Thèse soutenue

Échantillonnage gaussien en grande dimension basé sur le principe du matrix splitting. : application à l’inversion bayésienne

FR  |  
EN
Auteur / Autrice : Andrei-Cristian Bărbos
Direction : Jean-François GiovannelliFrançois Caron
Type : Thèse de doctorat
Discipline(s) : Automatique, productique, signal et image, ingénierie cognitique
Date : Soutenance le 10/01/2018
Etablissement(s) : Bordeaux
Ecole(s) doctorale(s) : École doctorale des sciences physiques et de l’ingénieur (Talence, Gironde ; 1995-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire de l'intégration du matériau au système (Talence, Gironde)
Jury : Président / Présidente : Christian Heinrich
Examinateurs / Examinatrices : Jean-François Giovannelli, François Caron, Christian Heinrich, Jean-Yves Tourneret, Saïd Moussaoui
Rapporteurs / Rapporteuses : Jean-Yves Tourneret, Saïd Moussaoui

Résumé

FR  |  
EN

La thèse traite du problème de l’échantillonnage gaussien en grande dimension.Un tel problème se pose par exemple dans les problèmes inverses bayésiens en imagerie où le nombre de variables atteint facilement un ordre de grandeur de 106_109.La complexité du problème d’échantillonnage est intrinsèquement liée à la structure de la matrice de covariance. Pour résoudre ce problème différentes solutions ont déjà été proposées,parmi lesquelles nous soulignons l’algorithme de Hogwild qui exécute des mises à jour de Gibbs locales en parallèle avec une synchronisation globale périodique.Notre algorithme utilise la connexion entre une classe d’échantillonneurs itératifs et les solveurs itératifs pour les systèmes linéaires. Il ne cible pas la distribution gaussienne requise, mais cible une distribution approximative. Cependant, nous sommes en mesure de contrôler la disparité entre la distribution approximative est la distribution requise au moyen d’un seul paramètre de réglage.Nous comparons d’abord notre algorithme avec les algorithmes de Gibbs et Hogwild sur des problèmes de taille modérée pour différentes distributions cibles. Notre algorithme parvient à surpasser les algorithmes de Gibbs et Hogwild dans la plupart des cas. Notons que les performances de notre algorithme dépendent d’un paramètre de réglage.Nous comparons ensuite notre algorithme avec l’algorithme de Hogwild sur une application réelle en grande dimension, à savoir la déconvolution-interpolation d’image.L’algorithme proposé permet d’obtenir de bons résultats, alors que l’algorithme de Hogwild ne converge pas. Notons que pour des petites valeurs du paramètre de réglage, notre algorithme ne converge pas non plus. Néanmoins, une valeur convenablement choisie pour ce paramètre permet à notre échantillonneur de converger et d’obtenir de bons résultats.