Thèse soutenue

Modélisation et caractérisation de la croissance des axones à partir de données in vivo

FR  |  
EN
Auteur / Autrice : Agustina Razetti
Direction : Xavier Descombes
Type : Thèse de doctorat
Discipline(s) : Automatique, traitement du signal et des images
Date : Soutenance le 13/04/2018
Etablissement(s) : Université Côte d'Azur (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences et technologies de l'information et de la communication (Nice ; 1992-....)
Partenaire(s) de recherche : établissement de préparation : Université de Nice (1965-2019)
Laboratoire : Institut national de recherche en informatique et en automatique (France). Unité de recherche (Sophia Antipolis, Alpes-Maritimes) - Morphologie et Images
Jury : Président / Présidente : Michèle Studer
Examinateurs / Examinatrices : Xavier Descombes, Michèle Studer, Alin Achim, Kristian Franze, Anuj Srivastava, Florence Besse, Caroline Medioni, Jonas Ranft
Rapporteur / Rapporteuse : Alin Achim, Kristian Franze, Anuj Srivastava

Résumé

FR  |  
EN

La construction du cerveau et de ses connexions pendant le développement reste une question ouverte dans la communauté scientifique. Des efforts fructueux ont été faits pour élucider les mécanismes de la croissance axonale, tels que la guidance axonale et les molécules de guidage. Cependant, des preuves récentes suggèrent que d'autres acteurs seraient impliqués dans la croissance des neurones in vivo. Notamment, les axones se développent dans des environnements mécaniquement contraints. Ainsi, pour bien comprendre ce processus dynamique, il faut prendre en compte les mécanismes collectifs et les interactions mécaniques au sein des populations axonales. Néanmoins, les techniques pour mesurer directement cela à partir de cerveaux vivants sont aujourd'hui insuffisantes ou lourdes à mettre en œuvre. Cette thèse résulte d'une collaboration multidisciplinaire, pour faire la lumière sur le développement axonal in vivo et les morphologies complexes des axones adultes. Notre travail a été inspiré et validé à partir d'images d'axones y individuels chez la drosophile, de type sauvage et modifiés génétiquement, que nous avons segmentés et normalisés. Nous avons d'abord proposé un cadre mathématique pour l'étude morphologique et la classification des groupes axonaux. A partir de cette analyse, nous avons émis l'hypothèse que la croissance axonale dérive d'un processus stochastique et que la variabilité et la complexité des arbres axonaux résultent de sa nature intrinsèque, ainsi que des stratégies d'élongation développées pour surmonter les contraintes mécaniques du cerveau en développement. Nous avons conçu un modèle mathématique de la croissance d'un axone isolé fondé sur des chaînes de Markov gaussiennes avec deux paramètres, représentant la rigidité axonale et l'attraction du champ cible. Nous avons estimé les paramètres de ce modèle à partir de données réelles et simulé la croissance des axones à l'échelle de populations et avec des contraintes spatiales pour tester notre hypothèse. Nous avons abordé des thèmes de mathématiques appliquées ainsi que de la biologie, et dévoilé des effets inexplorés de la croissance collective sur le développement axonal in vivo.