l’étape d’oxydation des nanofils et des nanopilliers métalliques CoFe2 afin de contrôler la morphologie et la densité des nanostructures CFO, ii) le contrôle des caractéristiques diélectriques des nanocomposites, iii) l’augmentation du couplage magnétoélectrique en optimisant la densité d’interfaces entre les deux phases ferroïques.La première architecture développée est un dépôt par imprégnation sol-gel de nanotubes PZT dans des membranes d'alumine poreuses autosupportées, suivie d'une électrodéposition des nanofils CoFe2 dans les nanotubes PZT et de leur oxydation par traitement thermique. La deuxième architecture repose sur un dépôt par pulvérisation cathodique magnétron en radiofréquence de couches BSTO et BTO et sur un dépôt par sol-gel de couches PZT, sur des réseaux de nanopilliers CoFe2 et CoFe2O4 alignés verticalement sur des substrats Si. L'oxydation de CoFe2 est réalisée in situ lors du dépôt par pulvérisation cathodique de BSTO et BTO. Les réseaux de nanopilliers CoFe2 sont obtenus par électrodéposition dans des structures nanoporeuses en alumine anodisée qui sont ensuite dissoutes. La dernière architecture proposée est obtenue en combinant l'électrodéposition des nanofils CoFe2 dans des membranes polymères poreuses, et le procédé sol-gel. Les nanostructures PZT-CFO sont préparées par imprégnation sol-gel de couches épaisses PZT dans des réseaux de nanofils CoFe2 et leur oxydation simultanée au cours de la cristallisation des couches PZT.Une attention particulière a été accordée aux effets d’interfaces par le biais des études microstructurales et morphologiques des nanocomposites (XRD, HRSEM, TEM et EDX). Les caractérisations magnétiques, diélectriques, ferroélectriques et magnétoélectriques ont permis d’évaluer les performances des différents nanocomposites élaborés.