Thèse soutenue

Contrôle de l’expression des gènes par les micro-ARN nucléaires : étude des mécanismes moléculaires

FR  |  
EN
Auteur / Autrice : Raphaël Matégot
Direction : Michele Trabucchi
Type : Thèse de doctorat
Discipline(s) : Interactions moléculaires et cellulaires
Date : Soutenance le 21/09/2018
Etablissement(s) : Université Côte d'Azur (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences de la vie et de la santé (Sophia Antipolis, Alpes-Maritimes)
Partenaire(s) de recherche : établissement de préparation : Université de Nice (1965-2019)
Laboratoire : Centre Méditerranéen de Médecine Moléculaire (Nice) - Centre méditérannéen de médecine moléculaire
Jury : Président / Présidente : Valérie Grandjean
Examinateurs / Examinatrices : Valérie Grandjean, Eleonora Leucci, Stefania Millevoi
Rapporteurs / Rapporteuses : Eleonora Leucci, Stefania Millevoi

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

La découverte de l’ARN interférence et des micro-ARN a permis de définir un principe majeur de régulation de l’expression des gènes, et a produit de nouveaux outils pour la médecine. Chez les mammifères, l’étude des fonctions des micro-ARN a été restreinte au cytoplasme, bien qu’ils soient aussi présents dans le noyau.Cette thèse présente une série d’expériences visant à caractériser les facteurs moléculaires requis pour l’activité nucléaire des micro-ARN. Nous avons débuté ce projet en explorant les partenaires ARN-dépendant de la protéine AGO2 par immunoprécipitation et spectrométrie de masse quantitative. Parmi les interactants ARN-dépendants, nous nous sommes concentrés sur trois protéines nucléaires abondantes : SFPQ, PSPC1 et NONO qui forment la famille drosophila behavior and human splicing (DBHS). Nous avons démontré que le complexe RISC nucléoplasmique est associé aux protéines SFPQ, PSPC1 et NONO dans plusieurs lignées cellulaires murines et humaines, d’une manière qui dépend de SFPQ. Des expériences de type HITS-CLIP de la protéine AGO2 et/ou de la protéine SFPQ dans des cellules souches nous ont permis de montrer que SFPQ se lie préférentiellement aux 3’UTR longs en utilisant deux motifs spécifiques. En effet, SFPQ contrôle significativement environ 20% de l’activité de liaison de AGO2, ce qui est répercuté au niveau transcriptomique. Cependant, cette activité concerne uniquement les sites de liaison de SFPQ proches (<500 nucléotides) de AGO2. De plus, nous avons observé que cette régulation s’étend aux ARNm cytoplasmiques. Ce résultat suggère que la liaison et l’agrégation de la protéine SFPQ à l’ARN programme la structure du 3’UTR et donc les possibilités de ciblage par les miARN dans le noyau, et ceci d’une manière qui semble préservée dans le cytoplasme. Enfin, nous avons montré en particulier que l’expression de SFPQ contrôle le programme de ciblage par let-7a, et module la transition des cellules souches vers l’état différencié.
Ces résultats contribuent à la diversité des mécanismes de régulation de l’activité des miARN. Dans la deuxième partie du projet, nous avons exploré les partenaires ARN-indépendant de la protéine nucléaire AGO2. Nous avons découvert que la protéine AGO2 interagit avec le complexe CCR4-NOT1 et l’exosome nucléaire d’une manière indépendante de l’ARN. Nous proposons une série d’expériences visant à confirmer ces résultats. Brièvement, l’hypothèse de travail qui semble la plus cohérente avec les données actuelles est la liaison directe de l’exosome au module CNOT2-CNOT3 du complexe CCR4-NOT1. Ce modèle permettrait d’expliquer le mécanisme d’extinction des gènes par les miARN nucléaires qui reposerait donc sur leur interaction avec les complexes CCR4-NOT1 et exosome. Son mode opératoire comprendrait des protéines de liaison à l’ARN et des micro-ARN pour sélectionner les cibles.