
UNIVERSITÉ AIX-MARSEILLE

Reasoning about Big Data Flows: TOM4A Recursive

Abstraction Based Problem Solving Method

THÈSE
pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ AIX-MARSEILLE

Faculté des Sciences

Discipline: Informatique

présentée et soutenue publiquement par

Fabien VILAR

Le 21 décembre 2018

Directeur de thèse: Marc LE GOC

École Doctorale en Mathématique et Informatique de Marseille
(ED 184)

Jury

M. Marc AIGUIER Professeur, MICS, Centrale Supélec Rapporteur

M. Laurent FRIBOURG Directeur de Recherche CNRS, ENS Cachan Rapporteur

M. Jean-Paul COMET Professeur, Univ. Nice Sophia Antipolis, I3S Examinateur

M. Philippe PREUX Professeur, Univ. Lille, INRIA Examinateur

M. Eugène ASARIN Professeur, Univ. Paris 7, IRIF Examinateur

M. Serge LAZZARINI Professeur, Univ. Aix-Marseille, CPT Examinateur

Mme. Nadia CREIGNOU Professeur, Univ. Aix-Marseille, LIF Examinateur

M. Marc LE GOC Professeur, Univ. Aix-Marseille, LIS Directeur

Année 2018

A ma mère Chantal et à mon père Pierre qui ont su me transmettre le goût pour la Science.
A Philippe pour tous ses bons conseils durant nos années à TOM4.

A Ericka pour son soutien sans faille durant cette période difficile de rédaction.
A Marc, pas le directeur de thèse mais l’ami, qui a su me pousser dans mes retranchements afin
d’explorer des domaines scientifiques qui ne m’étaient pas familiers. Toutes ces années passées

à ses côtés furent une sacrée aventure intellectuelle. Merci.
A Jérémy qui fut l’élément déclencheur de cette aventure un soir d’automne 2011 dans un

célèbre pub de Salon-de-Provence.

IV

Acknowledgements

Je souhaite remercier en premier lieu mon directeur de thèse, M. Marc LE GOC, Professeur
des Universités à Aix-Marseille Université et responsable du projet in4Be (Induction for Behavior
Modeling) au Laboratoire des Sciences de l’Information et des Systèmes (LSIS) pour m’avoir
accueilli au sein de son équipe. Je lui suis également reconnaissant pour le temps conséquent
qu’il m’a accordé, ses qualités pédagogiques et scientifiques. J’ai beaucoup appris à ses côtés et
je lui adresse ma gratitude pour tout cela.

Je voudrais remercier les rapporteurs de cette thèse, M. Marc AIGUIER et M. Laurent
FRIBOURG, pour avoir accepté la lourde tâche de rapporter sur mon mémoire et pour l’intérêt
qu’ils ont porté à mon travail.

J’adresse également mes remerciements aux examinateurs, M. Jean-Paul COMET, M. Philippe
PREUX, M. Eugène ASARIN, M. Serge LAZZARINI et Mme. Nadia CREIGNOU, pour avoir
accepté d’examiner ce mémoire.

21 décembre 2018, Marseille, France.

V

VI

Contents

Acknowledgements V

1 Introduction 1
1.1 General Problematic . 1
1.2 Contributions . 2
1.3 Framework of My Contribution . 3
1.4 Running Example . 4
1.5 Document Structure . 5
1.6 Conclusion . 6

2 Preliminaries 7
2.1 Introduction: The Knowledge Level of Newell . 7
2.2 Floridi’s Method of Level of Abstraction . 9
2.3 Merker’s Introduction to the Category Theory . 17
2.4 Sum and Product . 20

2.4.1 Sum . 21
2.4.2 Product . 22

2.5 Functors . 24
2.6 Conclusion . 25

3 Introduction to the Timed Observation Theory 27
3.1 Introduction . 27
3.2 Mathematical Framework of the TOT . 27
3.3 Timed Observation . 30

3.3.1 Examples of Sets of Constants and Assignations 31
3.3.2 Observation Function . 32

3.4 Canonical and Safe Program . 33
3.5 Spatial Discretization Principle . 34
3.6 Semantic of a Timed Observation . 36
3.7 Observation Class . 38
3.8 Superposition Theorem . 40
3.9 Temporal Binary Relation . 41
3.10 Abstract Chronicle Model . 42
3.11 Modeling with the TOT . 43
3.12 Model according to the TOT . 44
3.13 The TOT Modeling Principles . 45

VII

VIII CONTENTS

3.14 Conclusion: about Abstraction Level . 46

4 Composition of Observers 49
4.1 Introduction . 49
4.2 Neutral Observation, Observation of a Timestamp, Observation of a Constant . . 49
4.3 Deduction of an Assignation from Two Assignations 50
4.4 Addition of Two Timed Observations . 51
4.5 Composition of Observers . 54
4.6 Abstract Unary Observer . 55
4.7 Abstract Binary Observer . 57
4.8 Conclusion . 61

5 Process of Abstraction in the TOT Framework 63
5.1 Introduction . 63
5.2 Modelisation of a Superposition of Sequences of Timed Observations 63

5.2.1 Superposition of Two Sequences . 64
5.2.2 Superposition of m, m > 2, Sequences . 65

5.3 Algebraic Structure of the Observed Process . 65
5.4 Observable Space of the Observed Process . 66
5.5 Abstract Chronicle Model of the Observed Process 69
5.6 Behaviour Model of the Observed Process . 71
5.7 Abstraction Process . 72
5.8 Conclusion . 75

6 The TOT Sampler 77
6.1 Introduction . 77
6.2 Dirac’s Sampler . 77
6.3 Unary Observer . 78
6.4 Algebraic Structure in the Dirac’s Sampler Framework 80
6.5 Algebraic Structure in the Unary Observer Framework 81
6.6 Homomorphism between Algebraic Structures (R,+) and (∆×R,+∆τij) 82
6.7 Conclusion . 83

7 The TOT Category 85
7.1 Introduction . 85
7.2 Characteristic Elements of the TOT Category . 85
7.3 The Categories of the TOT . 88

7.3.1 Modeling Functors . 89
7.3.2 Level of Abstraction of a TOT (∆m) Category 90
7.3.3 Abstraction Functors . 91

7.4 Syntactic Arithmetization . 94
7.5 Sum and Product in the TOT Category . 96

7.5.1 Sum in the TOT Category . 96
7.5.2 Product in the TOT Category . 98

7.6 Conclusion . 100

CONTENTS IX

8 The TOM4A Methodology 101
8.1 Introduction . 101
8.2 Problem Solving Method . 101
8.3 TOM4A, an AR-PSM based on TOT (Z) Category 104
8.4 Internal Fraud Detection in the Banking Industry 106
8.5 Observation Step . 106

8.5.1 Problem of the Observed Process . 106
8.5.2 Knowledge Model of the Observed Problem 108

8.6 Representation Step . 111
8.6.1 Representation of a transaction . 112
8.6.2 Syntactic Model of the Observed Problem at the First LoA 113
8.6.3 Syntactic Model of the Observed Problem at the Second LoA 122
8.6.4 Syntactic Model of the Observed Problem at the Third LoA 128
8.6.5 Gradient of Abstraction of the Observed Problem 137

8.7 Interpretation Step . 139
8.7.1 Reification Process . 139
8.7.2 Knowledge Model of the Solution . 144

8.8 TOM4FFS Algorithm . 147
8.9 Conclusion . 148

9 Conclusion 149
9.1 Synthesis . 149
9.2 Contributions . 149
9.3 Perspectives . 151

Bibliography 155

Appendix A Unary Observers 161
A.1 Introduction . 161
A.2 Theoretical Unary Observer . 161
A.3 Concrete Unary Observer . 165
A.4 Piecewise Functions . 169

A.4.1 Observing a Piecewise Function . 169
A.4.2 Observing the Derivative of a Piecewise Function 170
A.4.3 Piecewise Function Evolution . 172

A.4.3.1 Effort of a Sequence of Timed Observations 175
A.4.3.2 Power of a Sequence of Timed Observations 176

Appendix B Operationalization of the Blending and the Levels of Abstraction
Theories with the Timed Observations Theory 181
B.1 INTRODUCTION . 181
B.2 RUNNING EXAMPLE . 182
B.3 MODELING WITH THE TOT . 183
B.4 SPEAKERS’ CONCEPTUAL SPACE . 187
B.5 BLENDED CONCEPTUAL SPACE . 189

X CONTENTS

B.6 GENERIC CONCEPTUAL SPACE . 190
B.7 LEVELS OF ABSTRACTION . 193
B.8 CONCLUSION . 195

List of Figures

2.1 Moderated levels of abstraction Lp and Lq . 15
2.2 Relations linking moderated level of abstractions Lp and Lq 16
2.3 A homomorphism aims to compare sets and preserves the structure of each set . 18
2.4 Homomorphism identity idX . 19
2.5 Homomorphism composition F ◦H . 19
2.6 Associativity of the composition of morphisms . 20
2.7 Example of a category . 21
2.8 Sum of two objects in category C . 21
2.9 Commutative diagram of the sum of n objects in the category C 22
2.10 Product of two objects in category C . 23
2.11 Commutative diagram of the product of n objects in the category C 23
2.12 Representation of a functor between categories C and D 24
2.13 Problem Solving Method . 25

3.1 Spatial Discretization of the time function xA3 (t) with one threshold 35
3.2 Example of a path made with 3 paths . 43
3.3 Relations between the Basic Objects of the TOT 44

4.1 Internal structure of the Abstract Unary Observer Θ({xφ},∆) 56
4.2 Internal structure of the Abstract Binary Observer Θij({φij}, {δij}) 59
4.3 Sequential relation temporally constrained . 60

5.1 Example of a ternary superposition Ω = ω1 ∪ ω2 ∪ ω3 66
5.2 Sequences ω1

11, ω
2
11, ω

1
12, ω

2
12, ω

1
21, ω

2
21, ω

1
22, ω

2
22 built from ω12 = ω1 ∪ ω2 67

5.3 Sequences ω1
11, ω

2
11, ω

1
13, ω

2
13, ω

1
31, ω

2
31, ω

1
33, ω

2
33 built from ω13 = ω1 ∪ ω3 68

5.4 Sequences ω1
22, ω

2
22, ω

1
23, ω

2
23, ω

1
32, ω

2
32, ω

1
33, ω

2
33 built from ω23 = ω2 ∪ ω3 68

5.5 Characteristic elements and abstraction process in the TOT framework 75

6.1 Dirac’s sampler XT (x) applied on the timed function x(t) 78
6.2 Unary Observer Θ({x}, {δ}) applied on the timed function x(t) implementing the

Spatial Discretization Principle with the threshold Ψ. 80
6.3 Representation of the homomorphism Φ : R→ ∆×R mapping sampled values of

x(t) produced by Dirac’s sampler with timed observations produced by a Unary
Observer observing the same function. 83

7.1 Representation of objects Θi(xi,∆i), Θj(xj ,∆j) and morphism fij in the TOT
Category . 86

XI

XII LIST OF FIGURES

7.2 Representation of the object Θi(xi,∆i) and its identity morphism fii in the TOT
Category . 86

7.3 Representation of the composition of morphisms in the TOT Category 87
7.4 Representation of the neutral element for the composition of morphisms in the

TOT Category . 87
7.5 Gradient of abstraction in the TOT Category . 93
7.6 Sum of objects in the TOT Category . 97
7.7 Product of objects in the TOT Category . 99

8.1 Problem Solving Method . 102
8.2 Semantic and Syntactic Spaces . 102
8.3 Knowledge Model and the Model of the Knowledge Representation’s 103
8.4 TOM4A Hypothesis . 103
8.5 Nested GoA composed of several LoAs . 104
8.6 Observation step in the TOM4 Methodology . 107
8.7 First rows of the transaction database . 109
8.8 Piecewise functions for accounts 2001 and 2007 110
8.9 Representation step in the TOM4 Methodology 111
8.10 Illustration of the Gradient of Abstraction G of the Observed Problem 139
8.11 Interpretation step in the TOM4 Methodology . 139
8.12 Kripke structure representing the fraud scheme under the point of view of clients 145
8.13 Kripke structure representing the fraud scheme under the point of view of accounts146
8.14 Kripke structure representing the fraud scheme under the point of view of trans-

action types . 147

A.1 Horse odd evolution over time . 162
A.2 Sequence of timed observations and stochastic clock produced by Θ+({δ+}, {ψ})

where ψ = 1.90 . 163
A.3 Sequence of timed observations and stochastic clock produced by Θ−({δ−}, {ψ})

where ψ = 1.90 . 164
A.4 Sequence of timed observations and stochastic clock produced by a concrete unary

observer Θ+({δ+}, {ψ}, ψd, n) where ψ = 1.90, ψd = 0.8 and n = 30 166
A.5 Sequence of timed observations and stochastic clock produced by the symmetrical

concrete unary observer Θ−({δ−}, {ψ}, ψd, n) where ψ = 1.90, ψd = 0.8 and n = 30167
A.6 Derivative of a piece wise function . 172
A.7 Tetrahedron of states . 173
A.8 Sequence of timed observations ωλ(ti) generated by a concrete unary observer

applied of the flow λ(i) computed from the function x(t) 174
A.9 Sequence of timed observations ωµ(ti) generated by a concrete unary observer

applied of the effort µ(i) computed from the function x(t) 176
A.10 Sequence of timed observations ων(ti) generated by a concrete unary observer

applied of the power ν(i) computed from the function x(t) 179

B.1 Basic Concepts of TOM4D models . 186
B.2 Tom4D’s Representation of a Dynamic Function 186

LIST OF FIGURES XIII

B.3 Finite State Machine Model of a Tom4D Function 186
B.4 Observation Number 3 (Alice) . 187
B.5 Alice’s Conceptual Space . 188
B.6 Bob’s Conceptual Space . 188
B.7 Carol’s Conceptual Space . 189
B.8 Blended Conceptual Space . 190
B.9 Generic Conceptual Space . 192
B.10 Alice’s Observation 3 at three LoA . 194
B.11 Gradients of Abstraction of the Conversation . 195

XIV LIST OF FIGURES

List of Tables

2.1 Description of the Knowledge Level . 7
2.2 Typed variables extracted from Bob’s speech . 10
2.3 Typed variables extracted from Carol’s speech . 10
2.4 Carol’s system behaviours . 12

8.1 Number ni of timed observations for sequences ω1
i (tni), i ∈ ∆ID_CLI 114

8.2 Number nj of timed observations for sequences ω1
j (tnj), j ∈ ∆ID_CPTE 116

8.3 Number nl of timed observations for sequences ω1
l (tnl), l ∈ ∆ID_TY P_EV T 119

8.4 NumberN (2)
i of observation classes associated with sequences ω2

i (tn(2)
i

), i ∈ ∆ID_CLI 124

8.5 Number N (2)
j of observation classes for sequences ω2

j (tn(2)
j

), j ∈ ∆ID_CPTE 126

8.6 Number N (2)
l of observation classes for sequences ω2

l (tn(2)
l

), l ∈ ∆ID_TY P_EV T . . 127

8.7 Reduction rate of data to be analysed when abstracting from LoA L1 to LoA L2 128
8.8 Observation of binary sequences by Abstract Binary Observer Θ3

1001,1003 from
client id 1001 to bank manager . 130

8.9 Observation of binary sequences by Abstract Binary Observer Θ3
1002,1003 from

client id 1002 to bank manager . 130
8.10 Observation of binary sequences by Abstract Binary Observer Θ3

1004,1003 from
client id 1004 to bank manager . 131

8.11 There is no observation of binary sequence by Abstract Binary Observer Θ3
1003,1001

from bank manager to client id 1001 . 131
8.12 There is no observation of binary sequence by Abstract Binary Observer Θ3

ji({φji}, {δji})
from bank manager to client id 1002 . 132

8.13 There is no observation of binary sequence by Abstract Binary Observer Θ3
1003,1004

from bank manager to client id 1004 . 132
8.14 List of database datetimes corresponding to timestamps present in tables 8.8 to

8.13 . 132
8.15 Number N (3)

ij of observation classes associated with sequences ω3
ij , i 6= 1003, j = 1003133

8.16 Observed binary sequences, instances of temporal binary relations and their con-
cerned Abstract Binary Observer in the TOT (∆3

CPTE) Category and in the TOT (∆3
TY P)

Category . 135
8.17 Number N (3)

ij of observation classes associated with sequences ω3
ij(tn(3)

ij

), (i, j) ∈
∆ID_CPTE ×∆ID_CPTE . 135

8.18 Number N (3)
ij of observation classes associated with sequences ω3

ij(tn(3)
ij

), (i, j) ∈
∆ID_TY P_EV T ×∆ID_TY P_EV T . 136

XV

XVI LIST OF TABLES

8.19 Reduction rate of data to be analysed when abstracting from LoA L2 to LoA L3 137
8.20 Table of constants and timestamps corresponding to potentially fraudulent trans-

actions in the client category . 141
8.21 Table of constants and timestamps corresponding to potentially fraudulent trans-

actions in the account category . 142
8.22 Table of constants and timestamps corresponding to potentially fraudulent trans-

actions in the transaction type category . 143
8.23 Adaptation of a Kripke structure in the TOT Framework 145

A.1 Interpretation made from timed observations generated by both theoretical unary
observers . 164

A.2 Interpretation made from timed observations generated by both concrete unary
observers . 168

A.3 Interpretation made from timed observations generated by concrete unary ob-
servers Θλ(∆λ,Ψλ, nλ) . 174

A.4 Building of constants . 177
A.5 Timed Observations From Flow Interpretation . 177

CHAPTER 1

Introduction

1.1 General Problematic

This work finds its origin in a concrete problem submitted by a world wide French bank.
It is very easy to formulate the problem under the form of a simple question : how to detect

and represent an internal fraud, a flow of bank transactions being given? To understand this
simple question, you have to know that an internal fraud mostly occurs when the bank manager
steals money from his clients. This kind of fraud concerns only rich clients who have an account
in the "private bank" section of a bank.

The request of the bank is justified by the fact that internal fraud are rarely detected : 70% of
internal frauds are identified because the fraud victim, a client of the bank, lodged a complaint
and demanded to be reimbursed. Technically speaking, an internal fraud is made of many illegal
transactions of small amounts during a relatively long period of time. As a consequence, most
of the internal frauds are purely ignored. Actually, the annual cost of internal frauds is not
negligible.

Besides, the difficulty to prove an internal fraud is intrinsic: in average, the evidence of an
internal fraud requires 6 man.month for an expert in internal fraud.

From these elements, three important points entail:

1. The fraud being internal, all the banks deny the existence of such frauds. In other words,
internal frauds don’t exist. This explains why we may not name the bank in this document.

2. As a consequence, each time a client lodges an internal fraud complaint, the bank prime
reaction is to immediately reimbursed its client. The analysis of the fraud is delayed later.

3. Despite the huge investments made by the banking industry in Information Technologies
since over 50 years, there is no efficient system to detect an internal fraud and to represent
it under a juridically form. In other words, detecting and modeling an internal fraud is a
very difficult task for humans and machines.

Our works are only concerned with the technical problematic of internal fraud detection and
modeling from a bank transactions given flow. The legal aspect of the fraud is the domain
of human experts. Nevertheless, according to an expert of the French bank, this technical
problematic is the most time consuming task. So, it is necessary to identify the concerned
transactions before checking for their legality.

Such a problem could be approached through a real time monitoring problem coupled with
a diagnosis problem. Three main facts make such an approach difficult if not impossible: (i) the

1

2 CHAPTER 1. INTRODUCTION

size of the bank transaction flow, the Big Data problem, (ii) the real time the diversity of the
problems (real time diagnosis is still a difficult problem) (iii) and, last but not least, the ingenuity
of the fraudsters. Indeed, the fraudsters creativity drives difficulties for building models of fraud
schema that could facilitate the recognition task.

The aim of this work is then to propose a theoretical and technological solution to this
technical problematic.

And let us be clear about the practical aspects of this work: a program able to detect and
model an internal fraud in real time has been developed and works perfectly, at least on the
data provided by the bank. This program is described in a Paper published in 2016 in the
proceedings of 8th International Conference on Agents and Artificial Intelligence (ICAART 2016,
[VLGBR16]) and in chapter 8 of this document.

1.2 Contributions

Our contribution is then concerned with the theoretical mathematical framework development
to provide a technology able to manage Big Data Flow problematics, combination of Big Data
problematics and real time constraints inherent to algorithm execution.

Big Data Flow are characterized by (i) temporal properties and (ii) high number of dimensions
of the informational space where it is defined. Usually, continuous data flow has been studied
in the field of dynamic systems since the initial works of Henri Poincaré in mathematical fields.
On a Computer Sciences point of view, such a problematic is currently referred to real time
software for embedded systems, which represent less than 20% of the Information Technologies
investments. Real time software manage continuous data flow through a general sampling device
called the Dirac’s Sampler. This device is widely used in practice to work with Real time data
flow.

Our first main conceptual contribution is to defend the idea that such a sampler is not
adequate to deal with Big Data. As a consequence, we propose a new kind of sampler, called
a Unary Observer, which is the basic sampler device of Le Goc’s Timed Observations Theory
(TOT) [LeG06] that implements TOT spatial discretization principle.

Our second main conceptual contribution aims at defending the idea that working with Big
Data Flow requires a real time abstraction reasoning process to produce, on line, two dual effects:

1. Decreasing the flow data amount, that is to say, coming back to a data flow normal level
that a common computer can manage.

2. Increasing the semantic richness carried by the information flows, that is to say, resuming
a lot of semantically poor data into an equivalent but richer one.

The price to pay for such an information semantic enrichment is the loss of syntactic data,
that is say, to accept a forgetting process. This justifies the use of the Category Theory to
formalize this process.

Thus, our contributions (i) provide a mathematical formalization of such a real time abstrac-
tion reasoning process and (ii) propose a methodology, called the TOM4A Methodology (Timed
Observations Methodology for Abstraction), method guiding and controlling global abstraction
process.

1.3. FRAMEWORK OF MY CONTRIBUTION 3

1.3 Framework of My Contribution

To manage Big Data Flows, it is necessary to combine together at least (i) a theory of timed data
required to deal with continuous time data flows, (ii) a theory of abstraction and (iii) a theory
for the oversight phenomena.

Developed in 2006, the Timed Observation Theory (TOT) of Le Goc [LeG06] has been de-
signed to provide a common mathematical framework to analyse, model and control dynamic
processes. To this aim, this theory combines and extends the Markov Chain Theory, the Poisson
Process Theory, the Theory of Communication of Shannon [Sha84], and the Logical Theory of
Diagnosis [Dag01], and provides operational tools (i.e. the adequate technology) to manage Big
Data Flows in real time. The applications of this theory are numerous and various (cf. chapter
3), showing its generality and its robustness. At this stage of the document, the important point
about the TOT is that it is the mathematical basis of a Knowledge Discovery from Data Base
process (KDD process) called Tom4L (Timed Observation Mining for Learning) dedicated to
mine flows of timed data, and a Knowledge Engineering (KE) method to model dynamic pro-
cesses called TOM4D (Timed Observation Modeling for Diagnosis) dedicated to the combination
of prior experts knowledge and posterior knowledge discovered from timed data.

Our contributions integrates the Method of Abstraction of Floridi [Flo08] (2008) in the math-
ematical framework of the TOT to build a mathematical basis required by a real time abstraction
reasoning process. Floridi’s theory provides a detailed and controlled way of comparing analyses
and models [Flo08] with the introduction of multiple levels of abstraction in conceptual analysis.
Floridi argued that for discrete systems, whose observables take on only finitely-many values, the
method is indispensable [Flo08]. It constitutes then a crucial and powerful tool to address the
analysis and the modeling of complex phenomenon as dynamic processes. Up to our knowledge,
our formalization is the first complete mathematization of Floridi’s theory.

Finally, we relied on the Category theory of Samuel Eilenberg and Saunders Mac Lane (1942-
45) to provide a mathematical body to the notion of level of abstraction. To our main goal, the
major apport of the Category theory is the notion of functor because it provides a natural and
efficient way to control the oversight phenomena inherent to any abstraction reasoning. To this
aim, we define the TOT(Z) Category to build modeling and abstraction functors that maps
objects from two TOT(Z) Categories, of the same level of abstraction for the modeling functors
and from two different levels of abstraction for abstraction functors.

It will be shown that the TOT concept of timed observation can be used as a paradigm in
an abstraction process so that such a process can be automatized. The automatization of a real
time abstraction reasoning process is indeed the main constraint of our works. This constraint
strongly limits the choice of the theories that can be used to this aim.

Up to our knowledge, there is no conceptual or mathematical theories proposing to use
another sampler device than Dirac’s sampler. It is then necessary to develop a new mathematical
framework to reason with the unique alternative, up to our knowledge, the TOT sampler device.

This is the main goal of our contributions: building an analysis, a modeling and a control
approach of dynamic process is not an easy task. But doing that around a new kind of sampler
is quite disturbing.

On our mind, the best way to manage the trouble of a very complex task is to rely on simple

4 CHAPTER 1. INTRODUCTION

examples. But one of the main difficulties with our problematic is to find examples as clear as
possible but also sufficiently illustrative according to the subject under consideration. So, to
facilitate the reading of this document and to illustrate the different aspects of our work, the
following examples will be used to illustrate the concepts developed in this work:

1. An example of conversation (cf. http://www.socphilinfo.org/node/150) between three per-
sons, coming from the community of philosophical researchers concerned with the Philos-
ophy of Information. This example will be our running example in order to illustrate the
concepts of the TOT in chapter 3. For this reason, our paper published in the proceed-
ings of 9th International Conference on Agents and Artificial Intelligence (ICAART 2017,
[LGV17]) has been joined in the appendix B.

2. A real world application of our contributions about the fraud detection in the banking
transaction domain, application realized with a world wide French bank which, for obvious
reasons, prefers staying anonymous. This example is entirely described in chapter 8 of this
document.

1.4 Running Example

The example of the conversation is given here in verbatim from its source:
Suppose we join Alice, Bob, and Carol earlier on at the party. They are in the middle of a

conversation. We do not know the subject of their conversation, but we are able to hear this
much:

• Alice observes that its (whatever “it“ is) old engine consumed too much, that it has a stable
market value but that its spare parts are expensive;

• Bob observes that its engine is not the original one, that its body has been recently repainted
but that all leather parts are very worn;

• Carol observes that it has an anti-theft device installed, is kept garaged when not in use,
and has had only a single owner.

These three points constitute the database of our running example. The Reader is invited to
go to the pages www.socphilinfo.org/node/150 to have details about the way such an exchange
can be analyzed.

The only point that we ask the Reader to admit is that this exchange can be then summed
up with the ten following observations:

1. Alice observes that its engine is old;

2. Alice observes that its engine consumed too much;

3. Alice observes that it has a stable market value;

4. Alice observes that its spare parts are expensive;

5. Bob observes that its engine is not the original one;

1.5. DOCUMENT STRUCTURE 5

6. Bob observes that its body has been recently repainted;

7. Bob observes that all leather parts are very worn;

8. Carol observes that its anti-theft device is installed;

9. Carol observes that it is kept garaged when not in use;

10. Carol observes that it has had only a single owner.

1.5 Document Structure

This document is made of 9 chapters, a bibliography and 2 appendix:

• The first chapter is the present introduction.

• Chapter 2, the Preliminaries chapter, is dedicated to the introduction of Newell’s notion
of abstraction level, Floridi’s theory of abstraction and the Category Theory.

• Chapter 3 is dedicated to the introduction of the TOT. In that way, the third chapter is
an extension of the Preliminaries chapter. But considering that the Timed Observation’s
Theory (TOT) is not as recognized as Floridi’s theory and the Category Theory, it seems
to be necessary to devote a whole chapter to introduce its basis. This chapter aims at
providing the Reader the concepts and the theorems that are required to analyse our
contributions.

• Chapter 4 introduces the theoretical concepts of the TOT framework. This chapter is
crucial because it provides solid basis in order to formalize, in the TOT framework:

– concepts of algebraic structures and observable spaces,

– process of abstraction,

– existence of a new sampling device which differs from the Dirac’s Sampler,

– building of TOT categories.

• Chapter 5 formalizes concepts of algebraic structures, observable spaces and process of
abstraction in the TOT framework.

• Chapter 6 is one of our first contribution. It demonstrates the existence of a morphism
between Dirac’s sampler and the TOT sampler devices. As consequence, this chapter
demonstrates that the Unary Observer concept of the TOT plays the role of a sampler. A
concrete specification of a complete and operational sampler is given in the Appendix A.

• Chapter 7 is our second contribution. This chapter provides the basis of abstraction and
reification reasonings according to Category Theory. It is dedicated to the building of the
TOT(Z) Category and the definition of the Modeling and Abstraction functors that allows
the definitions of Level of Abstraction and Gradient of Abstraction according to Floridi’s
theory.

6 CHAPTER 1. INTRODUCTION

• Chapter 8 is our last contribution. This chapter describes the principles of a concrete real
time abstraction reasoning process under the form of the TOM4AMethodology (Timed Ob-
servations Methodology for Abstraction). A concrete application of the TOM4A Methodol-
ogy is made in order to discover and model potential internal frauds in a stream of banking
transactions.

• Finally, the chapter 9 provides a conclusion about our work with a critical analysis of our
contributions and the drawing of the main features of the potential prolongation of this
thesis.

An important point to our contributions is the fact that they have been implemented in a
Java software platform called Tom4K (Timed Observations Management for Knowledge). This
explains why the appendix A has been joined to the document: it provides the specification of
the concrete TOT sampler implemented in the Tom4K plateform.

The other appendix contains the paper about the running example of the conversation (Ap-
pendix B, [LGV17]).

1.6 Conclusion

Our works are concerned with the management of Big Data Flows, that is to say, a combination
of the Big Data problematic and real time constraints about the execution of algorithms.

Our contributions are mainly mathematics. This explains why we insist on the fact that
all the propositions formulated in this documents have been implemented in the Tom4K Java
platform. This means that we apply the TOM4A Methodology to various real world problems,
only one of them having been described in this document: the internal fraud problem.

There is multiple reasons for that. But the main and the strongest reason is the fact that
it is the only real world example that has been the object of a publication because the solution
described in chapter 8 requires the implementation of three levels of abstraction.

It is then a true chance that such an example can be introduced by the Author of this
document.

CHAPTER 2

Preliminaries

2.1 Introduction: The Knowledge Level of Newell

In his paper [New81], Newell proposes to analyse the current description of computer systems
with four levels of abstraction, summed in Table 2.1 :

• level 1, the device level : basic electronic components, transistors;

• level 2, the circuit level : collection of components;

• level 3, the logic level with its two sublevels: combinatorial or sequential circuits and the
register transfert level;

• level 4, the configuration level (also called the PMS or Processor-Memory Switch level).

The important point for this document is that from this description, Newell identifies the con-
cept of a level of abstraction as a collection of medium, object that is to be processed; components,
transforming media in other media; composition laws, allowing components to be assembled into
systems; and behavior laws, describing the way the system behavior depends on its components
and structure behaviors.

Medium Components Composition
laws

Behavior laws

Level 5:
Knowledge

Assertions Knowledge, in-
ferences, tasks

Logical conse-
quence

Principle of ra-
tionality

Level 4: Configu-
ration

Symbolic expres-
sions

Memory, opera-
tors

Naming and
structuring mem-
ory zones

Sequential inter-
pretation: Von
Neumann and
Turing machines

Level 3: Logic Bits, bit vectors Registers, func-
tional units

Data transfer
path (bus), elec-
tronic cards

Logical opera-
tions

Level 2: Circuit Current, voltage Transistors, resis-
tance, capacity

Electronic chips,
welding

Electricity laws

Level 1: Device Electrons, electro-
magnetic waves

Junctions Silicon sandwich Electromagnetism
laws

Table 2.1: Description of the Knowledge Level

A level of description is then a specialization of the class of systems that can be described at
the next lower level. Any instantiation of a level can be used to create an instantiation at the

7

8 CHAPTER 2. PRELIMINARIES

next higher level. A hierarchy of the description is possible within a level, but it is in no way an
additional level of abstraction.

The key points of Newell’s notion of level of abstraction are the followings:

1. A level can be defined autonomously. The specification of a single-level system always
completely determines a particular behavior for the system at this level of description
(given the initial conditions and the boundary conditions). The overall system behavior
results from the local effects of each of its components when used to transform system
inputs into outputs. The immense variety of behavior arises from the structure of the
system, i.e. the variety of ways of assembling a small number of component types. As a
consequence, the nature of one level differs radically from the others.

2. Levels of description are approximations. The design is the operation of interpreting the
specification against the capabilities of the selected technologies. Levels of description are
achieved by technologies, and by construction, technologies are imperfect: they impose
constraints that limit the size and complexity of the systems that can actually be built.

3. Each level can always be lowered. In other words, each of the aspects of a level (medium,
components, laws of composition and behavior) can be defined in terms of the system
described in the next lower level. But errors at lower levels propagate at higher levels,
producing incomprehensible behaviors within the higher level.

From these key points, Newell formulated the Knowledge Level Hypothesis: there exists a
distinct computer systems level lying immediately above the symbol level which is characterized
by knowledge as the medium and the principle of rationality as the law of behavior. Newell calls
this level the Knowledge Level where Knowledge is all that can be imputed to an agent so that
its behavior can be evaluated in terms of the principle of rationality :

• Knowledge must be characterized functionally, in terms of what it does (the role), and not
structurally, in terms of physical objects endowed with particular properties and relation-
ships.

• Knowledge is intimately linked to the concept of rationality: agents for which it is possible
to state a rationality, it is possible to say that they possess knowledge.

• Knowledge is a concept similar to the concept of competence, that is to say, a potentiality
for the generation of actions, a potential for action.

• Because representations of knowledge exist at the symbolic level, the level of Formal Sys-
tems, data structures and algorithms provide a body for knowledge expressed at the Knowl-
edge Level. Formal Logics are then only a particular way to represent knowledge.

A fundamental point in Newell’s acception of knowledge is that any description at the Knowl-
edge Level is an approximation. Although very practical (and very pragmatic), an approximation
is always imperfect, not only in degree but in perimeter. In other words, there is no guarantee
that the entire behavior of a system has been described at the Knowledge Level. But the fact is
that, according to Newell, a description at the Knowledge Level is definitively incomplete.

2.2. FLORIDI’S METHOD OF LEVEL OF ABSTRACTION 9

We consider that the incompleteness property of any description at the Knowledge Level is
a key point of any abstraction reasoning. This property is also required by Floridi’s Method
of Level of Abstraction for which, as it will be seen in the next section, Newell description of
computer systems is a nested Gradient of Abstraction.

But where Newell uses an ontological point of view about the Knowledge Level, Floridi’s uses
an epistemological point of view to develop its Method of Levels of Abstraction in [Flo08, Flo10].

2.2 Floridi’s Method of Level of Abstraction

According to Floridi, a level of abstraction (LoA) is a finite but non-empty set of observables
[Flo08, p. 10].

The word system refers to the object of study, a process in science or engineering or a domain
of discourse. The behaviour of a system, at a given LoA, is defined to consist of a predicate whose
free variables are observables at that LoA. The substitutions of values for observables that make
the predicate true are called the system behaviours. A Level of Abstraction is then a particular
organization of variable, observable, behavior and transition rules between values. A moderated
LoA is defined to consist of a LoA together with a behaviour at that LoA, [Flo08, p. 11].

The Method of Levels of Abstraction organizes LoA’s in Gradient of Abstraction (GoA). A
GoA allows to vary the LoA to make observations at different granularity levels. Two kinds of
GoA are distinguished: disjoint GoAs, where the LoA are independent together, and nested GoAs
where each LoA incrementally describes the same phenomena. The running example introduced
in the chapter 1 is useful to expose the Method of Level of Abstraction.

Alice, Bob and Carol describe whatever ”it” is according to their own points of view. They
all talk about the same object but in very different ways: they focus on different features of this
object. Alice, Bob and Carol have their own way to observe this object, to describe it: each of
them have their own Level of Abstraction (LoA).

Luciano Floridi in [Flo08] have provided notions of the basic concepts useful to formalise the
concept of LoA.

Let us focus on Alice’s speech. She describes this object from the angle of its engine’s age,
its engine’s consumption, its market value and its spare parts cost.

At this stage, Floridi’s notions of a system and a typed variable can be given:

Notion 1 System
The system is the object of the study.

Here, the system is the unknown object designed by ”it” or ”its” in the conversation between
Alice, Bob and Carol.

Notion 2 Typed variable
A variable is a uniquely named conceptual entity.
The type of a variable is set of all possible values of the entity.
A typed variable is the couple made of a variable and its type.

An ill typed variable is a typed variable with no well defined values. Floridi denotes a typed
variable as x:X where x is the variable and X its type.

10 CHAPTER 2. PRELIMINARIES

For instance, the type of the variable age is the set AGE containing the values old and
not_old :

AGE = {old, not_old} (2.1)

The type of the variable consumption is the set CONSUMPTION containing the values
too_much and not_too_much:

CONSUMPTION = {too_much, not_too_much} (2.2)

The type of the variable market value is the set MARKET_VALUE containing the values
stable and not_stable:

MARKET_V ALUE = {stable, not_stable} (2.3)

The type of the variable cost is the set COST containing the values expensive and not_expensive:

COST = {expensive, not_expensive} (2.4)

Doing so with Bod and Carol, the set of the typed variables contained in the conversation
can be extracted and summed up in tables 2.2 and 2.3:

Variables Types
engine ENGINE = {original, not_original}
body BODY = {repainted, not_repainted}

leather parts LEATHER_PARTS = {very_worn, not_very_worn}

Table 2.2: Typed variables extracted from Bob’s speech

Variables Types
anti-theft device ANTI_THEFT_DEVICE = {installed, not_installed}

park status PARK_STATUS = {garaged, not_garaged}
utilisation status UTILISATION_STATUS = {in_use, not_in_use}

owner OWNER = {single, not_single}

Table 2.3: Typed variables extracted from Carol’s speech

Notion of typed variable being introduced, let us now focus on Floridi’s concept of observable.
An observable is a feature of the system that the observer chooses to focus on while a typed
variable is used to measure or to evaluate the state of that observable. For instance, the typed
variable market value is used to evaluate the value of the market of the system ”it” observed by
Alice. If Alice had not been interested by this system’s specific feature, i.e. its market value, the
typed variable market value would not have been considered as an observable of the system.

Floridi says that an observable is an interpreted typed variable and gives the following notion:

Notion 3 Observable
The observable is a typed variable together with a statement of what feature of the system
under consideration it represents.

An observable is said to be:

2.2. FLORIDI’S METHOD OF LEVEL OF ABSTRACTION 11

• discrete iff its type is a finite set;

• analogue, else.

This notion given, the typed variables previously introduced are all discrete observables of
the system.

Alice, Bob and Carol have then their own sets of observables:

• Alice: {age, consumption, market value, cost};

• Bob: {engine, body, leather parts};

• Carol: {anti-theft device, park status, utilisation status, owner}.

Those sets highlight which particular features of the system are considered by Alice, Bob
and Carol. As a consequence, Alice, Bob and Carol forget and ignore many other features of the
system: they make an abstraction of these latest to describe the system according to their own
point of view. Alice, Bob and Carol describe the system under the angle of their own level of
abstraction:

Notion 4 Level of abstraction
The level of abstraction is a finite but non empty set of observables.

A level of abstraction is said to be:

• discrete iff all observables are discrete;

• analogue iff all observables are analogue;

• hybrid, else.

Alice, Bob and Carol all use discrete levels of abstraction to describe the system.
Let us now focus on one particular Carol’s observations:

• Carol observes that it is kept garaged when not in use.

The use of the word ”when” creates a strong link between the values of the observables park
status and utilisation status:

• If it is not in use then it is kept garaged.

This clearly forbids an assertion of the type:

• If it is in use then it is kept garaged.

This example shows that some combinaisons of the values of the observables at a given LoA
are allowed and some others are not. Here, the combinaison:

• (anti-theft device, park status, utilisation status, owner) = (installed, garaged, not_in_use,
single)

is allowed while combinaison:

12 CHAPTER 2. PRELIMINARIES

• (anti-theft device, park status, utilisation status, owner) = (installed, garaged, in_use,
single)

is forbidden.
Describing all the allowed combinations of values of the system at a given LoA leads to

determine all the possible behaviours of such a system:

Notion 5 Behaviour of a system
The behaviour of a system, at a given LoA, is defined to consist of a predicate whose free
variables are observables at that LoA.
The substitutions of values for observables that make the predicate true are called the system
behaviours.
A moderated LoA is defined to consist of a LoA together with a behaviour at that LoA.

For instance, let us denote pC , the predicate associated with Carol’s system behaviour whose
free variable are anti-theft device, park status, utilisation status and owner:

pC ≡ pC(anti− theft device, park status, utilisation status, owner) (2.5)

The table 2.4 gives the possible combinaisons generated by the substitution of these variables
by their values.

anti-theft device park status usage status owner pC

installed garaged in_use single False
installed garaged in_use not_single False
installed garaged not_in_use single True
installed garaged not_in_use not_single True
installed not_garaged in_use single True
installed not_garaged in_use not_single True
installed not_garaged not_in_use single False
installed not_garaged not_in_use not_single False

not_installed garaged in_use single False
not_installed garaged in_use not_single False
not_installed garaged not_in_use single True
not_installed garaged not_in_use not_single True
not_installed not_garaged in_use single True
not_installed not_garaged in_use not_single True
not_installed not_garaged not_in_use single False
not_installed not_garaged not_in_use not_single False

Table 2.4: Carol’s system behaviours

For example:

• the substitution of the variable anti-theft device by its value installed and

• the substitution of the variable park status by its value garaged and

• the substitution of the variable usage status by its value not_in_use and

• the substitution of the variable owner by its value single

2.2. FLORIDI’S METHOD OF LEVEL OF ABSTRACTION 13

make the predicate pC true.
Let us denote pC1 the instance of the predicate pC(installed, garaged, not_in_use, single):

pC1 ≡ pC(installed, garaged, not_in_use, single)
pC1 ≡ (anti− theft device = installed) ∧ (park status = garaged)

∧(usage status = not_in_use) ∧ (owner = single)

pC1 = true

(2.6)

Among those 16 combinaisons, 8 make Carol’s predicate true, defining then 8 instances pCi , i ∈
[1; 8] of such a predicate:

• pC1 ≡ pC(installed, garaged, not_in_use, single) = true;

• pC2 ≡ pC(installed, garaged, not_in_use, not_single) = true;

• pC3 ≡ pC(installed, not_garaged, in_use, single) = true;

• pC4 ≡ pC(installed, not_garaged, in_use, not_single) = true;

• pC5 ≡ pC(not_installed, garaged, not_in_use, single) = true;

• pC6 ≡ pC(not_installed, garaged, not_in_use, not_single) = true;

• pC7 ≡ pC(not_installed, not_garaged, in_use, single) = true;

• pC8 ≡ pC(not_installed, not_garaged, in_use, not_single) = true.

This also defines a set BC = {bCi , i ∈ [1; 8]} representing the 8 behaviours bCi moderating
Carol’s level of abstraction:

• bC1 = (installed, garaged, not_in_use, single);

• bC2 = (installed, garaged, not_in_use, not_single);

• bC3 = (installed, not_garaged, in_use, single);

• bC4 = (installed, not_garaged, in_use, not_single);

• bC5 = (not_installed, garaged, not_in_use, single);

• bC6 = (not_installed, garaged, not_in_use, not_single);

• bC7 = (not_installed, not_garaged, in_use, single);

• bC8 = (not_installed, not_garaged, in_use, not_single).

The way the system moves from one of its behaviour to another must be described thanks to
transitions rules. For example, moving from behaviour bC1 = (installed, garaged, not_in_use, single)
to behaviour bC2 = (installed, garaged, not_in_use, not_single) must be done by defining a
transitions rule denoted tC12 such as:

tC12 : BC → BC

bC1 7→ bC2
(2.7)

14 CHAPTER 2. PRELIMINARIES

describing the way how the observable owner switches from value single to value not_single.

Concrete illustrations of system behaviours and transitions rules can be found in [PLG14]
and [LGFCT13].

At this stage of the reasoning, we can affirm that Alice, Bob and Carol have their own
moderated LoAs, i.e. their own level of abstraction with their own behaviours, predicates and
transitions rules, reflecting their own views of the system.

Nevertheless, a way describing interactions between LoAs is needed. Floridi’s introduced
the concept of gradient of abstraction providing a way of varying the LoA in order to make
observations at different levels of abstraction. The observations at each LoA must be explicitly
related to those at the others. To do so, relations between LoAs must be introduced.

Let us then consider a level of abstraction denoted Lp, p ∈ N. By definition, Lp is a finite (but
non empty) set of np ∈ N observables denoted xi, i ∈ [1;np] whose type is denoted Xi, i ∈ [1;np]:

Lp = {xi : Xi, i ∈ [1;np]} (2.8)

This level of abstraction is moderated by a set Bp of nBp ∈ N behaviours denoted bpi :

Bp = {bpi , i ∈ [1;nBp]} (2.9)

By construction, any behaviour bpi makes the predicate, denoted pp, at this level of abstraction
true:

∀i ∈ [1;nBp], p
p(bpi) = true (2.10)

In a similar way, let us then consider a level of abstraction denoted Lq, q ∈ N, q 6= p. Lq

is also a finite (but non empty) set of nq ∈ N observables denoted yj , j ∈ [1;nq] whose type is
denoted Yj , j ∈ [1;nq]:

Lq = {yj : Yj , j ∈ [1;nq]} (2.11)

This level of abstraction is moderated by a set Bq of nBq ∈ N behaviours denoted bqj :

Bq = {bqj , j ∈ [1;nBq]} (2.12)

By construction, any behaviour bqj makes the predicate, denoted pq, at this level of abstraction
true:

∀j ∈ [1;nBq], p
q(bqj) = true (2.13)

Figure 2.1 gives an illustration of two moderated LoAs, Lp, made of three observables x1 : X1,
x2 : X2, x3 : X3 and one predicate pp, and Lq, made of two observables y1 : Y1, y2 : Y2 and one
predicate pq.

Floridi introduces a family of relations needed to link elements associated with both LoAs:

1. a relation, denoted Rp,q defined over Lp × Lq, linking the variables of each LoA:

2.2. FLORIDI’S METHOD OF LEVEL OF ABSTRACTION 15

Figure 2.1: Moderated levels of abstraction Lp and Lq

∀xi ∈ Lp,∃yj ∈ Lq,
Rp,q : Lp → Lq

xi 7→ yj
(2.14)

2. such a relation Rp,q from Lp to Lq translates any predicate pp on Lp to a predicate denoted
pRp,q on Lq:

∀xi ∈ Lp, ∃yj ∈ Lq,
Rp,q : Lp → Lq

pp 7→ pRp,q
(2.15)

3. relations, denoted RXi,Yj defined over Xi × Yj , linking the types of variables of each LoA.
The type Xi is made of nXi ∈ N possible values denoted αk that the variable xi can take:

Xi = {αk, k ∈ [1;nXi]} (2.16)

The type Yj is made of nYj ∈ N possible values denoted βl that the variable yj can take:

Yj = {βl, l ∈ [1;nYj]} (2.17)

The relation RXi,Yj maps then any value αk of Xi with a value βl of Yj :

∀αk ∈ Xi, ∃βl ∈ Yj ,
RXi,Yj : Xi → Yj

αk 7→ βl
(2.18)

Figure 2.2 illustrates relations linking of moderated LoAs Lp and Lq:

• a relation Rp,q linking the variables and translating the predicate pp such as:

Rp,q : Lp → Lq

x1 7→ y1

x2 7→ y1

x3 7→ y2

pp 7→ pRp,q

(2.19)

16 CHAPTER 2. PRELIMINARIES

• relations denoted:

RX1,Y1 : X1 → Y1

RX2,Y1 : X2 → Y1

RX3,Y2 : X3 → Y2

(2.20)

linking types of the variables.

Figure 2.2: Relations linking moderated level of abstractions Lp and Lq

All elements have now been introduced to give Floridi’s notion of a gradient of abstraction:

Notion 6 Gradient of abstraction
A gradient of abstraction (GoA) consists of a finite set of N moderated LoAs {Lp, p ∈
[0;N [, N ∈ N} and a family of relations Rp,q : Lp → Lq, p 6= q relating observables of Lp with
observables of Lq such as:

1. ∀p, q, p 6= q,Rp,q is the reverse relation of Rq,p;

2. the behaviour pq at Lq is at least as strong as the translated behaviour pRp,q ;

3. for each observable xi : Xi of Lp and yj : Yj of Lq linked by a relation Rp,q, there exists
a relation RXi,Yj linking elements of their types Xi and Yj .

A gradient of abstraction is said to be discrete iff all LoAs are discrete; disjoint iff LoAs are
pairwise disjoint (i.e. they have no observable in common) and the relations are all empty; and
nested iff only non empty relations are those between two successive LoAs Lp and Lp+1 and the
reverse of each relation Rp,p+1 (i.e. Rp+1,p) is a surjective function from observables of Lp+1 to
observables of Lp. A concrete example of disjoint and nested GoAs can be found in [LGV17],
reproducted in the Appendix B.

As a consequence, the key point about Floridi’s concept of GoA is the following property,
close to the incompleteness property of Newell’s Knowledge Level :

• The higher the level of abstraction, the fewer but richer the information.

Let us cite Floridi [Flo08, p. 18] to expose this point. The quantity of information in a model
varies with the LoA: a lower LoA, of greater resolution of finer granularity, produces a model
that contains more information than a model produced at a higher, or more abstract, LoA.

2.3. MERKER’S INTRODUCTION TO THE CATEGORY THEORY 17

It is then clear that for Newell as for Floridi, a key point of abstraction is the ability to forget
some thing to go from a LoA to a more abstract LoA. It is also clear that this forgetfulness must
be controlled to maintain rational relations between the different LoA’s of a GoA.

The Category Theory of Samuel Eilenberg and Saunders Mac Lane provides the adequate
mathematical tools to this aim.

2.3 Merker’s Introduction to the Category Theory

In years 1942 to 1945, Samuel Eilenberg and Saunders Mac Lane [ML71] introduced the concepts
of categories and functors to reason about the mathematical structure of objets such as sets, rings
or groups.

A category is characterized by two fundamental properties: (i) the associativity of morphisms’
composition and (ii) the existence of an identity morphism. These two properties are necessary
and sufficient to form a new morphism with an adequate sequence morphisms. To introduce the
notion of functor, let us use Merker’s lecturer notes of 1983 [Mer83].

Let X be any set and >, an operation satisfying some properties in X. Such a set provided
with its operation, (X,>), is said to be algebraically structured.

The most important algebraic structure is the group structure:

Definition 2.1 Group
A group is a set X provided with an operation > satisfying the following axioms:

1. associativity:

∀f, g, h ∈ X, (f>g)>h = f>(g>h) (2.21)

2. existence of a neutral element e:

∃e ∈ X,∀f ∈ X, e>f = f>e = f (2.22)

3. existence of an inverse element of f denoted f ′ :

∀f ∈ X,∃f ′ ∈ X, f>f ′ = f
′>f = e (2.23)

If the operation > satisfies the commutativity axiom:

∀f, g ∈ X, f>g = g>f (2.24)

then the group X is said to be commutative.

For instance, the set Z provided with the addition + is a group.
A homomorphism aims to compare sets having the same (homo) shapes (morphism). Let

us denote X and X ′ , respectively provided with operations denoted > and ⊥, two algebraically
structured sets.

18 CHAPTER 2. PRELIMINARIES

Definition 2.2 Homomorphism
A homomorphism H is an application:

∀f ∈ X,
H : X → X

′

f 7→ H(f)
(2.25)

such as the following property is satisfied:

∀f, g ∈ X,H(f>g) = H(f)⊥H(g) (2.26)

A homomorphism transcribes the set X in the set X ′ and the law > in the law ⊥. A
homomorphism is an application between two sets which preserves the set structure in each set
as shown on figure 2.3 where the homomorphism H is represented such that:

H : X → X
′

f 7→ H(f)

g 7→ H(g)

z 7→ H(z)

(2.27)

Figure 2.3: A homomorphism aims to compare sets and preserves the structure of each set

When a homomorphism is a surjective application, some informations available in the input
set X are forgotten and are then no more available in the output set X ′ . On one hand, a ho-
momorphism induces a loss of information but, on another hand, it simplifies the output set X ′ .
Such a simplification may be very useful to make simpler reasonings in X

′ to solve far more
complex problems in X. An example of usage of such a homomorphism is given in [Mer83] (page
79) to bring a demonstration to the Fermat’s little theorem.

Homomorphisms between algebraic structures satisfy the following properties:

1. the identity application is a homomorphism (see figure 2.4):
Let be X an algebraic structure. The identity application is a homomorphism, denoted
idX , such as:

idX : X → X

f 7→ f
(2.28)

2.3. MERKER’S INTRODUCTION TO THE CATEGORY THEORY 19

Figure 2.4: Homomorphism identity idX

2. the composition application is a homomorphism (see figure 2.5):
Let be X, Y and Z some algebraic structures. Let be H : X → Y a homomorphism such
as:

H : X → Y

f 7→ g
(2.29)

Let be F : Y → Z a homomorphism such as:

F : Y → Z

g 7→ h
(2.30)

The composition application denoted F ◦H : X → Z such as:

F ◦H : X → Z

f 7→ h
(2.31)

is a homomorphism.

Figure 2.5: Homomorphism composition F ◦H

3. conditions of isomorphy:
Let be H : X → Y a homomorphism. If there’s exist a homomorphism H

′
: Y → X such

as:

20 CHAPTER 2. PRELIMINARIES

{
H ◦H ′ = idY

H
′ ◦H = idX

(2.32)

then H is an isomorphism.

Finally, let us provide a common definition of a category:

Definition 2.3 Category
A category C consists of the following entities:

1. a collection, denoted ob(C) = {Ai, i ∈ N}, of objects Ai;

2. a collection, denoted mor(C) = {fk, k ∈ N}, of morphisms fk linking two objects of
ob(C):
∀f ∈ mor(C), ∃A,B ∈ ob(C),

f : A → B (2.33)

3. a binary operation, denoted ◦, called composition of morphisms such that:
∀f : A→ B, ∀g : B → C,

g ◦ f : A → C (2.34)

and satisfying both following axioms:

(a) the binary operation ◦ is associative:
∀f : A→ B, g : B → C, h : C → D,

h ◦ (g ◦ f) = (h ◦ g) ◦ f (2.35)

Figure 2.6: Associativity of the composition of morphisms

(b) the neutral element of the binary operation ◦ is the morphism identity :
∃idA : A→ A, ∃idB : B → B, ∀f : A→ B,

idB ◦ f = f ◦ idA = f (2.36)

2.4 Sum and Product

The precedent section shows that the Category Theory emphasizes the morphisms, that is to say
the structure-preserving mappings between objects. The notion of morphisms allows to reason
and learn more about the structure of the objects.

2.4. SUM AND PRODUCT 21

Two operations are of the main interest for this work: the product and the sum of objects of
categories [Hue85, Mél12, Vau08].

To introduce these operations, let us build the category C (cf. figure 2.7):

• three objects A, B and C;

• two morphisms f : A→ B and g : B → C;

• the composition of morphisms g ◦ f : A→ C;

• three identity morphisms idA : A→ A, idB : B → B and idC : C → C.

Figure 2.7: Example of a category

2.4.1 Sum

Let be A and B, two objects of ob(C). The sum between object A and object B, denoted
Σ ≡ A + B is an object associated with two morphisms, f : A → Σ and g : B → Σ, such that,
for all object X ∈ ob(C) and for all couple of morphisms u : A → X and v : B → X ∈ mor(C),
there exists a unique morphism w : Σ→ X such that (see figure 2.8):{

u = w ◦ f
v = w ◦ g

(2.37)

Figure 2.8: Sum of two objects in category C

Intuitively, sum of objects corresponds to the merging of two structures into one in which care
is taken to avoid any uncontrolled telescoping. When considering the category of sets Set, the

22 CHAPTER 2. PRELIMINARIES

sum of two sets is their disjointed union denoted ”t”. For example, if A = {a, b} and B = {b, c},
the sum Σ between A and B is the set Σ = A tB = {a, b1, b2, c} where the elements b ∈ A and
b ∈ B has been renamed to differentiate their occurrences.

In his thesis, [Vau08] gives a general formulation for the sum between n, n ∈ N, objects of a
category.

Definition 2.4 Sum Σ between objects in a category [Vau08]
The sum of n objects Ai in a category C is an object Σ denoted Σ ≡ A1 +A2 + ...+An associated
with n morphisms ij : Aj → Σ, j ∈ [1;n] such as, for a given object W in category C and n
morphisms fi : Ai →W , there exists a unique morphism denoted < f1; f2; ...; fn >: Σ→W such
that, for all j ∈ [1;n], < f1; f2; ...; fn > ◦ij = fj (diagram of figure 2.9 is commutative).

Figure 2.9: Commutative diagram of the sum of n objects in the category C

The diagram of figure 2.9 is called the sum diagram of n objects in the category C.

2.4.2 Product

Let be A and B, two objects of ob(C). The product between object A and object B, denoted
Π ≡ A × B is an object associated with two morphisms, f : Π → A and g : Π → B, such that,
for all object X ∈ ob(C) and for all couple of morphisms u : X → A and v : X → B ∈ mor(C),
there exists a unique morphism w : X → Π such that (see figure 2.10):{

f ◦ w = u

g ◦ w = v
(2.38)

For example, when the category C is the category of groups Grp, where each group is struc-
tured with the operation multiplication denoted ”·”, then:

• the product Π = A×B is the set of couples (a, b) where a ∈ A and b ∈ B:

A×B = {(a, b), a ∈ A, b ∈ B} (2.39)

• the morphisms f : Π → A and g : Π → B are the projection of respectively A × B in A
and A×B in B:

2.4. SUM AND PRODUCT 23

Figure 2.10: Product of two objects in category C

f : A×B → A

(a, b) 7→ a
and

g : A×B → B

(a, b) 7→ b
(2.40)

• the multiplication ”×” on A × B is given by the following formula which is the definition
of the cartesian product :

∀(a, b), (a′ , b′) ∈ A×B, (a, b)× (a
′
, b
′
) = (a · a′ , b · b′) (2.41)

In his thesis, [Vau08] gives a general formulation for the product between n, n ∈ N, objects
of a category.

Definition 2.5 Product Π between objects in a category [Vau08]
The product of n objects Ai in a category C is an object Π denoted Π ≡ A1 × A2 × ... × An
associated with n morphisms pj : Aj → Π, j ∈ [1;n] such as, for a given object W in category C

and n morphisms fi : Ai →W , there exists a unique morphism denoted < f1, f2, ..., fn >: W → Π

such that, for all j ∈ [1;n], pj◦ < f1, f2, ..., fn >= fj (diagram of figure 2.11 is commutative).

Figure 2.11: Commutative diagram of the product of n objects in the category C

The diagram of figure 2.11 is called the product diagram of n objects in the category C.

24 CHAPTER 2. PRELIMINARIES

A category is itself a type of mathematical structure, so we can look for processes which
preserve this structure in some sense. Such a process is called a functor.

2.5 Functors

Functors can be seen as morphisms between categories (cf. figure 2.12 for an illustration).

Figure 2.12: Representation of a functor between categories C and D

A functor associates to every object of one category an object of another category, and to
every morphism in the first category a morphism in the second.

Definition 2.6 Functors
Let C and D be categories. A functor F from category C to category D, denoted F : C → D,
maps:

• each object X in the category C with an object F (X) in the category D:

F : C → D

X 7→ F (X)
(2.42)

• each morphism f : X → Y in the category C with a morphism F (f) : F (X) → F (Y) in
the category D:

F : C → D

f 7→ F (f)
(2.43)

• and satisfying both following properties:

1. conservation of the composition operation ◦:

∀f : X → Y, ∀g : Y → Z,F (f ◦ g) = F (f) ◦ F (g) (2.44)

2. morphism identity mapping:

2.6. CONCLUSION 25

∀idX : X → X,F (idX) = idF (X) (2.45)

A concrete utilization of a functor can be found in [Mer83] (page 87) where the Poincaré’s
functor is introduced to bring a demonstration to Brouwer fixed point theorem.

It is clear that functors are powerful tools to analyze the similarities and the differences
between models because they allow to forget details to emphasis on the structure.

2.6 Conclusion

To forget some properties of a concrete situation to be analyzed constitutes a common point of
Newell’s, Floridi’s and Merker’s analysis of the role of models in sciences:

1. Newell’s ontological view about abstraction and Floridi’s epistemological view are comple-
mentary.

2. Both claim for the oversight phenomenon as a price to be paid when abstracting.

3. The Category theory is an adequate mathematical framework to control the oversight phe-
nomenon.

More precisely, to be efficient, any abstraction reasoning must be based on an adequate
choice of some specific properties that must be considered. The design of an adequate set of
functors is then the key point to define an abstraction process that can be used to deal with the
interpretation of data flows, especially when the flow is big.

According to Floridi, Newell’s Knowledge Level can be structured in a set of hierarchical levels
of abstraction, and both agree that changing from a level of abstraction i to a more abstract one
i+ 1 relies on the forgetting of particular properties described at the level i.

Figure 2.13: Problem Solving Method

Such a sentence could generate numerous and long discussions about the relations between
models and reality. Nevertheless, similarly to Merker’s praxeological analysis, this debate can be
avoided in the filed of Computer Sciences when considering figure 2.13. Computer Sciences are

26 CHAPTER 2. PRELIMINARIES

mainly concerned with the building of computer systems that facilitate the solving of concrete
problems. The role of humans is to solve the problems and the role of computer systems is
to produce representations supposed to help humans in their solving tasks. The key point in
Computer Sciences is that the representations reside in the Model World when the problems
reside in the Real World. To caricature, Computer Sciences ignore what an object of the Real
World is, only the objects of the Model World can be understood by a Computer Scientists.

So, according to the Computer Sciences, Newell’s and Floridi’s theories about abstraction
have a concrete meaning when applied on Models, that is to say an organized set of Knowledge
Representations. And Merker to clearly explain that the potential debate about what belongs to
reality and what not must then be moved to what belongs to a model and what not.

From this chapter, it is possible to conclude on the possibility to combine the ontological
point of view of Newell and the epistemological point of view of Floridi when only considering
the world of the Model uniquely. In this world, the Category theory provides the conceptual tool
of functor to formalize the transformation of models in an abstraction reasoning. In the field of
Knowledge Engineering, such an approach is called a Problem Solving Method (PSM).

Such is the aim of our research project: to define a Problem Solving Method based on a
recursive abstraction reasoning that rationally controls the oversight phenomenon by the mean
of the design of adequate functors.

To this aim, it is also necessary to provide a mathematical consistence to Newell’s and
Floridi’s theories. This is the role of the Timed Observations Theory (TOT), introduced in the
next chapter, where the TOT’s concepts of (i) timed observation and (ii) timed sequential binary
relation will be used as paradigm through multiple Levels of Abstraction.

CHAPTER 3

Introduction to the Timed Observation Theory

3.1 Introduction

The Timed Observations Theory ([LeG06]) provides a general mathematical framework for mod-
eling dynamic processes from timed data. This theory combines and extends the Markov Chain
Theory, the Poisson Process Theory, the Theory of Communication of Shannon [Sha84], the
Logical Theory of Diagnosis [Dag01]. This chapter aims at introducing the concepts of the TOT
that are required in order to model a dynamic process and the reasoning with a TOT model.

To this aim, the chapter is made with two main sections. The first one introduces the main
mathematical objects of the TOT. The second section makes use of these objects to define the
basis the modeling approach of the TOT which are the foundation of the Tom4D method (Timed
Observations Modeling for Diagnosis, [Pom12]). The modeling principles of Tom4D constitute
the conceptual modeling framework of our contributions.

The original version of the TOT can be found in [LeG06]. Applications in various scientific
domains can be found in the PHD of P. Bouché [Bou05] for the Discrete Event System domain,
the PHD of N. Benayadi [Ben10] for the Data Mining domain, the PHD of A. Adhab [Ahb10a]
for the Bayesian Networks domain, and the PHD of L. Pomponio [Pom12] for the Knowledge
Engineering Domain. The Reader will be invited to refer to the main papers providing details
about the developments of the TOT.

But this chapter provides the necessary and sufficient elements of the TOT that are required
to understand our contributions. And to allow an intuitive understanding of these elements, the
running example of the conversation will be used.

3.2 Mathematical Framework of the TOT

The Timed Observations Theory (TOT) defines a dynamic process as an arbitrarily constituted
set X(t) = {x1(t), ..., xn(t)} of timed functions xi(t) of continuous time t. The set X(t) of
functions implicitly defines a set X = {x1, x2, ..., xn} of n variable names xi.

According to the TOT, a dynamic process X(t) is said to be observed by a program Θ when
Θ aims at writing timed messages describing the modifications over time of the functions xi(t) of
X(t). Such timed messages can be alarms, warnings, reporting events or simple communication
messages (sms for example) that are sent to the environment of the program Θ. A timed message
is a sequence of characters that can be recorded in a memory (i.e. a database or a data log).

The TOT considers that the structure of such a message is a pair (timestamp, text) where
text is a constant denoted δi and timestamp is the value of an index denoted tk. The timestamp

27

28 CHAPTER 3. INTRODUCTION TO THE TIMED OBSERVATION THEORY

tk represents the time of the message that can be the emission time, the reception time or any
timestamp associated with the text of the message. Consequently, an extraction of m timed
messages from a memory constitutes a set ∆ = {δi} of m∆ constants δi and a set Γ = {tk} of m
timestamps tk. Generally speaking, there is less constants than timestamps (i.e. m∆ ≤ m).

As an illustration, let us consider the four observations made by Alice about the engine (see
section B.2). Alice observes that:

1. its engine is old;

2. its engine consumed too much;

3. it has a stable market value;

4. its spare parts are expensive.

Let us consider the sentence “its engine is old ”. This sentence implicitly defines a timed
function denoted xA1 (t) representing the evolution over time of the engine’s age. Such a function
admits, as input, an infinity set of values and returns also an infinity set of values. The function
xA1 (t) is a R-valued function defined on R:

xA1 : R → R

t 7→ xA1 (t)
(3.1)

Such a sentence shows that there exists, in Alice’s mind, a constant describing the age of
that engine as old. Let us denote δA11 ≡ old such a constant. This implies that there also exists,
in Alice’s mind, another constant describing the age of that engine as not old. Let us denote
δA12 ≡ not_old such a constant. The age of such an engine can be then described with two
constants old and not_old. The timed function xA1 (t), representing the evolution over time of
the engine’s age, can be then described with a variable called age and denoted xA1 :

xA1 ≡ age (3.2)

Such a variable xA1 ≡ age takes two discrete values:{
δA11 ≡ old
δA12 ≡ not_old

(3.3)

Let us denote ∆A
1 , the countable set containing these discrete values:{

∆A
1 = {δA11, δ

A
12}

xA1 ∈ ∆A
1

(3.4)

Let us consider the sentence “its engine consumed too much”. This sentence implicitly defines
a timed function denoted xA2 (t) representing the evolution over time of the engine’s consumption.
Such a function is also a R-valued function defined on R:

xA2 : R → R

t 7→ xA2 (t)
(3.5)

Such a sentence shows that there exists, in Alice’s mind, a constant describing the consump-
tion of that engine as too much. Let us denote δA21 ≡ too_much such a constant. This implies

3.2. MATHEMATICAL FRAMEWORK OF THE TOT 29

that there also exists, in Alice’s mind, another constant describing the consumption of that en-
gine as not too much. Let us denote δA22 ≡ not_too_much such a constant. The consumption of
such an engine can be then described with two constants too_much and not_too_much. The
timed function xA2 (t), representing the evolution over time of the engine’s consumption, can be
then described with a variable called consumption and denoted xA2 :

xA2 ≡ consumption (3.6)

Such a variable xA2 ≡ consumption takes two discrete values:{
δA21 ≡ too_much
δA22 ≡ not_too_much

(3.7)

Let us denote ∆A
2 , the countable set containing these discrete values:{

∆A
2 = {δA21, δ

A
22}

xA2 ∈ ∆A
2

(3.8)

Let us consider the sentence “it has a stable market value”. This sentence implicitly defines a
timed function denoted xA3 (t) representing the evolution over time of the engine’s market value.
Such a function is also a R-valued function defined on R:

xA3 : R → R

t 7→ xA3 (t)
(3.9)

Such a sentence shows that there exists, in Alice’s mind, a constant describing the market
value of that engine as stable. Let us denote δA31 ≡ stable such a constant. This implies that
there also exists, in Alice’s mind, another constant describing the market value of that engine
as not stable. Let us denote δA32 ≡ not_stable such a constant. The market value of such an
engine can be then described with two constants stable and not_stable. The timed function
xA3 (t), representing the evolution over time of the engine’s market value, can be then described
with a variable called market_value and denoted xA3 :

xA3 ≡ market_value (3.10)

Such a variable xA3 ≡ market_value takes two discrete values:{
δA31 ≡ stable
δA32 ≡ not_stable

(3.11)

Let us denote ∆A
3 , the countable set containing these discrete values:{

∆A
3 = {δA31, δ

A
32}

xA3 ∈ ∆A
3

(3.12)

Let us consider the sentence “its spare parts are expensive”. This sentence implicitly defines a
timed function denoted xA4 (t) representing the evolution over time of the spare parts’ cost. Such
a function is also a R-valued function defined on R:

30 CHAPTER 3. INTRODUCTION TO THE TIMED OBSERVATION THEORY

xA4 : R → R

t 7→ xA4 (t)
(3.13)

Such a sentence shows that there exists, in Alice’s mind, a constant describing the spare parts’
cost of that engine as expensive. Let us denote δA41 ≡ expensive such a constant. This implies
that there also exists, in Alice’s mind, another constant describing the spare parts’ cost of that
engine as not expensive. Let us denote δA42 ≡ not_expensive such a constant. The spare parts’
cost of such an engine can be then described with two constants expensive and not_expensive.
The timed function xA4 (t), representing the evolution over time of the engine’s spare parts’ cost,
can be then described with a variable called spare_parts_cost and denoted xA4 :

xA4 ≡ spare_parts_cost (3.14)

Such a variable xA4 ≡ spare_parts_cost takes two discrete values:{
δA41 ≡ expensive
δA42 ≡ not_expensive

(3.15)

Let us denote ∆A
4 , the countable set containing these discrete values:{

∆A
4 = {δA41, δ

A
42}

xA4 ∈ ∆A
4

(3.16)

Program Θ is said to be :

• Parametrized with two sets, the set of constants ∆ = {δi} and the set of variable names
X = {xi}. A parametrized program is denoted Θ(X,∆).

• Applied on a set X(t) = {xi(t)} of timed functions. The choice of X(t) is out of the scope
of the program.

• An abstract observer if the way the program Θ has been implemented is not known. It can
be either a software component or a human. This situation has to be considered as the
usual situation.

In the previous example, Alice is the observation program denoted ΘA(XA,∆A) where:

• XA = {xA1 , xA2 , xA3 , xA4 };

• ∆A = {δA11, δ
A
12, δ

A
21, δ

A
22, δ

A
31, δ

A
32, δ

A
41, δ

A
42} ≡ {old, not_old, too_much, not_too_much, sta-

ble, not_stable, expensive, not_expensive}.

In the suite of the document, the term program will be used to denote either the program Θ

or the parametrized program Θ(X,∆).

3.3 Timed Observation

The aim of the TOT is to model observed processes:

3.3. TIMED OBSERVATION 31

Definition 3.1 Observed Process
Let X(t) = {xi(t)}, i=1...n, be a finite set of time functions xi(t); let X = {xi}, i=1...n, be the
corresponding finite set of variable names xi; let ∆ = {δj}, j=1...m, be a finite set of constant
values δj; let Θ(X, ∆) be a program observing the evolution of the functions of X(t).

The couple (X(t), Θ(X, ∆)) is an observed process.

In the previous example, the observed process is then the couple (XA(t), ΘA(XA, ∆A)) where:

XA(t) = {xA1 (t), xA2 (t), xA3 (t), xA4 (t)} (3.17)

To this aim, the TOT defines a timed observation to provide a meaning to a timed message:

Definition 3.2 Timed Observation
Let X(t) = {xi(t)}i=1...n be a set of timed functions describing the evolution of a process that is
observed by a program Θ; let Γ = {tk}tk∈< be a set of arbitrary time instants in which Θ observes
the functions; let θ(xθ, δθ, tθ) be a predicate implicitly determined by Θ; and, let ∆ be a set of
constant values.

A timed observation (δ, tk) ∈ ∆ × Γ made on the time function xi(t) is the assignation of
values xi, δ and tk to the predicate θ(xθ, δθ, tθ) such that θ(xi, δ, tk).

Technically, (δ, tk) (orO(tk)) denotes a record of a database. The assigned predicate θ(xi, δ, tk)
represents the meaning, the interpretation of the record. But, by misuse of language, (δ, tk) (or
O(tk)) is usually called a timed observation.

As an illustration of this definition, let us consider the sentence “Alice observes that it has
a stable market value”. The observation program, Alice, denoted ΘA(XA,∆A), observes the
evolution of the function xA3 (t) representing the temporal evolution of the engine’s market value.
The timed observation (stable, tA3) made on time function xA3 (t) is the assignation of values
xA3 ≡market_value, δA31 ≡stable and tA3 to the predicate denoted θA(xθA , δθA , tθA) implicitly
implemented in ΘA(XA,∆A) such that θA(xA3 , δ

A
31, tA3).

One of the most fondamental point of the TOT is to understand that, without any knowledge
about the assigned predicate θ(xi, δ, tk), a timed observation (δ, tk) has no meaning. For example,
according to the TOT the text "Alice observes that it has a stable market value" has no meaning:
it is only a sequence of characters. The section 3.6 illustrates this point.

3.3.1 Examples of Sets of Constants and Assignations

Sets of constants ∆ are usually constructed on mathematical sets like R or N. But the sets of
constants made with respect to an alphabet are even more often used and, this, in very varied
fields.

• ∆ ⊂ R:

– A timed observation of the form O(tk) ≡ (µ, tk) corresponding to the assignation
θ(x, µ, tk) can be any assertions like x(tk) = µ, x(tk) < µ or x(tk) = f(µ) such as:{

∃tk,
∀t < tk, x(t) = f(t)

∀t ≥ tk, x(t) = f(t) + µ
(3.18)

32 CHAPTER 3. INTRODUCTION TO THE TIMED OBSERVATION THEORY

– In the field of statistics and probabilities, the observations concern propositions relat-
ing to a random variable x. For example, the observation O(tk) ≡ (δ, tk) can be used
to perform the assignation θ(x, δ, tk) meaning that at a time of measurement t = tk,
the average of x is m (δ = m) or its standard deviation is σ (δ = σ).

– ∆ = {]−∞, µ−2],]µ−2, µ−1],]µ−1, µ1],]µ1, µ2],]µ2,+∞]}, µi ∈ R. This kind of set is
very often used in fields related to Physics: O(tk) ≡ (]µ1, µ2], tk)→ θ(x,]µ1, µ2], tk) :

x(tk) ∈]µ1, µ2].

• ∆ ⊂ N:

– ∆ = [0; 100]: this kind of set is widely used to normalize values from sensors or
statistics.

– ∆ = {−n, ..., 0, ...,+n}: this kind of set is used in many fields including monitoring,
diagnostics and control of dynamic systems such as Sachem [LeG04]. Indeed, this
kind of set can be put into a one-to-one relation with a set of (2n + 1) real number
intervals of the form [µi, µi+1]. The following observations on x(tk) illustrate this
principle with a set ∆ = {−2,−1, 0, 1, 2} isomorphic to the set of intervals I =

{]−∞, µ−2],]µ−2, µ−1],]µ−1, µ1],]µ1, µ2],]µ2,+∞]}:

∗ O(tk) ≡ (+1, tk)→ θ(x,+1, tk) : x(tk) ∈ [µ1, µ2].

∗ O(tk) ≡ (−2, tk)→ θ(x,−2, tk) : x(tk) ∈]−∞], µ−2].

• ∆ is an alphabet of the form {α, β, ..., ξ, ζ}:

– ∆ = {do, ré, mi, fa, sol, la, si }: these constants are used in music to mark notes on
a musical scope according to a particular key.

– ∆ = {red, blue, yellow}: this set can be retained by a painter as the primary color
base of a chromatic circle to design a painting.

– ∆ = {very_low, low, normal, high, very_high}: this kind of set is widely used to
interpret alarms generated by a monitoring or diagnostic system. One of the reasons
for the success of this type of set is that it establishes a one-to-one link between a set of
(2n+1) real number intervals of the form I = {]−∞, µ−2],]µ−2, µ−1],]µ−1, µ1],]µ1, µ2],]µ2,+∞]}
and a set of (2n+1) integers of the form ∆ = {−n, ..., 0, ...,+n}.

3.3.2 Observation Function

Let be Θ({x},∆), a program observing the timed function x(t).

Definition 3.3 Observation Function
Program Θ({x},∆) implements an observation function, denoted δx(k) = O(tk), which is a
∆× Γ-valued function defined on Z:

δx : Z → ∆× Γ

k 7→ O(tk) ≡ (δ, tk)
(3.19)

3.4. CANONICAL AND SAFE PROGRAM 33

This leads us to the following property:

Property 1
Any program Θ({x},∆) is characterized by an observation function δx.

Such an observation function δx provides the kth timed observation O(tk) ≡ (δ, tk), δ ∈ ∆

made on x(t) at timestamp t = tk ∈ Γ. It maps then, in a one to one way, any integer of Z with
a timed observation O(tk) ≡ (δ, tk).

Thus, this allows the rewriting of a timed observation:

O(tk) ≡ (δ, tk) ≡ (δ, k) ≡ O(k) (3.20)

When considering the timed observation of the form O(k) ≡ (δ, k), k designates the index of
the timestamp tk in a set of timestamps Γ.

3.4 Canonical and Safe Program

Let be a program Θ({x},∆) characterized by its observation function δx.

Definition 3.4 Canonical Program
Program Θ({x},∆) is a canonical program if it aims at writing timed observations applied on the
timed function x(t).

A program Θ({x},∆) is said to have no simultaneous timed observations iif:

∀O(i) ≡ (δi, i),∀O(j) ≡ (δj , j), i = j ⇒ O(i) = O(j)⇒ δi = δj ∧ ti = tj (3.21)

An observation function δx is memoryless iff for all O(i) ≡ (δi, i), for all O(j) ≡ (δj , j), i 6= j,
the choice of the constant δi does not depend on δj .

This condition is the rule of independence of observations: program Θ({x},∆) does not need
to memorize the constants assigned in the past to choose the constants to assign in the present.

Definition 3.5 Independent Program
Any program Θ({x},∆) encoding a memoryless observation function δx is an independent pro-
gram.

This leads us to the following properties:

Property 2 Safe Program
An independent program Θ({x},∆) that does not allow simultaneous observations is a safe pro-
gram.

Property 3 Safe Canonical Program
A safe program Θ({x},∆) applied on a function x(t) is a safe canonical program.

34 CHAPTER 3. INTRODUCTION TO THE TIMED OBSERVATION THEORY

Property 4 Non Safe Program
A program Θ({x},∆) that does allow some simultaneous observations or that is not independent
is a non safe program.

Property 5 Non Safe Canonical Program
A non safe program Θ({x},∆) applied on a function x(t) is a non safe canonical program.

In the following, we only consider safe canonical programs.

3.5 Spatial Discretization Principle

Let us consider a particular program Θi({xi}, {δi}) of an observed process (xi(t),Θi({xi}, {δi}))
made of only one time function xi(t). Let us suppose that the specification of such a program
is based on the generic rule 3.22 which refers to a threshold value Ψj ∈ < and two immediately
successive values xi(tk−1) ∈ < and xi(tk) ∈ <.

xi(tk−1) < Ψj ∧ xi(tk) ≥ Ψj ⇒ write((δi, tk)) (3.22)

In this rule:

• xi(tk−1) and xi(tk) are two immediately successive values of the continuous time function
xi(t),

• (δi, tk) is a timed message,

• xi(tk−1) < Ψj ∧ xi(tk) ≥ Ψj specifies a particular predicate denoted θi,

• write((δi, tk)) denote the action of recording a timed message in a memory.

In other words, a timed observation (δ, tk) is the execution trace of the program Θi. Such
a program Θi is called an Unary Observer in the framework of the TOT. The equation 3.22 is
a current specification for an unary observer in the industrial domain. A more general form is
given below.

The use of such a rule is illustrated in figure 3.1. On this figure, the time function xA3 (t)

represents the evolution over time of the engine’s market value. Let us consider Alice as the
program, denoted ΘA

3 ({xA3 }, {stable, not_stable}), observing such a time function xA3 (t). Let us
suppose that the specification of such a program is made with one threshold ΨA

3 and the two
following rules used on the time function xA3 (t):

Rule 1: xA3 (tA3,k−1) < ΨA
3 ∧ xA3 (tA3,k) ≥ ΨA

3 ⇒ write((stable, tA3,k)) (3.23)

Rule 2: xA3 (tA3,k−1) ≥ ΨA
3 ∧ xA3 (tA3,k) < ΨA

3 ⇒ write((not_stable, tA3,k)) (3.24)

3.5. SPATIAL DISCRETIZATION PRINCIPLE 35

Figure 3.1: Spatial Discretization of the time function xA3 (t) with one threshold

Let us suppose that these two rules are implemented in two programs, respectively ΘA
31({xA3 },

{stable}) and ΘA
32({xA3 }, {not_stable}). The program Alice, ΘA

3 ({xA3 }, {stable, not_stable}),
can be then considered as a combinaison of these programs:

ΘA
3 ({xA3 }, {stable, not_stable}) =

ΘA
31({xA3 }, {stable}) ∪ΘA

32({xA3 }, {not_stable})
(3.25)

The observed process (xA3 (t),ΘA
3 ({xA3 }, {stable, not_stable})) allows the program ΘA

3 to pro-
duce the following sequence ωA3 of timed observations with the time function xA3 (t) of figure
3.1:

• ωA3 = {(stable, tA3,k−1), (not_stable, tA3,k), (stable, tA3,k+1)}.

The sequence ωA3 is the execution trace of the program ΘA
3 ({xA3 }, {not_stable, stable}) when

it observes the time function xA3 (t), representing the evolution over time of the engine’s market
value. According to the definition 3.2, such a sequence defines a set ΓA3 = {tA3,k−1, t

A
3,k, t

A
3,k+1}

containing three timestamps. Because the time function is defined over <, the duration between
two immediately following timestamps is random (i.e. (tA3,k+1 − tA3,k) 6= (tA3,k − tA3,k−1)). ΓA3 is
then a stochastic clock.

Since a predicate θi implemented in a program Θi({xi}, {δi}) can have a very complex mean-
ing requiring a lot of computation, the general form of unary observer (i.e. a program imple-
menting the spatial discretization principle) is based on the following rule:

θi(xi, δj , tk)⇒ write(O(tk)) (3.26)

An important point at this stage is that the definition 3.2 of a timed observation shows that
the link between a time function xi(t), a variable name xi, the value of a constant δi and a timed
observation O(tk) is made by the program Θi({xi}, {δi}) that implements an instantiation of the
general rule 3.26:

• The relation between a time function xi(t) and a variable name xi is made through the
application of the program Θi({xi}, {δi}) on xi(t).

36 CHAPTER 3. INTRODUCTION TO THE TIMED OBSERVATION THEORY

• The variable name xi is defined for the predicate θi: the function xi(t), the variable name
xi and the constant δi are independent.

• The constant δi of a timed observation O(tk) ≡ (δi, tk) is not directly linked with the
predicate θi: δi is simply linked to θi by the code.

A constant δi is then clearly a sequence of characters that has no meaning in it-self: a pair
(δi, tk) is only a record in a database. To provide a meaning to this pair, the reader must have
an interpretation model.

3.6 Semantic of a Timed Observation

As an illustration of this important point, let us consider the equations 3.23 and 3.24.
The constants "stable" and "not_stable" are respectively used in two different predicates θA31

and θA32 implemented in two programs ΘA
31({xA3 }, {stable}) and ΘA

32({xA3 }, {not_stable}):

• θA31: xA3 (tA3,k−1) < ΨA
3 ∧ xA3 (tA3,k) ≥ ΨA

3 ;

• θA32: xA3 (tA3,k−1) ≥ ΨA
3 ∧ xA3 (tA3,k) < ΨA

3 .

Each constant "stable" and "not_stable" has then one and only one specific meaning accord-
ing to the TOT:

• θA31: stable means that the values of the time function xA3 (t) left the interval]−∞,ΨA
3 [to

enter the interval [ΨA
3 ,+∞[;

• θA32: not_stable means that the values of the time function xA3 (t) left the interval [ΨA
3 ,+∞[

to enter the interval]−∞,ΨA
3 [.

If the program ΘA
31({xA3 }, {stable}) has no error, a meaning to the sequence of characters

"stable" can be provided: the values of the time function xA3 (t), representing the evolution over
time of the engine’s market value, is in the range stable corresponding to the interval [ΨA

3 ,+∞[.
In a same way, a meaning to the sequence of characters "not_stable" can be provided: the values
of the time function xA3 (t), representing the evolution over time of the engine’s market value, is
in the range not_stable corresponding to the interval] − ∞,ΨA

3 [. As a consequence, the two
rules 3.23 and 3.24 define two ranges for the values of the time function xA3 (t):

• stable, range: [ΨA
3 ,+∞[;

• not_stable, range:]−∞,ΨA
3 [.

This example shows a fundamental point that is highlighted by the TOT:

• Without some knowledge about the program Θi that write it, a timed message contained in
a database has no meaning in itself.

3.6. SEMANTIC OF A TIMED OBSERVATION 37

So, the timed message "tA3,k+1, it has a stable market value” has no meaning because
the program that has written this message has not been described. In other words, the sequence
of characters it has a stable market value is a constant that can be rewritten δA31 without changing
anything.

But if it is known that Figure 3.1 illustrates the engine’s market value described by Alice
then a particular meaning can be given to the timed message ”tA3,k+1, it has a stable market

value” and so to the corresponding timed observation O(tA3,k+1) ≡ (δA31, t
A
3,k+1) = (it has a

stable market value, tA3,k+1):

• The time function xA3 (t) represents the engine’s market value.

• The sequence of characters stable can be associated with the rule 3.23 and then with the
predicate θA31 (i.e. xA3 (tA3,k−1) < ΨA

3 ∧ xA3 (tA3,k) ≥ ΨA
3);

• The variable name xA3 denotes the values of xA3 (t) at the timestamps tA3,k−1, t
A
3,k and tA3,k+1.

As a consequence, the sequence of characters it has a stable market value means that the
predicate θA31 has been satisfied at timestamps tA3,k−1 and tA3,k+1. But when no knowledge is
available about the way a pair (δ, tk) has been recorded in a database, the definition 3.2 allows
to infer that:

Theorem 3.1 Interpretation
Given a timed observation O(tk) ≡ (δ, tk), the following propositions are true:

1. O(tk) has been written by an abstract program Θ({x}, {δ}) that defines a ternary predicate
θ(xθ, δθ, tθ).
Proof of proposition 1: directly results from definition 3.2.

2. The meaning of O(tk) ≡ (δ, tk) is the assignation θ(x, δ, tk).
Proof of proposition 2: also directly results from definition 3.2.

3. At time t = tk, the time function x(t) satisfies the constraints of the predicate θ(xθ, δθ, tθ).
Proof of proposition 3 is an immediate consequence of the property 1 of an observation
function: any program Θ({x},∆) is characterized by an observation function δx. As a
consequence, such an observation function can be any predicate of the form θ(xθ, δθ, tθ).

4. There exists a timed function x(t) which has been observed by the abstract program Θ({x}, {δ}).
Proof of proposition 4: Program Θ({x}, {δ}) is, by hypothesis (see section 3.4), an safe
canonical program. According to definition 3.4, there exists then a timed function x(t)

which has been observed by such a program.

When considering the Spatial Discretization Principle (cf. equation 3.22), the assignation
θ(x, δ, tk) can have one of the three following interpretations:

• EQUAL(x, δ, tk): "At time tk, x is equal to δ";

• IS(x, δ, tk): "At time tk, x is δ";

• BELONGS(x, δ, tk): "At time tk, the values of x(t) belongs to a range denoted δ".

38 CHAPTER 3. INTRODUCTION TO THE TIMED OBSERVATION THEORY

These three interpretations are clearly misuses of language because δ is a constant taken from
an arbitrary made set ∆ and the definition domain of the function x(t) is the set < of the real
numbers. For example, according to the theorem 3.1, the timed observation (it has a stable

market value, tA3,k+1) can be interpreted as :

1. At time tA3,k+1, engine’s market value is equal to stable;

2. At time tA3,k+1, engine’s market value is stable;

3. At time tA3,k+1, engine’s market value belongs to the stable range.

The first interpretation is the most usually used because it corresponds to the abuse of
language xA3 (tA3,k+1) = stable which has the form of a classical formula:

x(tk) = δ (3.27)

Generally speaking, in practice, a predicate θ(xθ, δθ, tθ) is satisfied when the time function x(t)

matches against a behavior model [LeG04] that can be as simple as the switch of an interrupter
or, requiring complex techniques, such as signal processing techniques for artificial vision. The
precise meaning of such a predicate can be very complex and very difficult to detail. This explains
why most experts commonly use the abuse of language of the equation 3.27.

It is noteworthy that a program can have errors: (δ, tk) could be written in a database from
the assertion θ(x, δ, tk) although the time function x(t) not "really matches" the semantic of this
predicate.

3.7 Observation Class

When considering a timed observation O(tk) ≡ (δ, tk), the first interpretation (i.e. the equation
3.27) explains the fact that an expert establishes immediately (and often unconsciously) a relation
between the constant δ and a variable name x.

This cognitive phenomena being so important and so natural, the TOT defines it with the
notion observation class:

Definition 3.6 Observation Class
Let X(t) = {xi(t)}i=1...n be a set of time functions that are observed by an abstract program
Θ(X,∆) where ∆ = {δj}j=1...m is the set of all the constants the abstract program can use and
X = {xi}i=1...n is the set of variable names corresponding to X(t).
∀i ∈ [1, n], ∀j ∈ [1,m] and ∀k ∈ N, an observation class Ok = {..., (xi, δj), ...} is a subset of

X ×∆.

An observation class is then any set of pairs (xi, δj) associating a variable name xi with a
constant δj . Such a definition establishes an explicit link between a constant and a variable
name. Any association can be made, but the simplest way, and the most used, is to associate
a variable xi to each constant δj (i.e. establishing a mapping δj 7→ xi for each δi ∈ ∆) and to
define all the observation classes with singletons Oj = {(xi, δj)}, that is to say where the pair
(xi, δj) is the unique element the set Oj . In that case, the following definition can be applied:

3.7. OBSERVATION CLASS 39

Definition 3.7 Class Occurrences
Let ∆ = {δj}j=1...m be a set of m constants δi; let X = {xi}i=1...n be a set of n variable names
xi so that n ≤ m; let O = {Oj}j=1...m be a set of m singletons Oj = {(xi, δj)}.

Any timed observation O(tk) ≡ (δj , tk) written by a program Θ(X,∆) is an occurrence of an
observation class Oj = {(xi, δj)}.

This definition and the theorem 3.1 lead to define a mapping from the set of constants ∆ to
the set of variable names X. This simplifies strongly the situation when the variable names are
unknown: it is always possible to map an abstract variable φj to each constant δj that appears
in a sequence ω of timed observations (i.e. in an extraction of a database). This is done with
the construction of a set O = {Oi} of observation classes Oi = {(φi, δi)} where each Oi is a
singleton. In that case:

O(tk) ≡ (δi, tk) ≡ Oi(tk) (3.28)

In other words, when defining observation classes as singletons, a program Θ(X,∆) observing
a process X(t) writes occurrences Oj(tk) of observation classes Oj and the equation 3.26 can
then be written in its most abstract form:

θi(xi, δj , tk)⇒ write(Oj(tk)) (3.29)

For example, the program ΘA
3 ({xA3 }, {stable, not_stable}) associated with the time func-

tion xA3 (t) of figure 3.1 produces the sequence ωA3 of timed observations ωA3 = ((stable, tA3,k−1),
(not_stable, tA3,k), (stable, tA3,k+1)). This sequence allows to define the set OA3 of observation
classes containing the following classes:

• OA31 = {(xA3 , stable)}

• OA32 = {(xA3 , not_stable)}

In that case, the preceding sequence can then be written:

• ωA3 = {OA31(tA3,k−1), OA32(tA3,k), O
A
31(tA3,k+1)}.

This example shows the following important point of the TOT. The definition 3.6 allows to
partition the sequence ωA3 in two sequences, each of them being associated with an observation
class:

• ωA31 = {OA31(tA3,k−1), OA31(tA3,k+1)}, ωA32 = {OA32(tA3,k)};

• ωA3 = ωA31 ∪ ωA32;

• ωA31 ∩ ωA32 = ∅.

As a consequence, the set ΓA3 = {tA3,k−1, t
A
3,k, t

A
3,k+1} is also decomposed in two disjoints sets,

each of them constituting a stochastic clock:

• ΓA31 = {tA3,k−1, t
A
3,k+1}, ΓA32 = {tA3,k};

• ΓA3 = ΓA31 ∪ ΓA32;

40 CHAPTER 3. INTRODUCTION TO THE TIMED OBSERVATION THEORY

• ΓA31 ∩ ΓA32 = ∅.

This shows that the definition of a set O of observation classes decomposes a given sequence
ω of timed observations O(tk) in a superposition of sequences ωi, each of them being associated
with a particular observation classe Oi:

• OA31 = {(xA3 , stable} ⇒ ΘA
31(OA31), ωA31,Γ

A
31;

• OA32 = {(xA3 , not_stable} ⇒ ΘA
32(OA32), ωA32, ΓA32.

The notion of observation class facilitates then the interpretation and the filtering of a given
sequence ω whatever is the program Θ(X,∆). The next section shows that this notion provides
also a powerful tool to model an observed process (X(t),Θ(X,∆)).

3.8 Superposition Theorem

The concept of abstract binary observer is the core of the TOT (cf. ([LeG06] for a complete
description and [VLGBR16] for a concrete usage). The concept of abstract binary observer is
directly linked with the following Superposition Theorem:

Theorem 3.2 Superposition Theorem
If a program Θ(X,∆) is independent (that is to say it implements a memoryless observation
function so the constants δi of ∆ are independent), then any partition ∪i=1...n ∆i of ∆ so that
∀i 6= j, ∆i ∩ ∆j = ∅ decomposes the program Θ(X,∆) in a superposition of n independent
programs Θi(Xi,∆i) so that:

1. (∆ =
⋃

i=1...n
∆i)⇒ X =

⋃
i=1...n

Xi

2. ((∆ =
⋃

i=1...n
∆i) ∧ (X =

⋃
i=1...n

Xi))⇒ Θ(X,∆) =
⋃

i=1...n
Θi(Xi,∆i)

3. (Θ(X,∆) =
⋃

i=1...n
Θi(Xi,∆i)})⇒ (X(t),Θ(X,∆)) =

⋃
i=1...n

(Xi(t),Θi(Xi,∆i))

Proof of theorem 3.2:
Let us suppose that there exists a program Θi(Xi,∆i) which is not independent. Such a program
generates then timed observations O(ti) ≡ (δi, ti) where constants δi are not independent. Let
us denote Ωi, the sequence of timed observations produced by the program Θi(Xi,∆i). Any
superposition Ω = Ω1 ∪ ... ∪ Ωi ∪ ... ∪ Ωn contains then timed observations whose constants
are not independent. Such a superposition can be considered to have been made by a program
denoted Θ({X1, ..., Xi, ..., Xn},∆1∪ ...∆i...∪ ...∆n) which superimposes timed observations made
by programs Θ(X1,∆1), ..., Θ(Xi,∆i), ..., Θ(Xn,∆n). Thus, by construction, the observation
function δX1...Xi...Xn of the program Θ({X1, ..., Xi, ..., Xn},∆1∪ ...∆i...∪ ...∆n) is not memoryless
and then such a program is not independent. We have then demonstrated that:

∃i,Θi(Xi,∆i) is not independent⇒ Θ({X1, ..., Xi, ..., Xn},∆1∪...∆i...∪...∆n) is not independent
(3.30)

The contraposition of 3.30 is:

Θ({X1, ..., Xi, ..., Xn},∆1∪...∆i...∪...∆n) independent⇒ ∀i,Θi(Xi,∆i) are independent (3.31)

3.9. TEMPORAL BINARY RELATION 41

Equation 3.31 demonstrates theorem 3.2.

In other words, the partitioning of the set ∆ in n disjoint sets ∆i transforms a program
Θ(X,∆) in a superposition of n independent programs Θi(Xi,∆i). Such a partition is made
with the definition of a set O = {Oi}i=1...n so that:

Θ(X,∆) =
⋃

i=1...n

Θi(Oi) (3.32)

It is important to note that the theorem 3.2 is only based on an adequate partition of the set
∆ of constants and concerns only the program Θ: no hypothesis is made about the dynamics of
the process X(t).

The equation 3.32 and the theorem 3.2 mean that, given an adequate set O = {Oi}i=1...n, any
observed process (X(t),Θ(X,∆)) can be seen as a network of observed processes

⋃
i
(Xi(t),Θi(Oi)).

The term network is used because the partitioning of ∆ does not entail the partition of the pro-
cess X(t): it does not matter that the subsets Xi are or aren’t disjoint. In other words, the
observed processes (Xi(t),Θi(Oi)) can share some time function xi(t).

The application of these theorems is very simple. For example, considering collectively the
theorems 3.7 and 3.2, each observation class Oi can be defined as a singleton so that each δi is
associated with one and only one variable xi (a variable name can be associated with multiple
constants). In that case, a program Θ(X,∆) where ∆ contains n constants δi can be considered
as a superposition of n independent memoryless programs Θi(Oi) (cf. equation 3.32). This way
of defining the set O is very current in practice. And when the variable xi is not known, an
abstract variable φi can be used.

More generally, the importance of the Superposition Theorem comes from the fact it allows
to describe recursively any complex observed process (X(t),Θ(X,∆)) as a network of observed
processes

⋃
i
(Xi,Θi(Xi,∆i)). This property is very important to diagnose a complex observed

process (X(t),Θ(X,∆)).

3.9 Temporal Binary Relation

This section aims at defining the concepts of Temporal Binary Relation and Observed Relation.

Definition 3.8 Temporal Binary Relation
A temporal binary relation r(Oi, Oj , [τ

−
ij , τ

+
ij]), τ−ij ∈ <, τ

+
ij ∈ <, is an oriented (sequential)

relation between two observation classes Oi and Oj that are timed constrained with the [τ−ij , τ
+
ij]

interval.

The temporal constraint [τ−ij , τ
+
ij] of a temporal binary relation r(Oi, Oj , [τ−ij , τ

+
ij]) is the time

interval for observing an occurrence Oj(tkj) of the “output” observation class Oj after the obser-
vation of an occurrence Oi(tki) of the “input” observation class Oi:

Definition 3.9 Observed Relation
Let the couple (X(t),Θ(X,∆)) be an observed process defining a particular set O = {Oi} of m
observation classes containing two classes Oi and Oj; let ω = {..., Ol(tk), ...}, tk ∈ Γ ⊆ <, k =

0...n−1, l = 0...m−1, be a sequence of n timed observations Ol(tk) provided by (X(t),Θ(X,∆)).

42 CHAPTER 3. INTRODUCTION TO THE TIMED OBSERVATION THEORY

A temporal binary relation r(Oi, Oj , [τ
−
ij , τ

+
ij]) between two classes Oi and Oj is said to be

observed in ω if there is at least two timed observations Oi(tki) and Oj(tkj) so that tkj − tki
satisfies the timed constraint [τ−ij , τ

+
ij] of r(Oi, Oj , [τ−ij , τ

+
ij]).

Formally, the relation r(Oi, Oj , [τ−ij , τ
+
ij]) is observed if and only if:

r(Oi, Oj , [τ
−
ij , τ

+
ij])⇔ ∃Oi(tki) ∈ ω,∃Oj(tkj) ∈ ω, tkj − tki ∈ [τ−ij , τ

+
ij] (3.33)

A temporal binary relation of the form r(Oi, Oj ,]0,+∞[) is a purely sequential binary rela-
tion: to be observed, the occurrence Oj(tkj) must succeed the occurrence Oi(tki) (i.e. tkj > tki).
For simplicity reasons, such a sequential binary relation is denoted r(Oi, Oj):

r(Oi, Oj ,]0,+∞[) ≡ r(Oi, Oj) (3.34)

3.10 Abstract Chronicle Model

Nevertheless, the definition of a temporal binary relation r(Oi, Oj , [τ−ij , τ
+
ij]) (cf. definition 3.8)

is the basis of the notion of Abstract Chronicle Model :

Definition 3.10 Abstract Chronicle Model
Any arbitrarily made set M = {rk(Oi, Oj , [τ−ij , τ

+
ij])}k=1...n of n temporal binary relations rk(Oi,

Oj, [τ−ij , τ
+
ij]) is an abstract chronicle model.

The abstract chronicle models of the TOT framework are represented with a graphical knowl-
edge representation language called "ELP” for "Event Language for Process behavior modeling”
[BLGC08].

A particular sequence ωi = {O(tk)}k=0...n−1 of n timed observations that is consistent with the
logical and the timed constraints of a given abstract chronicle modelM is called an instance ofM .
For example, let us consider the following abstract chronicle model M123 = { r12(O1, O2, [0, 5]),

r23(O2, O3, [3, 8])}. The sequence ωi = {O1(1), O4(3), O2(4), O1(8), O3(10)} is an instance of
M123 because ωi contains the occurrences O1(1), O2(4) and O3(10) satisfying the logical and the
timed constraints of M123:

• O1(1) and O2(4) satisfy the logical condition of the relation r12(O1, O2, [0, 5]) (i.e. the
observation class of O1(1) is O1 (resp. O2 for O2(4)).

• O1(1) and O2(4) satisfy the temporal condition of the relation r12(O1, O2, [0, 5]) (i.e. 4−1 =

3, 3 ∈ [0, 5]).

• O2(4) and O3(10) satisfy the logical condition of the relation r23(O2, O3, [3, 8]) (i.e. the
observation class of O2(4) is O2 (resp. O3 for O3(10)).

• O2(4) and O3(10) satisfy the temporal condition of the relation r23(O2, O3, [3, 8]) (i.e.
10− 4 = 6, 6 ∈ [3, 8]).

The notions of abstract chronicle model and instance of model are of the most interest for
the diagnosis of an observed process (X(t),Θ(X,∆)). Specifically, a particular type of abstract
chronicle models, called a path, plays an important role:

3.11. MODELING WITH THE TOT 43

Definition 3.11 Path
An abstract chronicle model M made with a suite of n− 1 timed binary relations M = { r1(Oi,
Oi+1, [τ−1 , τ

+
1]), r2(Oi+1, Oi+2, [τ−2 , τ

+
2]) ,..., rn(Oi+n−1, Oi+n, [τ−n , τ

+
n])} is a path.

The M123 abstract chronicle model, for example, is a path. More generally, a set P =

{..., pi, ...} of nP pathes pi = {..., rini(Ok−1, Ok, [τ
−
k , τ

+
k]), ...} where the last relation rini(Ok−1,

Ok, [τ−k , τ
+
k]) of each path pi, except one, is a relation contained in another path pj of P is also

called a path because in that case, P constitutes a kind of path of paths. Graphically represented,
P is a chained list of observation classes (cf. figure 3.2 for example, where the classes are the
ellipses denoted with a number).

Figure 3.2: Example of a path made with 3 paths

A particular (set of) path P constitutes a specific structure that allows the reading of a given
sequence ωi of timed observations O(tki): if ωi satisfies the logical and the temporal constraints
of the suite of relations rj(Oj−1, Oj , [τ

−
j , τ

+
j]), ∀j, of a given path pi (pi ∈ P), then ωi is an

instance of the path pi. In that case, the path pi constitutes an interpretation structure of the
sequence ωi. This interpretation structure is like a synopsis of the narrative structure that is the
sequence ωi. Inversely, ωi is like a scenario (or the story) that must satisfy the logical and the
temporal constraints of the path pi.

3.11 Modeling with the TOT

Technically, the timed observationsO(tki) of a sequence ωi constitute an information flow. A path
pi is then a representation of the knowledge that is necessary to interpret the timed observations
O(tki) of ωi.

Generally speaking, knowledge results of the interaction between an information flow and an
arbitrary purpose. This interaction is assumed by humans which define their purpose according
to their own expectations [Non94], [Non91] and [AL01]. Information comes from all the possible
sources: believes, observations, experimentation, scientific axioms, sensors, etc [Pol66], [NK98]
and [SBF98]. The interaction is basically an interpretation of the information flow that traverses
a thinking human [Dam05] and [Dam99].

To define the modeling principles of the TOT, the following operational definition of knowl-
edge will be used:

Definition 3.12 Operational Notion of Knowledge
Knowledge results from an intentional interpretation of a flow of information.

This definition establishes a relation between knowledge, information and a purpose (an
intention). The purpose is always defined by humans: in the framework of the TOT, the purpose

44 CHAPTER 3. INTRODUCTION TO THE TIMED OBSERVATION THEORY

is implemented in an observer program Θ(X,∆) which can be either executed by a human or
a computer. Considering the diagnosis task of a dynamic process, the purpose is typically the
assessment of a fault linked with the occurrence of an undesired behavior.

3.12 Model according to the TOT

The fundamental role of a model is the sharing of knowledge between humans. This sharing is
facilitated through the mediation of signs belonging to a particular set (often called alphabet).
These signs have no meaning in themselves but are necessary to represent knowledge in order to
share a common understanding of an observed set of phenomena.

As a consequence, a model is made with a particular arrangement of signs: the meaning
results precisely of the specific arrangement the modeler choose to share its knowledge. The
representation of a knowledge corpus requires then a set of rules that defines the authorized
arrangements (i.e. a grammar).

This leads to define the notion of model according to the TOT:

Definition 3.13 Model according to the TOT
A model is an organized set of knowledge representations.

It is clear that the organization of the knowledge representations within a model is of the
main importance. The TOT being concerned with the evolutions of an observed process over
time, the knowledge under consideration is linked with the relations between functions of time
xi(t), the constants δi and the stochastic clocks Γi={tki}, tki ∈ R, ki ∈ N . The TOT organizes
these relations around the notion of variable xi (cf. figure 3.3).

Figure 3.3: Relations between the Basic Objects of the TOT

A piece of knowledge belongs then to three fundamental categories:

1. Relations between the functions xi(t) of a process X(t). This category of knowledge is
called the "structural knowledge" because, in the framework of the TOT, the functions
xi(t) are the constituents (i.e. the components) of a process X(t).

2. Relations between the constants δi of the set ∆ used by a program Θ to describe the
evolutions of the functions xi(t). This category is called the "functional knowledge" because
the relations between the constants δi can be represented with logical rules linking together
subsets ∆i of constants of ∆ and so, specifies abstract mathematical functions under the
form of "tables of values".

3.13. THE TOT MODELING PRINCIPLES 45

3. Relations between the stochastic clocks Γi. This category is called the "behavioral knowl-
edge" because these relations describe the links between the evolutions of the functions xi(t)
of a process X(t). This type of knowledge is directly linked with the set O = {Oi}i=1..nc

of observation classes.

As figure 3.3 aims at showing, these three categories of relations are linked together: a specific
set ∆ of constant δi will lead an observer program Θ to describe the evolution of a process X(t)

with a particular set Γ of timestamps. The role of the concept of variable in the TOT framework
is to provide the mean to analyze the consistency of these three categories of knowledge about a
process X(t).

So, the concept of variable defines a supplementary category of knowledge, which is a kind of
meta-knowledge (i.e. the modeling point of view), that fundamentally defines the way a dynamic
process X(t) is perceived by humans (i.e. the perception knowledge). In practice, this leads to
the following definition of the aim of the modeling activity:

Definition 3.14 Modeling activity according to the TOT
The modeling activity of a dynamic process X(t) aims at representing the elicited knowledge
according to a formalism and at distributing the knowledge representations over three models, the
structural, the functional and the behavioral model, according to a definition of a particular set
of variables X.

By construction, a particular set of variables X is a subset of all the variables that can be
defined about a dynamic process. The only rational way to specify X is precisely the modeling
purpose: are only required the variables that play a role in the modeling purpose (i.e. the
diagnosis task for example). The other variables can be forgotten (at least in a first step). This
set of variables X defines then the process according to modeling purpose, and so fixes the
abstraction level of the model.

3.13 The TOT Modeling Principles

This chapter introduces the necessary and sufficient mathematical tools of the TOT that are
required to define the modeling framework of our contributions.

These tools can be sum up through the five modeling principles of the TOT:

1. Variable localization.
A time function xi(t) is a signal provided by a sensor located at a particular place defined
as a component. So, a function xi(t) specifies a variable xi, a component ci and a binary
relation that associate xi to ci. As a consequence, a variable xi is always associated with
a sensor that is physically located on a component ci. In other words, any variable xi of X
must be associated with one and only one component ci.

2. Multi-valued variable.
A variable xi is necessarily defined over a set ∆xi of possible values containing at least two
elements. This means that when the experts’ knowledge defines only one value δi for a
variable xi(t) , the knowledge engineer must introduce in ∆xi another constant, denoted

46 CHAPTER 3. INTRODUCTION TO THE TIMED OBSERVATION THEORY

δj for example, meaning "not δi" (i.e. ∆xi = {δi, δj} and δj ≡ ¬ δi). This principle is a
direct consequence of the spatial segmentation of the TOT (cf. Figure 3.3).

3. Discernible state.
According to the interpretation 3.27, an occurrence Oi(tk) of an observation class Oi corre-
sponds to the assignment of a value δi to a variable xi. Such an assignation results necessar-
ily of an observable modification in the dynamic process X(t). So two occurrences Oi(tk)
and Oj(tk+1) mark a discernible state transition in an observed process (X(t),Θ(X,∆)).
This means that a temporal binary relation r(Oi, Oj , [τ

−
ij , τ

+
ij]) defines a particular dis-

cernible state.

4. Separation of knowledge of different nature.
Since the TOT defines four categories of knowledge (structural, functional, behavioral and
perception), four models will contain a specific category of knowledge representations: a
Structural Model SM will contain all the structural knowledge, a Functional Model FM will
contain all the functional knowledge, a Behavioral Model BM will contain all the behav-
ioral knowledge, and a Perception Model PM will contain the perception knowledge. This
constitutes the multi-modeling framework of the TOT [CGTT93], [CR99] and [ZGF06a].

5. Symbol driven modeling.
The knowledge interpretation aims at identifying the minimal set of symbols denoting a
time function xi(t), a variable xi or a constant δi and the minimal set of relations between
them (cf. figure 3.3). The logical properties coming from these minimal sets are necessary
and sufficient to complete the model. Among other meanings, this principle means that the
introduction of a symbol that is not associated with an element of the domain knowledge
is prohibited.

The Discernible state principle is particularly important according to the notion of Behavioral
Model BM. A discernible state is a property of the model of an observed process (X(t),Θ(X,∆)):

Definition 3.15 Discernible State
An arbitrary made set {rk(Oik , Ojk)}k=1...nk , ∀k, ik 6= jk, of nk observed relations of a temporal
binary relation r(Oi, Oj , [τ−ij , τ

+
ij]) defines a discernible state.

Clearly, the Tom4D notion of discernible state is directly linked with the TOT notion of
variable: if a constant δi is assigned to a variable xi, then the only reason is that something
happens in the observed process. In other words, the observed process moves from a discernible
state to another so that the variable xi has a new value, the constant δi. It is important to
note that what happens during the discernible state transition is not known but it is certain that
something happens: this is role of the Tom4D notion of discernible state to denote this certainty.

This notion is then conceptually different to the classical state notion of the Discrete Event
System (DES) domain where a state represents a property of the process X(t) itself.

3.14 Conclusion: about Abstraction Level

The aim of a modeling framework is to provide the tools allowing the building of a model that:

3.14. CONCLUSION: ABOUT ABSTRACTION LEVEL 47

1. resides at a particular level of abstraction,

2. is logically coherent (i.e. contains no contradiction), and

3. is as complete as possible.

These goals are given in the order of their importance: clearly, providing a coherent model at
the right abstraction level is the main modeling law to apply the five TOT modeling principles,
its completeness being desired but does not constitute a primary condition ([New81]).

Within the mathematical framework of the TOT, an abstraction level is defined by the
observed process (X(t),Θ(X,∆)) itself: no constraint is made about the way the sets X(t) and
∆ are made (the TOT imposes only two constraints on the program Θ). In other words, the
definition of a particular set X of variables and a set ∆ of constants constitutes the core of the
modeling process.

The definition of a recursive abstraction reasoning must then rely on the TOT’s notions of
variables and constants. To this aim, the next step is to define a sampling device that is coherent
with the Spatial Discretization Principle of the TOT, the principle that assigns a constant to a
variable when the observed process moves from a discernible state to another.

48 CHAPTER 3. INTRODUCTION TO THE TIMED OBSERVATION THEORY

CHAPTER 4

Composition of Observers

4.1 Introduction

This chapter aims at introducing the concept of composition of observers and of Abstract Binary
Observers. Both concepts are based on the notion of addition under temporal constraints of
timed observation whose a complete description can be found in [LeG06].

This reasoning chosen in this chapter has the following steps:

1. introduction of the neutral observation and timestamps and constants observations which
provide the basic elements to define the addition under temporal constraints of timed
observations;

2. deduction of an assignation from assignations which is the basic process of the abstraction
in the TOT framework;

3. addition of timed observations which is built from the deduction of an assignation from
two assignations;

4. composition of observers which is built from the addition of two timed observations and
allows to design observers producing observations from other observations;

5. abstract unary and binary observers which allow to provide an abstract structure to any
sequence of timed observations without having any knowledge about such sequences or
about concrete observers that have produced them.

4.2 Neutral Observation, Observation of a Timestamp, Observa-
tion of a Constant

Let us consider the observed process (X(t),Θ(X,∆) where X(t) = {xi(t)}i=1...n is a set of timed
functions. Let us recall here (see definition 3.2) that a timed observation O(tk) ≡ (δ, tk) ∈ ∆×Γ

made on a timed function xi(t) is the assignation of values xθ = xi, δθ = δ and tθ = tk to the
predicate θ(xθ, δθ, tθ), implemented in program Θ(X,∆) such as θ(xi, δ, tk). Technically, timed
observation O(tk) ≡ (δ, tk) denotes a record in the database whereas the assigned predicate
θ(xi, δ, tk) represents the meaning or the interpretation of such a timed observation.

49

50 CHAPTER 4. COMPOSITION OF OBSERVERS

Definition 4.1 Neutral Observation

A neutral observation denoted Oφ(tφ) ≡ (φ, tφ) is the assignation of values xΦ = xφ, δΦ = φ

and tΦ = tφ to the predicate Φ(xΦ, δΦ, tΦ) such as Φ(xφ, φ, tφ) where:

• xφ is a variable name of an undefined timed function xφ(t) which does not belong to the set
X(t) of timed functions observed by the program Θ(X,∆);

• φ is a symbolic constant which does not belong to the set ∆;

• tφ is a symbolic timestamps which respects any temporal constraints ∆τij ⊂ R:

∀t ∈ R,∀∆τij ≡ [τ−ij ; τ+
ij] ⊂ R, t− tφ ∈ ∆τij (4.1)

• Φ(xΦ, δΦ, tΦ) is the neutral predicate such as:

∃Φ(xφ, φ, tφ), ∀θ(xi, δ, tk),
Φ(xφ, φ, tφ) ∧ θ(xi, δ, tk)⇔
θ(xi, δ, tk) ∧ Φ(xφ, φ, tφ)⇔

θ(xi, δ, tk)

(4.2)

Elements are now in place to give the definitions of the observation of a timestamp and the
observation of a constant.

Definition 4.2 Observation of a Timestamp
The observation of a timestamp, denoted d(k) ≡ (φ, k), is the assignation of values xθd = xφ,
δθd = φ and tθd = tk to the predicate θd(xθd , δθd , tθd) such as θd(xφ, φ, tk).

The assignation θd(xφ, φ, tk) is the interpretation of the observation d(k) designating the
index k of the timestamp tk in a set of timestamps Γ.

Definition 4.3 Observation of a Constant
The observation of a constant, denoted δ(k) ≡ (δk, tφ), is the assignation of values xθδ = xφ,
δθδ = δk and tθδ = tφ to the predicate θδ(xθδ , δθδ , tθδ) such as θδ(xφ, δk, tφ).

The assignation θδ(xφ, δk, tφ) is the interpretation of the observation δ(k) designating the
index k of the constant δk in a set of constants ∆.

4.3 Deduction of an Assignation from Two Assignations

Let be two assignations θ1(x1, δi, ti) and θ2(x2, δj , tj) respectively associated to two timed ob-
servations O(ti) ≡ (δi, ti) and O(tj) ≡ (δj , tj) made by respectively two programs Θ1({x1},∆1)

and Θ2({x2},∆2). The assignation θ3(x3, δk, tk), tk ∈ [ti, tj] associated to the timed observation
O(tk) ≡ (δk, tk) is the assignation deducted from both assignations θ1(x1, δi, ti) and θ2(x2, δj , tj)

according to the following implication:

θ1(x1, δi, ti) ∧ θ2(x2, δj , tj) ∧ |tj − ti| ∈ ∆τ12 ⇒ θ3(x3, δk, tk) ∧ tk ∈ [ti, tj] (4.3)

Where:

4.4. ADDITION OF TWO TIMED OBSERVATIONS 51

• x3 is a variable that may be x1, x2 or any abstract variable;

• δk is a constant arbitrarily chosen in a set ∆3;

• tk ∈ Γk is a timestamp arbitrarily chosen in the interval [ti, tj] ⊂ R;

• ∆τ12 is a temporal constraint of the form ∆τ12 ≡ [τ−12; τ+
12] ⊂ R;

• θ3(xθ3 , δθ3 , tθ3) is any ternary predicate.

The assignation θ3(x3, δk, tk) can then be deducted by the application of the Modus Ponens
from the knowledge of both assignations θ1(x1, δi, ti) and θ2(x2, δj , tj) and if the temporal con-
straint |tj − ti| ∈ ∆τ12 is satisfied. Assignations θ1(x1, δi, ti) and θ2(x2, δj , tj) are then linked to
the assignation θ3(x3, δk, tk) by Modus Ponens and by temporal constraint |tj − ti| ∈ ∆τ12.

The implication 4.3 thus defines a process to build assignations from other assignations by
Modus Ponens. This process can be encoded in the program Θ3({x3},∆3). Such a program aims
then at writing timed observations of the form O(tk) ≡ (δk, tk) corresponding to the assignation
θ3(x3, δk, tk). The way to choose the variable x3, the constant δk and the timestamp tk depends
on the knowledge encoded in the program Θ3({x3},∆3). If the program Θ3({x3},∆3) has no
simultaneous observations and if it is memoryless then it is a safe program.

Such a process in an abstraction process: the timed observation O(tk) ≡ (δk, tk) is not
produced by a canonical program observing a timed function x3(t). The timed observationO(tk) ≡
(δk, tk) has been deducted from timed observations produced by other programs, Θ1({x1},∆1)

and Θ2({x2},∆2) in this particular case. The assignation θ3(x3, δk, tk) can also be used in an
implication of the form 4.3: such an abstraction process can be realized recursively. The notion
of timed observation plays then the role of a paradigm because its binary structure (δk, tk) is
invariant whatever the level of abstraction is.

4.4 Addition of Two Timed Observations

The deduction of an abstract assignation from a binary deduction rule corresponds to a time-
constrained addition of observations.

Let be two timed observations O(ti) ≡ (δi, ti) and O(tj) ≡ (δj , tj) respectively corresponding
to both assignations θi(xi, δi, ti) and θj(xj , δj , tj) in order to apply Modus Ponens with the
following rule:

θi(xi, δi, ti) ∧ θj(xj , δj , tj) ∧ |tj − ti| ∈ ∆τij ⇒ θk(xk, δk, tk) ∧ tk ∈ [min(ti, tj),max(ti, tj)] (4.4)

In the following, we denote tm = min(ti, tj) and tM = max(ti, tj).
Let be O(tk) ≡ (δk, tk), the timed observation corresponding to the assignation θk(xk, δk, tk)

deducted by application of the Modus Ponens with the rule 4.4. Such an application of the Modus
Ponens with the rule 4.4 corresponds to the following operation of addition under temporal
constraints ∆τij of timed observations O(ti) and O(tj):

O(ti)
∆τij
+ O(tj) = O(tk), tk ∈ [tm, tM] (4.5)

52 CHAPTER 4. COMPOSITION OF OBSERVERS

Such an addition is then only possible iff the following temporal conditions are respected:

tM ∈ tm + ∆τij (4.6)

This means that if such temporal conditions are not respected, the application of the Modus
Ponens with the rule 4.4 fails. This leads to the following definition:

Definition 4.4 Addition under Temporal Constraints of Timed Observations

The operation of addition, denoted
∆τij
+ , of timed observations O(ti) and O(tj) under the temporal

constraints ∆τij corresponds to the application of the Modus Ponens with the rule 4.4.

Now, let us focus on some properties of such an addition.

Property 6 Neutral Element
The neutral observation is the neutral element for the operation of addition under temporal con-
straints.

According to definition 4.1 and equation 4.1, we can compose the equation 4.2 with the
temporal constraints |tφ − ti| ∈ ∆τij without changing anything:

∃Φ(xφ, φ, tφ),∀θi(xi, δi, ti),
θi(xi, δi, ti) ∧ Φ(xφ, φ, tφ) ∧ |tφ − ti| ∈ ∆τij ⇔
Φ(xφ, φ, tφ) ∧ θi(xi, δi, ti) ∧ |tφ − ti| ∈ ∆τij ⇔

θi(xi, δi, ti)

(4.7)

According to definition 4.4, this corresponds to the following addition:

∃Oφ(tφ),∀O(ti), O(ti)
∆τij
+ Oφ(tφ) = Oφ(tφ)

∆τij
+ O(ti) = O(ti) (4.8)

This demonstrates the existence of a neutral element, Oφ(tφ), for the operation
∆τij
+ .

Property 7 Commutativity
The operation of addition under temporal constraints is commutative.

The logical operator ∧ being commutative, it is clear that the rule 4.4 is equivalent to the
following equation:

θj(xj , δj , tj) ∧ θi(xi, δi, ti) ∧ |tj − ti| ∈ ∆τij ⇒ θk(xk, δk, tk) ∧ tk ∈ [tm, tM] (4.9)

It Corresponds then to the following addition under temporal constraints ∆τij of timed
observations O(tj) and O(ti):

O(tj)
∆τij
+ O(ti) = O(tk), tk ∈ [tm, tM] (4.10)

The operation
∆τij
+ is then a commutative one:

∀O(ti), O(tj), O(ti)
∆τij
+ O(tj) = O(tj)

∆τij
+ O(ti) (4.11)

4.4. ADDITION OF TWO TIMED OBSERVATIONS 53

Property 8 Associativity
The operation of addition under temporal constraints is associative.

Let be three assignations θ1(x1, δ1, t1), θ2(x2, δ2, t2) and θ3(x3, δ3, t3) respectively associated
to three timed observations O(t1) ≡ (δ1, t1), O(t2) ≡ (δ2, t2) and O(t3) ≡ (δ3, t3) made by respec-
tively three programs Θ1({x1},∆1), Θ2({x2},∆2) and Θ3({x3},∆3). Let be θ4(x4, δk, tk), tk ∈
{t1, t2, t3}, the assignation associated to the timed observation O(tk) ≡ (δk, tk), deducted from
the three assignations θ1(x1, δ1, t1), θ2(x2, δ2, t2) and θ3(x3, δ3, t3) by application of the Modus
Ponens with the following rule:

(θ1(x1, δ1, t1) ∧ θ2(x2, δ2, t2) ∧ |t2 − t1| ∈ ∆τ12)

∧(θ2(x2, δ2, t2) ∧ θ3(x3, δ3, t3) ∧ |t3 − t2| ∈ ∆τ23)

∧(θ1(x1, δ1, t1) ∧ θ3(x3, δ3, t3) ∧ |t3 − t1| ∈ ∆τ13)

⇒ θ4(x4, δk, tk) ∧ tk ∈ {t1, t2, t3},
where ∆τ13 = [τ−12 + τ−23, τ

+
12 + τ+

23].

(4.12)

The application of the Modus Ponens with the rule 4.12 corresponds to the three following
additions under temporal constraints ∆τ12, ∆τ23 and ∆τ13:

O(t1)
∆τ12
+ O(t2) = O12(t12), t12 ∈ [t1, t2] if max(t1, t2) ∈ min(t1, t2) + ∆τ12

O12(t12)
∆τ23
+ O(t3) = O123(t123), t123 ∈ [t12, t3] if max(t12, t3) ∈ min(t12, t3) + ∆τ23

O(t1)
∆τ13
+ O123(t123) = O(tk), tk ∈ [t1, t123] if max(t1, t123) ∈ min(t1, t123) + ∆τ13

(4.13)

Since tk ∈ [t1, t123], t123 ∈ [t12, t3] and t12 ∈ [t1, t2], we have then tk ∈ [t1, t123] ⇒ tk ∈
{t1, t2, t3}.

The application of the Modus Ponens with the rule 4.12 corresponds also to the three following
additions:

O(t2)
∆τ23
+ O(t3) = O23(t23), t23 ∈ [t2, t3] if max(t2, t3) ∈ min(t2, t3) + ∆τ23

O(t1)
∆τ13
+ O23(t23) = O123(t123), t123 ∈ [t1, t23] if max(t1, t23) ∈ min(t1, t23) + ∆τ13

O123(t123)
∆τ12
+ O(t2) = O(tk), tk ∈ [t123, t2] if max(t123, t2) ∈ min(t123, t2) + ∆τ12

(4.14)

Since tk ∈ [t123, t2], t123 ∈ [t1, t23] and t23 ∈ [t2, t3], we have then tk ∈ [t123, t2] ⇒ tk ∈
{t1, t2, t3}.

Since ∆τ13 = [τ−12 + τ−23, τ
+
12 + τ+

23], additions of 4.13 and 4.14 can be written according to the
unique following form:

O(t1)
∆τ12
+ O(t2)

∆τ23
+ O(t3) = O(tk), tk ∈ {t1, t2, t3}

if max(t1, t2) ∈ min(t1, t2) + ∆τ12 and max(t2, t3) ∈ min(t2, t3) + ∆τ23

(4.15)

This leads to conclude that the addition under temporal constraints is associative:

54 CHAPTER 4. COMPOSITION OF OBSERVERS

O(t1)
∆τ12
+ O(t2)

∆τ23
+ O(t3) =

(
O(t1)

∆τ12
+ O(t2)

)
∆τ23
+ O(t3) = O(t1)

∆τ12
+

(
O(t2)

∆τ23
+ O(t3)

)
(4.16)

This method extends in the same way to the additions of n observations. The advantage of
this definition of addition of observations is that it applies to the sequences of timed observations
as shown in the following section.

4.5 Composition of Observers

Let be two programs Θ1({x1},∆1) and Θ2({x2},∆2) defining respectively sets of timestamps Γ1

and Γ2 and implementing respectively the predicates θ1(xθ1 , δθ1 , tθ1) and θ2(xθ2 , δθ2 , tθ2). Let be
ω1(tn) = {O(ti) ≡ (δi, ti), δi ∈ ∆1, ti ∈ Γ1}, the sequence of n timed observations produced by
the program Θ({x1},∆1). Let be ω2(tm) = {O(tj) ≡ (δj , tj), δj ∈ ∆2, tj ∈ Γ2}, the sequence of
m timed observations produced by the program Θ({x2},∆2).

The operation of addition of sequences of timed observations ω1(tn) and ω2(tm) is built from
the operation of addition under temporal constraints ∆τij :

∀ti ∈ Γ1,∀tj ∈ Γ2, O(ti)
∆τij
+ O(tj) = O(tk) (4.17)

Such an addition defines a sequence ω3(tp) = {O(tk) ≡ (δk, tk), δk ∈ ∆3, tk ∈ Γ3} of p timed
observations. Each timed observation O(tk) corresponds to the application of the Modus Ponens
with the following rule:

∀ti ∈ Γ1,∀tj ∈ Γ2, θ1(x1, δi, ti) ∧ θ2(x2, δj , tj) ∧ |tj − ti| ∈ ∆τij

⇒ ∃tk ∈ Γ3, θ3(x3, δk, tk) ∧ tk ∈ [ti, tj]
(4.18)

Each timed observationO(tk) is then the assignation θ3(x3, δk, tk) of a predicate θ3(xθ3 , δθ3 , tθ3)

which is implemented in an abstract program Θ3({x3},∆3).

This leads us to the definition of the composition of observers:

Definition 4.5 Composition of Observers
Given two programs Θ1({x1},∆1) and Θ2({x2},∆2), any program Θ3({x3},∆3) implementing
the rule 4.18 defines an operation of addition of all the timed observations produced by programs
Θ1({x1},∆1) and Θ2({x2},∆2). Such an operation is called the composition of observers and is
denoted ⊕:

Θ3({x3},∆3) = Θ1({x1},∆1)⊕Θ2({x2},∆2) (4.19)

The composition of observers ⊕ being built from the addition under temporal constraints of
timed observations, it inherits of its properties:

• existence of a neutral element, the neutral observer, denoted ΘΦ({xφ}, {φ}) implementing
the neutral predicate defined in 4.2:

4.6. ABSTRACT UNARY OBSERVER 55

∃ΘΦ({xφ}, {φ}),∀Θ1({x1},∆1),

Θ1({x1},∆1)⊕ΘΦ({xφ}, {φ}) = ΘΦ({xφ}, {φ})⊕Θ1({x1},∆1) = Θ1({x1},∆1)
(4.20)

• commutativity:

∀Θ1({x1},∆1),∀Θ2({x2},∆2),

Θ1({x1},∆1)⊕Θ2({x2},∆2) = Θ2({x2},∆2)⊕Θ1({x1},∆1)
(4.21)

• associativity:

∀Θ1({x1},∆1), ∀Θ2({x2},∆2), ∀Θ3({x3},∆3),

(Θ1({x1},∆1)⊕Θ2({x2},∆2))⊕Θ3({x3},∆3) =

Θ1({x1},∆1)⊕ (Θ2({x2},∆2)⊕Θ3({x3},∆3))

(4.22)

4.6 Abstract Unary Observer

Let us now go back to the definition of the addition under temporal constraints of two timed
observations introduced in 4.5:

O(ti)
∆τij
+ O(tj) = O(tk), tk ∈ [tm, tM] (4.23)

Such an operation being true for all timed observations O(ti) and O(tj), we can use it in the
particular case where O(ti) is the observation of a constant (cf definition 4.3), δ(k) ≡ (δk, tφ),
and where O(tj) is the observation of a timestamps (cf definition 4.2), d(k) ≡ (φ, tk). Since
O(tk) ≡ (δk, tk), equation 4.23 gives then:

(δk, tφ)
R
+ (φ, tk) = (δk, tk), ∀tk ∈ R (4.24)

Such an addition has no temporal constraints that is to say: ∆τij = R.
This demonstrates the following property:

Property 9
Any timed observation is always the result of the addition of the observation of a constant and
of the observation of a timestamp.

Let us now consider a sequence ω(tn) = {O(tk) ≡ (δk, tk), δk ∈ ∆, tk ∈ Γ} of n timed
observations. Such a sequence defines a set K = {k, k ∈ [1, n]} of index k. Each index k of K

maps the constant δk in ∆ and the timestamp tk in Γ. Since, (δk, tk) = (δk, tφ)
R
+ (φ, tk), timed

observations of the sequence ω(tn) are made by the composition of both following observers:

• an observer of constants, denoted Θδ({xφ},∆), implementing the predicate θδ(xθδ , δθδ , tθδ)
defined in 4.3. The assignation of such a predicate is the interpretation of the observation
δ(k) designating the index k of the constant δk in a set of constants ∆.

56 CHAPTER 4. COMPOSITION OF OBSERVERS

• an observer of timestamps, denoted Θd(Γ, {φ}), implementing the predicate θd(xθd , δθd , tθd)
defined in 4.2. The assignation of such a predicate is the interpretation of the observation
δ(k) designating the index k of the timestamp tk in a set of timestamps Γ.

The sequence of timed observations ω(tn) is then obtained by the application of the Modus
Ponens with the following rule:

∀k ∈ K, θδ(xφ, δk, tφ) ∧ θd(xφ, φ, tk) ∧ |tk − tφ| ∈ R

⇒ θ(xφ, δk, tk)
(4.25)

In the assigned predicate θ(xφ, δk, tk), the variable name xφ is used to indicate the absence of
knowledge about the way the sequence ω(tn) has been produced. Such a predicate can then be im-
plemented in an abstract program, called an Abstract Unary Observer and denoted Θ({xφ},∆),
observing an unknown timed function xφ(t). According to definition 4.5, we have the following
composition of observers:

Θ({xφ},∆) = Θδ({xφ},∆)⊕Θd(Γ, {φ}) (4.26)

Figure 4.1 illustrates the internal structure of the Abstract Unary Observer Θ({xφ},∆).

Figure 4.1: Internal structure of the Abstract Unary Observer Θ({xφ},∆)

In this section, both following properties have then been demonstrated:

Property 10
Any sequence of timed observations ω(tn) = {O(tk) ≡ (δk, tk), δk ∈ ∆, tk ∈ Γ} is characterized
by a set K of index k designating the constants δk contained in the set ∆ and the timestamps tk
contained in the set Γ.

Property 11
Any sequence of timed observations ω(tn) = {O(tk) ≡ (δk, tk), δk ∈ ∆, tk ∈ Γ} can be rep-
resented by an Abstract Unary Observer Θ({xφ},∆), decomposable into an observer of con-
stants, Θ({xφ},∆), and an observer of timestamps, Θd(Γ, {φ}): Θ({xφ},∆) = Θδ({xφ},∆) ⊕
Θd(Γ, {φ}).

An Abstract Unary Observer is an abstract structural model of a sequence of timed obser-
vations. This model is applicable to any sequence of timed observations, whether produced by
a canonical or composed observer. This structure does not say anything about the embedded
knowledge in the observer who has produced the sequence. It designates neither the observed
variable nor the program, neither the structure of the clock associated with the set of timestamps,

4.7. ABSTRACT BINARY OBSERVER 57

nor the rules of choice of the constants. This knowledge is meta regarding to the sequence of
timed observations.

4.7 Abstract Binary Observer

Let us consider again the sequence ω(tn) = {O(tk) ≡ (δk, tk), δk ∈ ∆, tk ∈ Γ} of n timed
observations. Such a sequence defines a set K = {k, k ∈ [1, n]} of index k. Each index k of K
maps the constant δk in ∆ and the timestamp tk in Γ.

Let us arbitrarily split the set ∆ into two disjoint sets ∆i and ∆j such as ∆ = ∆i ∪∆j and
∆i ∩∆j = ∅. The sequence ω(tn) is then the superposition of two sequences ωi(tni) and ωj(tnj)
of respectively ni and nj timed observations.

The sequence ωi(tni) = {O(tki) ≡ (δki , tki), δki ∈ ∆i, tki ∈ Γi} defines a set Ki = {ki, ki ∈
[1, ni]} of index ki. Each index ki of Ki maps the constant δki in ∆i and the timestamp tki in
Γi.

The sequence ωj(tnj) = {O(tkj) ≡ (δkj , tkj), δkj ∈ ∆j , tkj ∈ Γj} defines a set Kj = {kj , kj ∈
[1, nj]} of index kj . Each index kj of Kj maps the constant δkj in ∆j and the timestamp tkj in
Γj .

In the following, a timed observation O(tk) is then denoted under the following form: O(tk) ≡
O(k) ≡ (δk, tk).

According to property 11, sequences ωi(tni) and ωj(tnj) can be respectively represented by
two Abstract Unary Observers denoted Θi({xφi},∆i) and Θj({xφj},∆j). Abstract variables xφi
and xφj are unknown but take some values in sets ∆i and ∆j . We have then:

∀O(k) ∈ ω(tn), δ(k) ∈ ∆i ⇒ O(k) ∈ ωi(tni)
∀O(k) ∈ ω(tn), δ(k) ∈ ∆j ⇒ O(k) ∈ ωj(tnj)

K = Ki ∪Kj ⇒ ∆ = ∆i ∪∆j ∧ ω(tn) = ωi(tni) ∪ ωj(tnj) ∧ Γ = Γi ∪ Γj

(4.27)

Let us now consider the partitions K1
ij ⊆ Ki and K2

ij ⊆ Kj of the sets Ki and Kj such as:

∀(O(k), O(k + 1)) ⊆ ω(tn), δ(k) ∈ ∆i ∧ δ(k + 1) ∈ ∆j ⇒ k ∈ K1
ij ∧ k + 1 ∈ K2

ij (4.28)

Partitions K1
ij and K

2
ij define partitions Ω1

ij ⊆ ωi(tni) and Ω2
ij ⊆ ωj(tnj) of sequences ωi(tni)

and ωj(tnj) such as:

∀O(k) ∈ ω(tn), k ∈ K1
ij ⇒ δ(k) ∈ ∆i ∧O(tk) ∈ Ω1

ij

∀O(k) ∈ ω(tn), k ∈ K1
ij ⇒ ∃k + 1 ∈ K2

ij , δ(k + 1) ∈ ∆j ∧O(k + 1) ∈ Ω2
ij

(4.29)

And:

∀O(k + 1) ∈ ω(tn), k + 1 ∈ K2
ij ⇒ δ(k + 1) ∈ ∆j ∧O(k + 1) ∈ Ω2

ij

∀O(k + 1) ∈ ω(tn), k + 1 ∈ K2
ij ⇒ ∃k ∈ K1

ij , δ(k) ∈ ∆i ∧O(k) ∈ Ω1
ij

(4.30)

The timestamps tk, k ∈ K1
ij and tk+1, k + 1 ∈ K2

ij are linked by a temporal interval ∆τij of
the form ∆τij = [τ−ij , τ

+
ij] such as:

58 CHAPTER 4. COMPOSITION OF OBSERVERS

τ−ij = min(tk, tk+1)

τ+
ij = max(tk, tk+1)

(4.31)

Thus, timed observations O(k), k ∈ K1
ij and O(k + 1), k + 1 ∈ K2

ij respect the following
equation:

∀(k, k + 1) ∈ K1
ij ×K2

ij , ∃(O(k), O(k + 1)) ⊆ ω(tn),

O(k) ∈ Ω1
ij ∧O(k + 1) ∈ Ω2

ij ∧ tk+1 − tk ∈ ∆τij = [τ−ij , τ
+
ij]

(4.32)

It is then possible to link timed observations O(k) ∈ Ω1
ij and O(k + 1) ∈ Ω2

ij to a binary
observation Oij(k + 1) defined by the addition under temporal constraint ∆τij :

∀(k, k + 1) ∈ K1
ij ×K2

ij , Oij(k + 1) = O(k)
∆τij
+ O(k + 1) (4.33)

Where:

• O(k) ≡ (δk, tk) is the kth timed observation of the sequence ω(tn) built from the index k
of the set K1

ij ,

• O(k+ 1) ≡ (δk+1, tk+1) is the (k+ 1)th timed observation of the sequence ω(tn) built from
the index k + 1 of the set K2

ij

• Oij(k + 1) ≡ (δijk+1, t
ij
k+1) is a timed observation such as tijk+1 ∈ {tk, tk+1}.

The couple of index (k, k + 1) ∈ K1
ij ×K2

ij linking the timestamps of the timed observations
O(k) and O(k + 1), the temporal constraint ∆τij is always verified by construction of the sets
K1
ij and K

2
ij . It is then useless and the addition 4.33 is a pure sequential one:

∀(k, k + 1) ∈ K1
ij ×K2

ij , Oij(k + 1) = O(k) +O(k + 1) (4.34)

The timed observation Oij(k + 1) corresponds then to the observation of a binary sequence
of observations (O(k), O(k + 1)) ⊂ ω(tn) such as:

∃(k, k + 1) ⊂ K, δ(k) ∈ ∆i ∧ δ(k + 1) ∈ ∆j (4.35)

Thus, the timed observation Oij(k + 1) is the observation of a couple of constants (δk, δk+1)

and a couple of timestamps (tk, tk+1) linked to the couple of index (k, k + 1):

δijk+1 ⇔ (δk, δk+1)

tijk+1 ∈ {tk, tk+1}
(4.36)

The index k+1 referencing a unique timestamp tk+1 in the set Γ of the sequence ω(tn), there
is no ambiguity regarding the timed observation Oij(k + 1). Since (cf 9):

Oij(k + 1) = δ(k + 1) + d(k + 1) ≡ (δijk+1, tφ) + (φ, tijk+1) (4.37)

We have then:

d(k + 1) = tk+1 ≡ (φ, tijk+1)⇒ tijk+1 = tk+1 (4.38)

4.7. ABSTRACT BINARY OBSERVER 59

The choice of a constant in a timed observation is arbitrary. It is thus always possible to define
a constant δij designating a couple (δk, δk+1) such as ∀(δk, δk+1) ∈ ∆i×∆j , δk ∈ ∆i∧ δk+1 ∈ ∆j .
This constant is sufficient since, on one hand, ∀k+1 ∈ K2

ij ,∃(δk, δk+1) ∈ ∆i×∆j , δk ∈ ∆i∧δk+1 ∈
∆j and, on the other hand, the reference to the index k and k+ 1 is given by the index k+ 1 of
the timed observation Oij(k + 1) itself. Thus:

∀k + 1, δijk+1 = δij (4.39)

Equations 4.38 and 4.39 lead then to:

Oij(k + 1) ≡ (δij , tk+1) (4.40)

The partitions K1
ij and K

2
ij implicitly define an abstract function φij(t) and a variable name

φij which is equal to the constant δij when a couple (δ(k) ∈ ∆i, δ(k + 1) ∈ ∆j) is observed.
The addition 4.33 corresponds then to an Abstract Binary Observer, denoted Θij({φij}, {δij}).
Such an Abstract Binary Observer produces a sequence ωij(tnij) = {Oij(k + 1) ≡ (δij , tk+1)}
of nij = card(K1

ij) = card(K2
ij) abstract timed observations Oij(k + 1). Such an observer is a

binary one because it observes couples of successive constants (δ(k) ∈ ∆i, δ(k + 1) ∈ ∆j) linked
to a binary sequence (O(k), O(k + 1)) in a sequence of timed observations ω(tn).

The Abstract Binary Observer Θij({φij}, {δij}) is composed of two observers of timestamps,
Θd(Γ

1
ij , {φ}) and Θd(Γ

2
ij , {φ}), and two observers of constants, Θδ({xφ},∆i) and Θδ({xφ},∆j),

such as:

Θij({φij}, {δij}) = Θδ({xφ},∆i)⊕Θd(Γ
1
ij , {φ})⊕Θδ({xφ},∆j)⊕Θd(Γ

2
ij , {φ}) (4.41)

Figure 4.2 illustrates the internal structure of the Abstract Binary Observer Θij({φij}, {δij}).

Figure 4.2: Internal structure of the Abstract Binary Observer Θij({φij}, {δij})

An Abstract Binary Observer Θij({φij}, {δij}) characterizes thus an oriented sequential bi-
nary relation satisfying a temporal constraint ∆τij from timed observations of the sequence
ωi(tni) to timed observations of the sequence ωj(tnj) (cf figure 4.3).

Such a relation corresponds to the addition 4.34 which is both a sequential and a temporal
constrained addition.

Let us denoted θi(xθi , δθi , tθi) and θj(xθj , δθj , tθj), the predicate respectively implemented in
the programs Θi({xφi},∆i) and Θj({xφj},∆j). Timed observations Oij(k+1) of the sequence Ωij

produced by the Abstract Binary Observer Θij({φij}, {δij}) are then obtained by the application

60 CHAPTER 4. COMPOSITION OF OBSERVERS

Figure 4.3: Sequential relation temporally constrained

of the Modus Ponens with the following rule:

∀k + 1 ∈ Kij , θi(xφi , δk, tk) ∧ θj(xφj , δk+1, tk+1) ∧ |tk+1 − tk| ∈ ∆τij

⇒ θij(φij , δ
ij , tk+1)

(4.42)

Where:

• θi(xφi , δk, tk) is the meaning of the timed observation O(k) such as δ(k) ∈ ∆i made by the
Abstract Unary Observer Θi({xφi},∆i);

• θj(xφj , δk+1, tk+1) is the meaning of the timed observation O(k+ 1) such as δ(k+ 1) ∈ ∆j

made by the Abstract Unary Observer Θj({xφj},∆j);

• θij(φij , δ
ij , tk+1) is the meaning of the timed observation Oij(k + 1) of the sequence Ωij

made by the Abstract Binary Observer Θij({φij}, {δij}).

Sets of constants ∆i and ∆j have been built in an arbitrary way. Thus, these results can be
applied to any binary superposition Ω = Ωi ∪ Ωj whatever the way sequences Ωi and Ωj have
been produced. These results are, in particular, true when such sequences have been produced
by two safe and canonical programs Θi({xi},∆i) and Θj({xj},∆j). The only condition is the
obligation for the sets ∆i and ∆j to be disjoined: ∆i ∩∆j = ∅.

Thus, to sum up, the following properties have been demonstrated in this section:

Property 12
To any superposition Ω = Ωi ∪ Ωj of sequences Ωi and Ωj can be associated an Abstract Binary
Observer Θij({φij}, {δij}) observing binary sequences of the form (O(k) ∈ Ωi, O(k + 1) ∈ Ωj).

Property 13
An Abstract Binary Observer Θij({φij}, {δij}) generates a sequence of timed observation Ωij

defining a set of index Kij mapping timestamps contained in a set Γij such as:

∀k + 1 ∈ Kij , O(k + 1) ∈ Ωij , δ(k + 1) = δij ∧ k ∈ Ki ∧ k + 1 ∈ Kj (4.43)

Property 14
An Abstract Binary Observer Θij({φij}, {δij}) represents a sequential binary relation (O(k), O(k+

1)) satisfying a temporal constraint ∆τij, oriented from a partition Ω1
ij of a sequence of timed

observations Ωi, defined on a set of index K1
ij, to a partition Ω2

ij of a sequence of timed observa-
tions Ωj, defined on a set of index K2

ij, such as:

4.8. CONCLUSION 61

∀(k, k + 1) ∈ K1
ij ×K2

ij , Oij(k + 1) = O(k)
∆τij
+ O(k + 1) (4.44)

Property 15
The assignation θij(φij , δ

ij , tk+1) and the timed observation Oij(tk+1) have the same meaning:
a binary sequence (O(k) ∈ Ωi, O(k + 1) ∈ Ωj) have been observed at the date tk+1 in a binary
superposition of timed observations Ω = Ωi ∪ Ωj.

4.8 Conclusion

It has been demonstrated in this chapter that the addition under temporal constraints of timed
observations is the basic operation to define the composition of observers. Such a composition
inherits of the properties of the addition of timed observations: existence of a neutral element,
commutativity and associativity. These properties are used to demonstrate in chapter 6 that an
safe and canonical program implementing the Spacial Discretization Principle (see 3.5), called a
Unary Observer, plays the role of a sampling device in the TOT framework.

It has also been demonstrated that such an addition induces an abstraction process that allows
to define observers at different level of abstractions. These observers, may they be concrete or
abstract, allow to model any sequences of timed observations that is to say any system generating
discrete events or alarms. The existence of such an abstraction process and of such observers are
the key point to formalize the TOT abstraction process.

This formalization is introduced, in a first step, in chapter 5 and, in a second step, in chapter
7 using the Category Theory as a mathematical tool.

62 CHAPTER 4. COMPOSITION OF OBSERVERS

CHAPTER 5

Process of Abstraction in the TOT Framework

5.1 Introduction

This chapter aims at introducing the mechanism of the abstraction process in the TOT frame-
work.

To this aim, we demonstrate that a m-ary superposition of sequences of timed observations
can be modeled thanks to a collection of Abstract Binary Observers. This provides us the tools
to build the algebraic structure and observable space of the observed process. This allows us
to introduce the concepts of abstract chronicle model and behaviour model of such an observed
process. These elements altogether allow to reveal the process of abstraction in the TOT frame-
work.

5.2 Modelisation of a Superposition of Sequences of Timed Ob-
servations

Let us consider the dynamic process X(t) = {x1(t), ..., xm(t)}, m ∈ N?, composed of m timed
functions xi(t), i ∈ [1;m]. Such a dynamic process defines the set X = {x1, ..., xm} of m variable
names xi, i ∈ [1;m]. Let us consider the independent program of observation Θ(X,∆) observing
the dynamic processX(t). Let us consider the observed process (X(t),Θ(X,∆)). Let us partition
the set ∆ of constants into m sets ∆i such as :

• ∆i = {δik , ik ∈ [1;n∆i]} is the set of the n∆i ∈ N? constants δik that the variable xi can
take;

• ∆ =
⋃

i∈[1;m]

∆i;

• ∀(i, j) ∈ [1;m]2, i 6= j,∆i
⋂

∆j = ∅.

According to the Superposition Theorem 3.2, the program Θ(X,∆) can be decomposed in a
superposition of m independent programs Θi(Xi,∆i) where Xi = {xi}.

Any program Θi(Xi,∆i) implements a predicate denoted θi(xθi , δθi , tθi). The program Θi(Xi,∆i)

writes a timed observation denoted O(tik) ≡ (δik , tik) for each assignation θi(xi, δik , tik) of the
predicate θi(xθi , δθi , tθi):

θi(xi, δik , tik)⇒ write(O(tik) ≡ (δik , tik)) (5.1)

63

64 CHAPTER 5. PROCESS OF ABSTRACTION IN THE TOT FRAMEWORK

Let us denote Oik = {(xi, δik)}, the observation class linking variable name xi to constant
δik . Let us denote ωi(tni) = {O(tik) ≡ (δik , tik), δik ∈ ∆i, tik ∈ Γi}, the sequence of ni ∈ N
timed observations O(tik). Such a sequence defines the stochastic clock Γi = {tik , ik ∈ [1;ni]} of
timestamps tik . The sequence ωi(tni) may be denoted ωi in order to lighten the writing.

Let us denote Ω =
⋃

i∈[1;m]

ωi, the superposition of the m sequences of timed observations ωi.

This aim of this section is to demonstrate that such a superposition Ω can be modeled with a
structure composed of Abstract Binary Observers. Let us then first focus on the case of a binary
superposition.

5.2.1 Superposition of Two Sequences

Let us consider here the superposition Ω = ωp ∪ ωq, p 6= q, composed of two sequences of timed
observations ωp and ωq.

Let us build the eight sequences denoted ω1
xy and ω2

xy where (x, y) ∈ {p, q}2 from ωp and ωq
such that:

• O(tpk) ∈ ωp ∧O(tpk+1
) ∈ ωp ⇒ O(tpk) ∈ ω1

pp ∧O(tpk+1
) ∈ ω2

pp;

• O(tpk) ∈ ωp ∧O(tqk+1
) ∈ ωq ⇒ O(tpk) ∈ ω1

pq ∧O(tqk+1
) ∈ ω2

pq;

• O(tqk) ∈ ωq ∧O(tpk+1
) ∈ ωp ⇒ O(tqk) ∈ ω1

qp ∧O(tpk+1
) ∈ ω2

qp;

• O(tqk) ∈ ωq ∧O(tqk+1
) ∈ ωq ⇒ O(tqk) ∈ ω1

qq ∧O(tqk+1
) ∈ ω2

qq.

According to property 12, let us consider the four Abstract Binary Observers, Θpp({φpp}, {δpp}),
Θpq({φpq}, {δpq}), Θqp({φqp}, {δqp}) and Θqq({φqq}, {δqq}) such that:

• Θpp({φpp}, {δpp}) observes any binary sequence of successive timed observations of the form
(O(tpk) ∈ ω1

pp, O(tpk+1
) ∈ ω2

pp);

• Θpq({φpq}, {δpq}) observes any binary sequence of successive timed observations of the form
(O(tpk) ∈ ω1

pq, O(tqk+1
) ∈ ω2

pq);

• Θqp({φqp}, {δqp}) observes any binary sequence of successive timed observations of the form
(O(tqk) ∈ ω1

qp, O(tpk+1
) ∈ ω2

qp);

• Θqq({φqq}, {δqq}) observes any binary sequence of successive timed observations of the form
(O(tqk) ∈ ω1

qq, O(tqk+1
) ∈ ω2

qq).

Let us now denote ΘS = [Θxy](x,y)∈{p,q}2 , the matrix containing these four Abstract Binary
Observers. This means that all couples of successive timed observations contained in a superpo-
sitions Ω = ωp ∪ωq can be observed by such a matrix of observers. This lead us to the following
property:

Property 16
Considering a binary superposition Ω = ωp ∪ ωq of sequences of timed observations ωp and ωq,
produced by two independent programs Θp(Xp,∆p) and Θq(Xq,∆q) such that ∆p ∩ ∆q = ∅, all
binary sequences of successive timed observations of the superposition Ω can be observed by a

5.3. ALGEBRAIC STRUCTURE OF THE OBSERVED PROCESS 65

matrix ΘS of four Abstract Binary Observers.
Such a matrix ΘS models then a binary superposition Ω = ωp ∪ ωq of sequences of timed obser-
vations.

Let us then now focus on the general case of a m, (m > 2), superpositions.

5.2.2 Superposition of m, m > 2, Sequences

Let us consider here the superposition Ω =
⋃

i∈[1;m]

ωi, of m sequences of timed observations ωi.

Such a superposition contains m×(m−1)
2 binary superpositions of the form ωp ∪ ωq, (p, q) ∈

[1;m]2. Thus, according to property 16, all binary sequences of successive timed observations can
be observed in these m×(m−1)

2 binary superpositions by m×(m−1)
2 matrices ΘS

k , k ∈ [1; m×(m−1)
2],

of four Abstract Binary Observers of the form Θxy({φxy}, {δxy}), (x, y) ∈ {p, q}2. Nevertheless,
these matrices are not suffisent to observe all binary sequences of successives timed observations
of the superposition Ω. Indeed, the way the sequences are interlaced with each other is not
described: such an interweaving can be described thanks to another matrix, denoted ΘE of m2

Abstract Binary Observers of the form Θpq({φpq}, {δpq}):

ΘE = [Θpq({φpq}, {δpq})](p,q)∈[1;m]2 (5.2)

This leads us to the following property:

Property 17
Considering a m-ary superposition Ω =

⋃
i∈[1;m]

ωi of m sequences of timed observations ωi, pro-

duced by m independent programs Θi(Xi,∆i) such that
⋂

i∈[1;m]

∆i = ∅, all binary sequences of suc-

cessive timed observations of the superposition Ω can be observed by a collection of matrices ΘS
k ,

k ∈ [1; m×(m−1)
2] of four Abstract Binary Observers of the form Θxy({φxy}, {δxy}), (x, y) ∈ {p, q}2

and by a matrix ΘE of m2 Abstract Binary Observers of the form Θpq({φpq}, {δpq}), (p, q) ∈
[1;m]2.
The collection of such matrices models then a m-ary superposition Ω =

⋃
i∈[1;m]

ωi of m sequences

of timed observations.

Now, all elements are in places to build the algebraic structure and the observable space of
an observed process containing such a m-ary superposition of sequences of timed observations.

5.3 Algebraic Structure of the Observed Process

Let us consider the m-ary superposition Ω =
⋃

i∈[1;m]

ωi, of m sequences of timed observations

ωi. Let us denote Γ =
⋃

i∈[1;m]

Γi, the stochastic clock containing all timestamps tik of Γi for all

i ∈ [1;m].
The superposition Ω = {O(tk) ≡ (δj , tk), δj ∈ ∆, tk ∈ Γ} contains then timed observation of

the form O(tk) ≡ (δj , tk) such as δj ∈ ∆ and tk ∈ Γ. The superposition Ω is then clearly a subset

66 CHAPTER 5. PROCESS OF ABSTRACTION IN THE TOT FRAMEWORK

of ∆× Γ.

Ω ⊆ ∆× Γ (5.3)

Figure 5.1 illustrates the superposition Ω = {γ1, α2, β3, α4, γ5, α6, β7, α8, γ9} of three se-
quences ω1, ω2 and ω3 of timed observations such as:

• ω1 = {α2, α4, α6, α8} where αi ≡ αi(ti) ≡ (α, ti), i ∈ {2, 4, 6, 8},

• ω2 = {β3, β7} where βi ≡ βi(ti) ≡ (β, ti), i ∈ {3, 7},

• ω3 = {γ1, γ5, γ9} where γi ≡ γi(ti) ≡ (γ, ti), i ∈ {1, 5, 9}.

Such a superposition defines a stochastic clock Γ = {t1, t2, t3, t4, t5, t6, t7, t8, t9}.

Figure 5.1: Example of a ternary superposition Ω = ω1 ∪ ω2 ∪ ω3

Let us now provide the superposition Ω with the operation of addition under timed constrains
∆τij
+ introduced in 4.4. Thus, the couple denoted S = (Ω,

∆τij
+) is the algebraic structure of the

observed process (X(t),Θ(X,∆)).
This leads us to the following property:

Property 18
Considering a m-ary superposition Ω =

⋃
i∈[1;m]

ωi of m sequences of timed observations ωi, pro-

duced by m independent programs Θi(Xi,∆i), the algebraic structure S = (Ω,
∆τij
+) of the observed

process (X(t),Θ(X,∆)) can always be built.

5.4 Observable Space of the Observed Process

In section 5.2.2, it has been seen (property 17) that a m-ary superposition Ω =
⋃

i∈[1;m]

ωi can be

modeled thanks to a collection of matrices ΘS
s , s ∈ [1; m×(m−1)

2], and a matrix ΘE . A matrix
ΘS
s is built from eight sequences of the form ω1

xy and ω2
xy with (x, y) ∈ {p, q}2, (p, q) ∈ [1;m]2.

Such sequences are necessary and sufficient to build also the matrix ΘE .
Let us denote Is, the set containing the eight sequences denoted ω1,s

pp , ω2,s
pp , ω1,s

pq , ω2,s
pq , ω1,s

qp ,
ω2,s
qp , ω1,s

qq and ω2,s
qq , corresponding to the sth binary superposition denoted ωspq = ωp ∪ ωq:

5.4. OBSERVABLE SPACE OF THE OBSERVED PROCESS 67

∀s ∈ [1;
m× (m− 1)

2
], Is = {ω1,s

pp , ω
2,s
pp , ω

1,s
pq , ω

2,s
pq , ω

1,s
qp , ω

2,s
qp , ω

1,s
qq , ω

2,s
qq } (5.4)

There are three superpositions of the form ωp ∪ ωq that can be built:

• ω12 = ω1 ∪ ω2,

• ω13 = ω1 ∪ ω3,

• ω23 = ω2 ∪ ω3.

From ω12, we can build the set I12 = {ω1
11, ω

2
11, ω

1
12, ω

2
12, ω

1
21, ω

2
21, ω

1
22, ω

2
22} where:

ω1
11 = {α2, α4, α6} ω2

11 = {α4, α6, α8}
ω1

12 = {α2, α4, α6} ω2
12 = {β3, β7, β7}

ω1
21 = {β3, β7} ω2

21 = {α4, α8}
ω1

22 = {β3} ω2
22 = {β7}

(5.5)

Figure 5.2: Sequences ω1
11, ω

2
11, ω

1
12, ω

2
12, ω

1
21, ω

2
21, ω

1
22, ω

2
22 built from ω12 = ω1 ∪ ω2

From ω13, we can build the set I13 = {ω1
11, ω

2
11, ω

1
13, ω

2
13, ω

1
31, ω

2
31, ω

1
33, ω

2
33} where:

ω1
11 = {α2, α4, α6} ω2

11 = {α4, α6, α8}
ω1

13 = {α2, α4, α6} ω2
13 = {γ5, γ5, γ9}

ω1
31 = {γ1, γ5} ω2

31 = {α2, α6}
ω1

33 = {γ1, γ5} ω2
33 = {γ5, γ9}

(5.6)

From ω23, we can build the set I23 = {ω1
22, ω

2
22, ω

1
23, ω

2
23, ω

1
32, ω

2
32, ω

1
33, ω

2
33} where :

ω1
22 = {β3} ω2

22 = {β7}
ω1

23 = {β3, β7} ω2
23 = {γ5, γ9}

ω1
32 = {γ1, γ5} ω2

32 = {β3, β7}
ω1

33 = {γ1, γ5} ω2
33 = {γ5, γ9}

(5.7)

Let us denote T = (Ω, I), the couple composed of the superposition Ω and of the collection
I such as:

68 CHAPTER 5. PROCESS OF ABSTRACTION IN THE TOT FRAMEWORK

Figure 5.3: Sequences ω1
11, ω

2
11, ω

1
13, ω

2
13, ω

1
31, ω

2
31, ω

1
33, ω

2
33 built from ω13 = ω1 ∪ ω3

Figure 5.4: Sequences ω1
22, ω

2
22, ω

1
23, ω

2
23, ω

1
32, ω

2
32, ω

1
33, ω

2
33 built from ω23 = ω2 ∪ ω3

I =
{
∅,Ω, (Is)s∈[1;

m×(m−1)
2

]

}
(5.8)

Each set Is contains the eight sequences ω1,s
xy and ω2,s

xy , (x, y) ∈ {p, q}2 of the sth binary
superposition ωspq = ωp ∪ ωq, (p, q) ∈ [1;m]2, p 6= q.

This leads us to the following definition:

Definition 5.1 Observable Space
Considering a m-ary superposition Ω =

⋃
i∈[1;m]

ωi of m sequences of timed observations ωi, the

structure T = (Ω, I) can be built such as I =
{
∅,Ω, (Is)s∈[1;

m×(m−1)
2

]

}
where Is are the sets con-

taining the eight sequences ω1,s
xy and ω2,s

xy , (x, y) ∈ {p, q}2, built from the sth binary superposition
ωspq = ωp ∪ ωq between the sequences wp and wq for (p, q) ∈ [1;m]2.
Such a structure T = (Ω, I) is called the Observable Space of the observed process (X(t),Θ(X,∆)).

An Observable Space aims at distributing timed observations contained in the m-ary super-
position Ω into sequences of the form ω1,s

xy and ω2,s
xy , (x, y) ∈ {p, q}2 for (p, q) ∈ [1;m]2. Thus,

Abstract Binary Observers contained in matrices ΘS
k , k ∈ [1; m×(m−1)

2] and ΘE are able to
observe binary sequences of such timed observations.

5.5. ABSTRACT CHRONICLE MODEL OF THE OBSERVED PROCESS 69

5.5 Abstract Chronicle Model of the Observed Process

Let us consider the observable space T = (Ω, I) and let us have a closer look on the sets
(Is)s∈[1;

m×(m−1)
2

]
contained in the collection I :

Is = {ω1,s
pp , ω

2,s
pp , ω

1,s
pq , ω

2,s
pq , ω

1,s
qp , ω

2,s
qp , ω

1,s
qq , ω

2,s
qq } (5.9)

The sequence ω1,s
pp of ωspq = ωp ∪ ωq contains all timed observation of the form O(tpk) ≡

(δpk , tpk) such as δpk ∈ ∆p and tpk ∈ Γp for p ∈ [1;m]. The sequence ω2,s
pp of ωspq = ωp ∪ ωq

contains all timed observation of the form O(tpk+1
) ≡ (δpk+1

, tpk+1
) such as δpk+1

∈ ∆p and
tpk+1

∈ Γp for p ∈ [1;m].
So, from ω1,s

pp and ω2,s
pp , we can get all the binary sequences of timed observations of the form

(O(tpk), O(tpk+1
)) such as O(tpk) ∈ ωp and O(tpk+1

) ∈ ωp. The binary sequence of timed obser-
vations (O(tpk), O(tpk+1

)) can be observed by the Abstract Binary Observer Θpp({φpp}, {δpp}) of
the collection of matrices introduced in property 17.

Let us denote Opk ≡ (xp, δpk), the observation class linking variable name xp ∈ X with con-
stant δpk ∈ ∆p. Let us denote Opk+1

≡ (xp, δpk+1
), the observation class linking variable name

xp ∈ X with constant δpk+1
∈ ∆p. So, the Abstract Binary Observers Θpp({φpp}, {δpp}) rep-

resents the temporal binary relation ru(Opk , Opk+1
,∆τpkpk+1

≡ [τ−pkpk+1
, τ+
pkpk+1

]) (see definition
3.8).

Thus, all binary sequences of timed observations of the form (O(tpk), O(tpk+1
)) can be repre-

sented in a set ms
pp of nspp ∈ N temporal binary relations ru(Opk , Opk+1

,∆τpkpk+1
):

ms
pp = {ru(Opk , Opk+1

,∆τpkpk+1
)u∈[1;nspp]} (5.10)

According to definition 3.10, the set ms
pp represents the abstract chronicle model built from

the sequences ω1,s
pp and ω2,s

pp of the sth binary superposition ωspq = ωp ∪ ωq.
With the same reasoning, we can build the setsms

pq, ms
qp andms

qq containing respectively nspq,
nsqp and nsqq temporal binary relations of the form ru(Opk , Oqk+1

,∆τpkqk+1
), ru(Oqk , Opk+1

,∆τqkpk+1
)

and ru(Oqk , Oqk+1
,∆τqkqk+1

):

• ms
pq = {ru(Opk , Oqk+1

,∆τpkqk+1
)u∈[1;nspq]

};

• ms
qp = {ru(Oqk , Opk+1

,∆τqkpk+1
)u∈[1;nspq]

};

• ms
qq = {ru(Oqk , Oqk+1

,∆τqkqk+1
)u∈[1;nsqq]

}.

Where:

• Oqk ≡ (xq, δqk) is the observation class linking variable name xq ∈ X with constant δqk ∈
∆q;

• Oqk+1
≡ (xq, δqk+1

) is the observation class linking variable name xq ∈ X with constant
δqk+1

∈ ∆q.

Thus, the abstract chronicle model built from the sets Is is:

70 CHAPTER 5. PROCESS OF ABSTRACTION IN THE TOT FRAMEWORK

ms =
⋃

(x,y)∈{p,q}2
ms
xy (5.11)

And the abstract chronicle model of the observed process (X(t),Θ(X,∆)) is:

M =
⋃

s∈[1;
m×(m−1)

2
]

ms (5.12)

The abstract chronicle model M contains all the temporal binary relations that could be
observed in the m-ary superposition Ω.

This leads us to the following property:

Property 19
Given an observable space T = (Ω, I) built from a m-ary superposition Ω of sequences of timed
observations, we can build the abstract chronicle modelM of the observed process (X(t),Θ(X,∆))

containing all the temporal binary relations that are observable in Ω.

Let us consider the m-ary superposition Ω =
⋃

i∈[1;m]

ωi of m sequences of timed observations

ωi. Let us consider the sth binary superposition ωspq = ωp∪ωq, s ∈ [1; m×(m−1)
2]. Let be Np ∈ N?,

the number of observation classes Opk , k ∈ [1;Np] associated to the sequence ωp. Let be Nq ∈ N?,
the number of observation classes Oqk , k ∈ [1;Nq] associated to the sequence ωq.

Such a binary superposition can be observed thanks to 4 Abstract Binary Observers:

• Θpp({φpp}, {δpp}) representing temporal binary relations of the form:

∀k ∈ [1;Np], ∀(k + 1) ∈ [1;Np], ru(Opk , Opk+1
,∆τpkpk+1

) (5.13)

Thus the number of temporal binary relations contained in the set ms
pp is:

Card(ms
pp) = Np ×Np = N2

p ⇒ nspp = N2
p (5.14)

• Θpq({φpq}, {δpq}) representing temporal binary relations of the form:

∀k ∈ [1;Np], ∀(k + 1) ∈ [1;Nq], ru(Opk , Oqk+1
,∆τpkqk+1

) (5.15)

Thus the number of temporal binary relations contained in the set ms
pq is:

Card(ms
pq) = Np ×Nq ⇒ nspq = Np ×Nq (5.16)

• Θqp({φqp}, {δqp}) representing temporal binary relations of the form:

∀k ∈ [1;Nq], ∀(k + 1) ∈ [1;Np], ru(Oqk , Opk+1
,∆τqkpk+1

) (5.17)

Thus the number of temporal binary relations contained in the set ms
qp is:

Card(ms
qp) = Nq ×Np ⇒ nsqp = Nq ×Np (5.18)

5.6. BEHAVIOUR MODEL OF THE OBSERVED PROCESS 71

• Θqq({φqq}, {δqq}) representing temporal binary relations of the form:

∀k ∈ [1;Nq], ∀(k + 1) ∈ [1;Nq], ru(Oqk , Oqk+1
,∆τqkqk+1

) (5.19)

Thus the number of temporal binary relations contained in the set ms
qq is:

Card(ms
qq) = Nq ×Nq = N2

q ⇒ nsqq = N2
q (5.20)

Thus, the number of temporal binary relations contained in the set ms is:

Card(ms) = N2
p +Np ×Nq +Nq ×Np +N2

q = (Np +Nq)
2 (5.21)

And then the number of temporal binary relations contained in the abstract chronicle model
M is:

Card(M) =
∑

(p,q)∈[1;m]2

p 6=q

(Np +Nq)
2 (5.22)

This leads to the following property:

Property 20
Given a m-ary superposition Ω =

⋃
i∈[1;m]

ωi of m sequences of timed observations ωi and denot-

ing Ni ∈ N?, the number of observation classes Oik , k ∈ [1;Ni] associated to the sequence
ωi, the number of temporal binary relations in the abstract chronicle model M is given by
Card(M) =

∑
(p,q)∈[1;m]2

p 6=q
(Np +Nq)

2.

A numerical application of this property is given in chapter 8.

5.6 Behaviour Model of the Observed Process

According to property 14, the Abstract Binary Observer Θpq({φpq}, {δpq}) represents the se-
quential binary relation (O(tpk), O(tqk+1

)) satisfying a temporal constraint ∆τpkpk+1
, oriented

from the sequence ω1,s
pq built from a sequence of timed observations ωp to a sequence ω2,s

pq built
from a sequence of timed observations ωq implementing the following operation of addition under
temporal constraints:

Opq(tqk+1
) = O(tpk)

∆τpkpk+1

+ O(tqk+1
) (5.23)

Such an operation corresponds to application of the Modus Ponens with the following rule:

θp(xp, δpk , tpk) ∧ θq(xq, δqk+1
, tqk+1

) ∧ |tqk+1
− tpk | ∈ ∆τpkqk+1

⇒ θpq(φpq, δ
pq, tqk+1

)
(5.24)

The application of the Modus Ponens with the rule 5.24 fails iff:

(θp(xp, δpk , tpk) = false) ∨ (θq(xq, δqk+1
, tqk+1

) = false) ∨ (|tqk+1
− tpk | /∈ ∆τpkqk+1

) (5.25)

72 CHAPTER 5. PROCESS OF ABSTRACTION IN THE TOT FRAMEWORK

That is to say iff:

• the predicate θp(xθp , δθp , tθp) is not assigned or

• the predicate θq(xθq , δθq , tθq) is not assigned or

• the temporal constraints ∆τpkqk+1
are not satisfied.

In such cases, no sequential binary relation of the (O(tpk), O(tqk+1
)) is observed in Ω by

the Abstract Binary Observer Θpq({φpq}, {δpq}). The corresponding temporal binary relation
ru(Opk , Oqk+1

,∆τpkqk+1
) of the abstract chronicle modelM is then also not observed.

In other cases, the Modus Ponens can be applied with the rule 5.24 and the Abstract Binary
Observer Θpq({φpq}, {δpq}) writes the timed observation Opq(tqk+1

) ≡ (δpq, tqk+1
) corresponding,

in an equivalent way, to:

• the assignation θpq(φpq, δpq, tqk+1
);

• the observation of the sequential binary relation (O(tpk), O(tqk+1
)) in Ω;

• the observation of the temporal binary relation ru(Opk , Oqk+1
,∆τpkqk+1

) which is said to be
an observed relation in Ω (see 3.9). Such an observed relation, denoted ru(Opk(tpk), Oqk+1

(tqk+1
)),

is called an instance of the temporal binary relation ru(Opk , Oqk+1
,∆τpkqk+1

).

Let us denote B, the set containing the nB ∈ N observed relations ru(Opk(tpk), Oqk+1
(tqk+1

))

in Ω:

B = {ru(Opk(tpk), Oqk+1
(tqk+1

))u∈[1;nB]} (5.26)

The set B is called the behaviour model of the observed process (X(t),Θ(X,∆)). Such a
behaviour model B is called an instance of the abstract chronicle modelM. This leads us to the
following property:

Property 21
Any instance B of an abstract chronicle modelM represents the behaviour model of the observed
process (X(t),Θ(X,∆)).

5.7 Abstraction Process

Let us sum up elements we have for the given observed process (X(t),Θ(X,∆)):

• a m-ary superposition Ω =
⋃

i∈[1;m]

ωi, of m sequences of timed observations ωi;

• an algebraic structure S = (Ω,
∆τij
+);

• an observable space T = (Ω, I);

• an abstract chronicle modelM composed of nM temporal binary relations;

5.7. ABSTRACTION PROCESS 73

• a behaviour model B composed of nB ≤ nM observed relations.

Let us now provide the definition of a Level of Abstraction of such an observed process
(X(t),Θ(X,∆)):

Definition 5.2 Level of Abstraction of an Observed Process
Given an observed process (X(t),Θ(X,∆)), the Level of Abstraction (LoA) of such an observed

process is the structure L composed of the algebraic structure S = (Ω,
∆τij
+) and of the observable

space T = (Ω, I) of that observed process:

L = 〈S, T 〉 (5.27)

Such a definition is consistent with the definition of a moderated LoA given by Floridi: a
moderated LoA is defined to consist of a LoA together with a behaviour at that LoA.

From the algebraic structure S, we have access to the superposition Ω that is to say to the
timed observations (δik , tik). From timed observations (δik , tik), we have access to the constants
δik . From constants δik , we have access to their variable names xi thanks to observations classes
Oik = {xi, δik}. Such variable names xi correspond to Floridi’s notion of observables (see notion
3) that he uses to give a definition of a LoA (see notion 4).

From the observable space T = (Ω, I), we have access to the abstract chronicle model M
and to its instance, the behaviour model B. Such a behaviour model B corresponds to the notion
of Floridi’s behaviour of a system (see notion 5) that he uses to define a moderated LoA.

Let us now consider again the operation of addition under temporal constraints of 5.23
corresponding to the application of the Modus Ponens with the rule 5.24.

According to section 4.3, the implication 5.24 defines an abstract process to build assignations
from other assignations by Modus Ponens. The timed observation Opq(tqk+1

) ≡ (δpq, tqk+1
) is

not produced by a canonical program observing a timed function φpq(t) but by an Abstract
Binary Observer Θpq({φpq}, {δpq}). The timed observation Opq(tqk+1

) ≡ (δpq, tqk+1
) has been

deducted from timed observations produced by other programs, Θp({xp},∆p) and Θq({xq},∆q).
The assignation θpq(φpq, δpq, tqk+1

) can also be used in an implication of the form 5.24: such an
abstraction process can be realized recursively.

Let us then consider the LoA L = 〈S, T 〉 and let us have a closer look to the behaviour
model B. As seen in section 5.6, such a behaviour model B has been obtained by the ap-
plication of the Modus Ponens with the rule 5.24 and is composed of nB observed relations
ru(Opk(tpk), Oqk+1

(tqk+1
)) or, in an equivalent way, of nB timed observations of the formOpq(tqk+1

) ≡
(δpq, tqk+1

) written by m1 ≤ nB Abstract Binary Observers Θpq({φpq}, {δpq}).
Let us denote Ω1, the sequence containing the nB timed observations:

Ω1 = {Opq(tqk+1
) ≡ (δpq, tqk+1

) ≡ Ou(tqk+1
), u ∈ [1;nB]} (5.28)

The sequence Ω1 being produced by m1 Abstract Binary Observers Θpq({φpq}, {δpq}), it can
be partitioned, according to the Superposition Theorem 3.2, into m1 sequences ω1

i . The sequence
Ω1 is then the m1-ary superposition:

Ω1 =
⋃

i∈[1;m1]

ω1
i (5.29)

74 CHAPTER 5. PROCESS OF ABSTRACTION IN THE TOT FRAMEWORK

Where ω1
i = {Opq(tqk+1

) ≡ (δpq, tqk+1
) ≡ Oi(tqk+1

), i ∈ [1;n1
i]} is the sequence of n1

i timed
observations Oi(tqk+1

) produced by the Abstract Binary Observers Θi({φpq}, {δpq}).
Let us consider the observed process (X1(t),Θ1(X1,∆1)) such as:

• X1(t) =
⋃

i∈[1;m1]

X1
i (t) where X1

i (t) = φpq(t) for (p, q) ∈ [1;m]2;

• Θ1(X1,∆1)) =
⋃

i∈[1;m1]

Θ1
i (X

1
i ,∆

1
i)) where:

– X1
i = {φpq} for (p, q) ∈ [1;m]2;

– ∆1
i = {δpq} for (p, q) ∈ [1;m]2.

According to properties 18 and 5.1, we can build the algebraic structure S1 = (Ω1,
∆τij
+)

and the observable space T 1 = (Ω1, I1). According to definition 5.27, let us consider the LoA
L1 = 〈S1, T 1〉. As seen in equation 4.36, a constant δpq of a timed observation Opq(tqk+1

) of
the superposition Ω1 is equivalent, for all k ∈ Z, (see equation 4.39) to a couple of constants
(δpk , δqk+1

) belonging respectively to timed observations O(tpk) and O(tqk+1
) of the superposition

Ω:

∀k ∈ Z, δpq ⇔ (δpk , δqk+1
) (5.30)

This means that the knowledge worn by the constant δpq is semantically richer than the
knowledge worn by constants δpk and δqk+1

for all k ∈ Z. This thus means that the knowledge
at the LoA L1 is also semantically richer than the knowledge at the LoA L.

Such an equivalence also demonstrates that less constants are needed at the LoA L1 than at
the LoA L in order to model an observed process. This means that the knowledge at the LoA
L1 is syntacticly poorer than the knowledge contained at the LoA L.

This is consistent with Floridi’s point of view [Flo08]: the quantity of information in a model
varies with the LoA: a lower LoA, of greater resolution of finer granularity, produces a model
that contains more information than a model produced at a higher, or more abstract, LoA.

This allows us to affirm that the LoA L1 is higher, or more abstract, than the LoA L and
leads us to the following property:

Property 22
The existence of a behaviour model B at a LoA L = 〈S, T 〉 induces an abstraction process which
allows to define a higher (or more abstract) LoA L1 = 〈S1, T 1〉. The knowledge at the LoA
L1 = 〈S1, T 1〉 is semantically richer and syntacticly poorer than the knowledge at the LoA L.

Now all elements are in place to give the definition of a Gradient of Abstraction:

Definition 5.3 Gradient of Abstraction
Let us consider two integers (i, j) ∈ N2 such as i < j.
Let us consider the LoA Li = 〈Si, T i〉 of the observed process (Xi(t),Θi(Xi,∆i)).
Let be Bi the behaviour model of the observed process (Xi(t),Θi(Xi,∆i)) at the LoA Li.
Let us consider the LoA Lj = 〈Sj , T j〉 of the observed process (Xj(t),Θj(Xj ,∆j)).

5.8. CONCLUSION 75

Let be Bj the behaviour model of the observed process (Xj(t),Θj(Xj ,∆j)) at the LoA Lj.

A Gradient of Abstraction (GoA), G consists of a finite collection G = {Li, i ∈ N} of LoAs
Li such as:

• there exists a relation ∆i → ∆j linking sets of constants ∆i and ∆j for all (i, j) ∈ N2;

• there exists an inverse relation ∆j → ∆i linking sets of constants ∆j and ∆i for all (i, j) ∈
N2;

• the behaviour Bj at the LoA Lj is stronger than the behaviour Bi at the LoA Li that is to
say, Bj ⇒ Bi, for all (i, j) ∈ N2. In other words, knowing the behaviour at the LoA j is
knowing the behaviour at the LoA i.

The existence of a relation ∆i → ∆j makes the link between sets of constants ∆i and ∆j

during the abstraction process from Li to Lj . Reciprocally, the reverse relation ∆j → ∆i is
useful when travelling from an abstract level Lj to a less abstract level Li: such a process is
called a reification process. An example of a reification process is given in chapter 8.

5.8 Conclusion

Figure 5.5 illustrates the characteristic elements and the abstraction process in the TOT frame-
work introduced in this chapter.

Figure 5.5: Characteristic elements and abstraction process in the TOT framework

From a m-ary superposition Ω, we can build:

• the collection I related to such a superposition;

• the matrices ΘS and ΘE of Abstract Binary Observers, denoted ΘS,E on this figure, mod-
eling such a superposition.

The superposition Ω provided with the operation of addition under temporal constraints
∆τij
+

builds the algebraic structure S. The superposition Ω provided with the collection I builds the
observable space T from which the abstract chronicle modelM is built. The association of the
observable space T and the algebraic structure S build the Level of Abstraction L.

76 CHAPTER 5. PROCESS OF ABSTRACTION IN THE TOT FRAMEWORK

The application of the operation of addition under temporal constraints
∆τij
+ on timed ob-

servations of the superposition Ω associated with the Abstract Binary Observers of the matrices
ΘS and ΘE builds the behaviour model B and induces a process of abstraction (red arrow on
this figure) generating a superposition Ω1 containing timed observations of a higher level of
abstraction.

Given this superposition Ω1, characteristic elements I1,ΘS,E,1,S1, T 1,M1,L1,B1 can be
built again and another abstraction process can be performed. The associations of L, B, L1, B1

builds the gradient of abstraction G.
Such operations can be repeated in a recursive way: the important point is that, whatever

the level of abstraction is, the binary structure of a timed observation (δk, tk) is invariant. The
notion of timed observation plays the role of a paradigm like natural numbers N or real numbers
R.

Now that such an abstraction process has been introduced, we need to build a sampler in the
framework of the TOT: this is the aim of the following chapter.

CHAPTER 6

The TOT Sampler

6.1 Introduction

This chapter aims at demonstrating that an safe and canonical program Θi({xi},∆i) of an ob-
served process (xi(t),Θi({xi},∆i)) observing an only one timed function xi(t) and implementing
the Spacial Discretization Principle (section 3.5, equation 3.22), called a Unary Observer, plays
the role of sampler device in the framework of Theory of Timed Observations (TOT).

To this goal, we first consider the usual Dirac’s sampler in order to emphasize the algebraic
structure of its mathematical framework. In a second step, we consider the TOT’s Unary Ob-
server in order to also emphasize the algebraic structure of its mathematical framework. In a
last step, we demonstrate that there exists a homomorphism linking both these structures that
allows us to conclude that such algebraic structures are of the same species and then that their
respective elements play the same role.

6.2 Dirac’s Sampler

Let us consider the Dirac distribution δ defined by its action on any test function ϕ as:

〈δ, ϕ〉 =

∫ +∞

−∞
δ(t)ϕ(t)dt = ϕ(0) (6.1)

Let us recall that the convolution product ∗ between the Dirac distribution δ and a timed
function xi allows to know any particular value xi(tk) ≡ xik of such a function:

∀tk ∈ R, (xi ∗ δ)(tk) =

∫ +∞

−∞
xi(t)δ(tk − t) dt = xi(tk) (6.2)

Let us now consider a program denoted XT (xi) implementing such a convolution product at
regularly distributed timestamps tk = k.T, k ∈ Z. At each step k ∈ Z, such a program generates
the value xik which represents the value of the function xi(t) at the timestamp tk:

xi(tk) ≡ xik (6.3)

Thus, such a program operates the following mapping:

XT (xi) : Z → R

k 7→ xik
(6.4)

77

78 CHAPTER 6. THE TOT SAMPLER

In fine, the (Ni + 1) ∈ N values xik , xik+1
, ..., xik+Ni generated by such a program can be

stored in set Xi = {xik , xik+1
, ..., xik+Ni} ordered according to the step k ∈ Z. Such a set is

clearly a subset of R:

Xi ⊆ R (6.5)

Figure 6.1 provides a representation of the sampling of a timed function x(t) such as tk =

k.T, k ∈ [−3; 3], T ∈ R and the storing set X = {x−3, x−2, x−1, x0, x1, x2, x3}.

Figure 6.1: Dirac’s sampler XT (x) applied on the timed function x(t)

The program XT (xi) links then the set Z of integers with set R of real numbers. The
program XT (xi) defines then a relation between elements of Z and elements of R and is then a
subset SX ⊆ Z×R:

SX = {(k, xik), k ∈ Z, xik ∈ R} ⊆ Z×R (6.6)

The set SX defined by Dirac’s sampler of figure 6.1 is then:

SX = {(−3, x−3), (−2, x−2), (−1, x−1), (0, x0), (1, x1), (2, x2), (3, x3)} ⊆ Z×R (6.7)

6.3 Unary Observer

Let us consider the dynamic process X(t) = {xi(t)} composed of only one timed function xi(t).
Such a dynamic process implicitly defines a set X = {xi} of the variable name xi. Let us consider
an safe program Θ(X,∆) observing the dynamic process X(t) and implementing the predicate
θ(xθ, δθ, tθ) according to the Spacial Discretization Principle (equation 6.8) for a given threshold
Ψi ∈ R:

θ(xθ, δθ, tθ) ≡ xθ(tθ−1) < Ψi ∧ xθ(tθ) ≥ Ψi (6.8)

6.3. UNARY OBSERVER 79

For each assignation k ∈ Z of the predicate θ(xθ, δθ, tθ) such as θ(xi, δi, tk), Unary Observer
Θi({xi},∆i) writes a timed observation of the form (δi, tk), δi ∈ ∆i (equation 6.9):

xi(tk−1) < Ψi ∧ xi(tk) ≥ Ψi ⇒ write((δi, tk)) (6.9)

In such conditions, the program Θ(X,∆) is called a Unary Observer an is denoted Θi({xi},∆i),
Θi({xi}, {δi}) or Θi.

Θi({xi},∆i) ≡ Θi({xi}, {δi}) ≡ Θi (6.10)

Such a Unary Observer operates then a mapping between the integer k and the couple (δi, tk).

Θi({xi},∆i) : Z → ∆i ×R

k 7→ (δi, tk)
(6.11)

In fine, the (ni + 1) ∈ N couples (δi, tk) are stored in a set denoted ω(tk+ni) = {(δi, tk), δi ∈
∆i, tk ∈ R} ordered according to the step k ∈ Z and called a sequence of timed observations.
Such a set ω(tk+ni) is clearly a subset of ∆i ×R:

ω(k + tni) ⊆ ∆i ×R (6.12)

Figure 6.2 provides a representation of a Unary Observer applied on a timed function x(t)

implementing the Spatial Discretization Principle with the threshold Ψ ∈ R. The sequence of
timed observations is composed of three timed observations: ω(t2) = {(δ, t0), (δ, t1), (δ, t2)}.

The Unary Observer Θi({xi},∆i) is then a relation between elements of Z and elements of
∆i ×R. The Unary Observer Θi({xi},∆i) defines then a subset SΘi ⊆ Z× (∆i ×R):

SΘi = {(k, (δi, tk)), k ∈ Z, (δi, tk) ∈ ∆i ×R} ⊆ Z× (∆i ×R) (6.13)

The set SΘ defined by Unary Observer of figure 6.2 is then:

SΘ = {(0, (δ, t0)), (1, (δ, t1)), (2, (δ, t2))} ⊆ Z× (∆×R) (6.14)

80 CHAPTER 6. THE TOT SAMPLER

Figure 6.2: Unary Observer Θ({x}, {δ}) applied on the timed function x(t) implementing the Spatial
Discretization Principle with the threshold Ψ.

6.4 Algebraic Structure in the Dirac’s Sampler Framework

Let us consider the timed function xi(t). As seen in section 6.2, sampled value xik of the function
xi(t), produced by Dirac’s sampler XT (xi), is an element of R. Let us also consider Dirac’s
samplers XT (xj) and XT (xl), respectively sampling timed functions xj(t) and xl(t).

Let us now consider the algebraic structure (R,+) where + is the usual addition on R. Such
an algebraic structure allows to formulate the following properties about Dirac’s sampler addition
operation:

1. the addition operation of Dirac’s samplers presents a neutral element.
Let us consider the timed function ∀t ∈ R, xφ(t) = 0. The Dirac’s sampler denoted
XT (xφ) sampling such a function generates a sampling values equals to zero for each step
k ∈ Z, tk = k.T . So such a sampler is the neutral element of Dirac’s samplers addition
operation:

∃XT (xφ)(k) ∈ R, ∀XT (xi)(k) ∈ R,

XT (xφ)(k) + XT (xi)(k) = XT (xi)(k) + XT (xφ)(k) = XT (xi)(k)
(6.15)

2. the addition operation of Dirac’s samplers is commutative:

6.5. ALGEBRAIC STRUCTURE IN THE UNARY OBSERVER FRAMEWORK 81

∀XT (xi)(k) ∈ R,∀XT (xj)(k) ∈ R,

XT (xi)(k) + XT (xj)(k) = XT (xj)(k) + XT (xi)(k)
(6.16)

3. the addition operation of Dirac’s samplers is associative:

∀XT (xi)(k) ∈ R,∀XT (xj)(k) ∈ R, ∀XT (xl)(k) ∈ R,

(XT (xi)(k) + XT (xj)(k)) + XT (xl)(k) = XT (xj)(k) + (XT (xi)(k) + XT (xl)(k))

(6.17)

6.5 Algebraic Structure in the Unary Observer Framework

Let us consider again the timed function xi(t). As seen in section 6.3, the couple of values
(δi, tki), produced by Unary Observer Θi({xi},∆i), is an element of ∆i × R. Let us consider
the Unary Observer Θj({xj},∆j), ∆j = {δj}, observing the timed function xj(t). A couple of
values (δj , tkj), produced by such a Unary Observer, is an element of ∆j ×R. Let us consider
the Unary Observer Θl({xl},∆l), ∆l = {δl}, observing the timed function xl(t). A couple of
values (δl, tkl), produced by such a Unary Observer, is an element of ∆l ×R.

Let us consider the neutral Unary Observer Θ({xφ}, {φ}) observing an unknown timed func-
tion xφ(t). A couple of values (φ, tφ), produced by such a Unary Observer, is the neutral ob-
servation introduced in 4.2. Such a neutral Unary Observer maps any integer k ∈ Z with the
neutral timed observation (φ, tφ):

Θ({xφ}, φ) : Z → {φ} ×R

k 7→ (φ, tφ)
(6.18)

It produces a neutral timed observation (φ, tφ) for each assignation k ∈ Z of the predicate
θ(xθ, δθ, tθ) such as θ(xi, δi, tk) (equation 6.19):

xi(tk−1) < Ψi ∧ xi(tk) ≥ Ψi ⇒ write((φ, tφ)) (6.19)

Let us now consider the operation of addition of timed observations under temporal con-

straints
∆τij
+ defined in 4.4. Let us consider the algebraic structure (∆ × R,

∆τij
+) where ∆ is

the set containing all the constants associated with Unary Observers Θi({xi},∆i), Θj({xj},∆j),
∆j = {δj} and Θ({xφ}, {φ}), that is to say, ∆ = ∆i ∪∆j ∪∆l ∪ {φ}.

In section 4.4 (see properties 6, 7, 8), it has been demonstrated that such an operation of
addition has the following properties:

1. the neutral observation (φ, tφ) is the neutral element for the operation of addition under
temporal constraints.
Thus, for each assignation k ∈ Z, we have:

∃ Θ({xφ}, φ)(k) ∈ ∆×R, ∀ Θi({xi},∆i)(k) ∈ ∆×R,

Θ({xφ}, φ)(k)
∆τij
+ Θi({xi},∆i)(k) = Θi({xi},∆i)(k)

∆τij
+ Θ({xφ}, φ)(k)

(6.20)

82 CHAPTER 6. THE TOT SAMPLER

2. the operation of addition under temporal constraints is commutative: Thus, for each assig-
nation k ∈ Z, we have:

∀ Θi({xi},∆i)(k) ∈ ∆×R,∀ Θj({xj},∆j)(k) ∈ ∆×R,

Θi({xi},∆i)(k) + Θj({xj},∆j)(k) = Θj({xj},∆j)(k) + Θi({xi},∆i)(k)
(6.21)

3. the operation of addition under temporal constraints is associative:

∀ Θi({xi},∆i)(k) ∈ ∆×R,∀ Θj({xj},∆j)(k) ∈ ∆×R,∀ Θl({xl},∆l)(k) ∈ ∆×R,

(Θi({xi},∆i)(k) + Θj({xj},∆j)(k)) + Θl({xl},∆l)(k) =

Θi({xi},∆i)(k) + (Θj({xj},∆j)(k) + Θl({xl},∆l)(k))

(6.22)

6.6 Homomorphism between Algebraic Structures (R,+) and (∆×

R,
∆τij
+)

Let us sum up the situation. On one hand, we have an algebraic structure denoted (R,+) whose
elements are real numbers generated by Dirac’s sampler devices. The operation + presents
a neutral element, is commutative and is associative. On the other hand, we have another

algebraic structure denoted (∆ × R,
∆τij
+) whose elements are timed observations generated by

Unary Observers. The operation
∆τij
+ presents also a neutral element, is also commutative and

is also associative.
We have then two algebraic structures of the same species, of the same shape. It is then

natural to build a homomorphism between them in order to compare their respective elements.
Let us denote Φ, the morphism mapping real numbers xik produces by Dirac’s samplers

XT (xi), and timed observations (δi, tik), produced by Unary Observers Θi({xi},∆i):

Φ : R → ∆×R

xik 7→ (δi, tik)
(6.23)

Figure 6.3 provides a representation of such a homomorphism:
On this example, the homomorphism Φ does the following mapping:

Φ : R → ∆×R

x−3 7→ (δ, t0)

x−2 7→ (δ, t0)

x−1 7→ (δ, t0)

x0 7→ (δ, t1)

x1 7→ (δ, t1)

x2 7→ (δ, t1)

x3 7→ (δ, t2)

(6.24)

6.7. CONCLUSION 83

Figure 6.3: Representation of the homomorphism Φ : R → ∆ × R mapping sampled values of x(t)
produced by Dirac’s sampler with timed observations produced by a Unary Observer observing the same
function.

Such a homomorphism maps neutral elements of each structure:

Φ : R → ∆×R

0 7→ (φ, tφ)
(6.25)

Such a homomorphism preserves operations of each structure:

∀xik ∈ R,∀xjk ∈ R, ∃(δi, tik) ∈ ∆×R, ∃(δj , tjk) ∈ ∆×R,

Φ(xik + xjk) = Φ(xik)
∆τij
+ Φ(xjk) = (δi, tik)

∆τij
+ (δj , tjk)

(6.26)

The important point here is that the existence of such a homomorphism demonstrates that
programs producing real numbers in the algebraic structure (R,+) and timed observations in the

algebraic structure (∆×R,
∆τij
+) play the same role: programs of the algebraic structure (R,+)

being samplers, we can affirm then that Unary Observers play also the role of samplers in the

algebraic structure (∆×R,
∆τij
+). An application can be found in [Ahb10b].

6.7 Conclusion

This chapter demonstrates that a Unary Observer Θi({xi}, {δi}) plays the role of a sampler
device of the framework of the TOT.

84 CHAPTER 6. THE TOT SAMPLER

The general form of a Unary Observer has been given with the equation 3.26 of the section
3.5:

θi(xi, δj , tk)⇒ write(O(tk)) (6.27)

This form is important because a Unary Observer can be very simple or very complex. For
example, the sampler used to solve the bank problem of chapter 8 is the following:

xi(tk−1) 6= xi(tk)⇒ write((δi, tk)) (6.28)

Another example can be found in appendix A.
Maybe this TOT sampler is the simplest one. In industry, most of the samplers implement

the equation 3.22 of section 3.5:

xi(tk−1) < Ψj ∧ xi(tk) ≥ Ψj ⇒ write((δi, tk)) (6.29)

Such industrial samplers are also simple. Nevertheless, for example, numerous of very complex
TOT samplers have been designed and implemented in the Sachem system (cf. [LeG04] for a
description of some of them). The papers [LT98, LTT98] describe one of the most complex Unary
Observer of the Sachem system, which is made of an architecture of 2 × 9 neural networks of
various kinds (mainly multilayers perceptron and Kohonen Cards) to solve a particularly difficult
problem of perception.

Now all elements are in place to build the TOT Category. Using the Category Theory is
of a main importance in order to keep on formalizing the concept of abstraction introduced in
chapter 5.

CHAPTER 7

The TOT Category

7.1 Introduction

Let us go back to Merker’s lecture notes of 1983 [Mer83]. Merker recalls that in science a model
M is used to represent a concrete situation C so that the transformation F linking the situation
C to its modelM expresses an analogy report. Merker then claims that such an analogy report
is like a functor. As a consequence, according to Merker, only the model M is well defined.
Generally speaking, the situation C and consequently the transformation F is less well defined.
Merker’s point of view is clearly a praxeological one inspired from Halbwachs’ book [Hal74]. The
concrete situation C is substituted with a praxeological situation, that is to say, an experimental
situation followed by a production situation of an object: in each case, the concrete situation C
consists in an operating mode defining materially the succession and the sequence of experimental
or production transformations. To illustrate this position, Merker uses two examples, the first
belonging to Physics, the second to Human Sciences: (i) the example of an optical system
provided by Halbwacks’ book and (ii) Lévi-Strauss elementary structures of kinship. With these
two examples, Merker illustrates what is, for us, a key point when considering the usage of the
Category Theory: generally speaking, the model M used to represent a situation is a set of
models Mi with the adequate homomorphisms Fij linking a model Mi to another Mj . And
Merker to say that the model M is a category made of simple algebraic models Mi with the
associated homomorphisms Fij. To sum up, Merker claims that the concrete situation C to study
acts like a category C of effective physical transformations and that in front of this category
C, can be presented a mathematical category M. The Timed Observation Theory (chapters 3,
4) represents then a natural mathematical framework to be such a mathematical category M.
The algebraic properties, the existence of an observable space, the existence of an abstraction
process inherent to the concept of timed observations as a paradigm (chapter 5), the existence
of a sampler (Unary Observer, chapter 6) in the TOT framework, provide the tools to formalize
the category of model M described by Merker. Such a mathematical category of model M is
called the TOT Category.

7.2 Characteristic Elements of the TOT Category

Let us consider the timed function xi(t) being observed by the Unary Observer Θi({xi},∆i).
The set ∆i = {δik , k ∈ Z} is the set of constants δik that variable name xi can take. Let us
recall that the Unary Observer Θi({xi},∆i) implements a predicate θi(xθi , δθi , tθi) according
to the Spacial Discretization Principle 6.8. Let us recall that for each assignation k ∈ Z of

85

86 CHAPTER 7. THE TOT CATEGORY

the predicate θi(xθi , δθi , tθi) such as θi(xi, δik , tik), Unary Observer Θi({xi},∆i) writes a timed
observation denoted Oik(tik) ≡ (δik , tik). Let be Oik = {(xi, δik)}, the observation class linking
variable name xi with constant δik . Let us denote Γi = {tik}, the stochastic clock containing
timestamps tik ∈ R. Let be ωi(tni) = {Oik(tik) ≡ (δik , tik), δik ∈ ∆i, tik ∈ Γi}, the sequence
of ni ∈ N timed observations produces by the Unary Observer Θi({xi},∆i). Such a sequence
ωi(tni) is a subset of ∆i×Γi. In the following, a Unary Observer Θi({xi},∆i) and a sequence of
timed observations ωi(tni) may be rewritten Θi({xi},∆i) ≡ Θi(xi,∆i) ≡ Θi and ωi(tni) ≡ ωi in
order to lighten their writings.

The TOT Category consists of the following entities:

• a collection, denoted ob(TOT) = {Θi(xi,∆i), i ∈ [1;nTOT]}, of objects made of nTOT ∈ N
Unary Observers Θi(xi,∆i):

Θi(xi,∆i) : k ∈ Z → ∆i × Γi

k 7→ Oik(tik) ≡ (δik , tik)
(7.1)

• a collection, denoted mor(TOT) = {fij , (i, j) ∈ [1;nTOT]2}, of morphism fij linking two
objects, that is to say, two Unary Observers Θi(xi,∆i) and Θj(xj ,∆j) of ob(TOT):

∀Θi(xi,∆i) ∈ ob(TOT),∀Θj(xj ,∆j) ∈ ob(TOT),∃fij ∈ mor(TOT),

fij : Θi(xi,∆i) → Θj(xj ,∆j)

Oik(tik) ≡ (δik , tik) 7→ Ojl(tjl) ≡ (δjl , tjl)

(7.2)

Figure 7.1: Representation of objects Θi(xi,∆i), Θj(xj ,∆j) and morphism fij in the TOT Category

• an identity morphism for each object:

∀Θi(xi,∆i) ∈ ob(TOT),∃fii ∈ mor(TOT),

fii : Θi(xi,∆i) → Θi(xi,∆i)

Oik(tik) ≡ (δik , tik) 7→ Oik(tik) ≡ (δik , tik)

(7.3)

Figure 7.2: Representation of the object Θi(xi,∆i) and its identity morphism fii in the TOT Category

• a binary operation, denoted ◦, called composition of morphisms such as:

∀fij : Θi(xi,∆i)→ Θj(xj ,∆j), ∀fjk : Θj(xj ,∆j)→ Θk(xk,∆k)

fjk ◦ fij : Θi(xi,∆i)→ Θk(xk,∆k)
(7.4)

7.2. CHARACTERISTIC ELEMENTS OF THE TOT CATEGORY 87

Such a composition of morphisms satisfies the following axioms:

1. the composition of morphisms is associative:

∀fij : Θi(xi,∆i)→ Θj(xj ,∆j),

∀fjk : Θj(xj ,∆j)→ Θk(xk,∆k),

∀fkl : Θk(xk,∆k)→ Θl(xl,∆l),

fkl ◦ (fjk ◦ fij) = (fkl ◦ fjk) ◦ fij

(7.5)

Figure 7.3: Representation of the composition of morphisms in the TOT Category

2. the neutral element of the composition of morphisms is the identity morphism:

∃fii : Θi(xi,∆i)→ Θi(xi,∆i), ∃fjj : Θj(xj ,∆j)→ Θj(xj ,∆j),

∀fij : Θi(xi,∆i)→ Θj(xj ,∆j),

fjj ◦ fij = fij ◦ fii
(7.6)

Figure 7.4: Representation of the neutral element for the composition of morphisms in the TOT Category

• a binary operation, denoted
⊕

, called composition of objects, that is to say, composition
of observers defined in 4.5 such as:

∀Θi(xi,∆i) ∈ ob(TOT),∀Θj(xj ,∆j) ∈ ob(TOT),

∃Θk(xk,∆k) ∈ ob(TOT),

Θk(xk,∆k) = Θi(xi,∆i)
⊕

Θj(xj ,∆j)

(7.7)

Let us recall that such an operation defines an abstract observer Θk(xk,∆k) implementing
a predicate θk(xθk , δθk , tθk) producing abstract timed observation Okl ≡ (δkl , tkl), δkl ∈ ∆k,
tkl ∈ Γk. Such a timed observation Okl is the assignation θk(xk, δkl , tkl) of the predicate
θk(xθk , δθk , tθk) produced by the application of the Modus Ponens with the following rule:

∀tim ∈ Γi, ∀tjn ∈ Γj ,

θi(xi, δim , tim) ∧ θj(xj , δjn , tjn) ∧ |tjn − tim | ∈ ∆τimjn
⇒ ∃δkl ∈ ∆k, θk(xk, δkl , tkl) ∧ tkl ∈ {tim , tjn}

(7.8)

Such a composition of objects satisfies the following axioms:

88 CHAPTER 7. THE TOT CATEGORY

1. the composition of objects is associative (see 4.22):

∀Θi(xi,∆i) ∈ ob(TOT),

∀Θj(xj ,∆j) ∈ ob(TOT),

∀Θk(xk,∆k) ∈ ob(TOT),

Θi(xi,∆i)
⊕

(Θj(xj ,∆j)
⊕

Θk(xk,∆k)) = (Θi(xi,∆i)
⊕

Θj(xj ,∆j))
⊕

Θk(xk,∆k)

(7.9)

2. the neutral element of the composition of objects is the the neutral observer ΘΦ({xφ}, {φ})
(see 4.20):

∃ΘΦ({xφ}, {φ}) ∈ ob(TOT),

∀Θi(xi,∆i) ∈ ob(TOT),

ΘΦ({xφ}, {φ})
⊕

Θi(xi,∆i) = Θi(xi,∆i)
⊕

ΘΦ({xφ}, {φ}) = Θi(xi,∆i)

(7.10)

The operation of composition of observers
⊕

is based on the addition under temporal
constraints of timed observations which is the key element in the process of abstraction
introduced in chapter 5. The operation of composition of observers

⊕
is then the key

element in the process of abstraction in the TOT Category.

7.3 The Categories of the TOT

Let us consider the TOT Category whose objects are two Unary Observers Θi(xi,∆i) and
Θj(xj ,∆j). Let us consider the binary superposition Ω such as Ω = ωi ∪ ωj . As seen in

chapter 5, property 18, we can build the algebraic structure S = (Ω,
∆τij
+) such as Ω ⊆ ∆ × Γ,

∆ = ∆i ∪∆j , Γ = Γi ∪ Γj .
Let us now suppose that we decide to partition the sequence ωi into two sequences ωi1 and

ωi2 , such as ωi = ωi1 ∪ ωi2 , partitioning then the set of constants ∆i into two disjoint sets ∆i1

and ∆i2 such as ∆i = ∆i1∪∆i2 and ∆i1∩∆i2 = ∅. From this binary superposition ωi = ωi1∪ωi2 ,

we can also, according to property 18, build another algebraic structure Si = (ωi,
∆τij
+) such as

ωi ⊆ ∆i × Γi, ∆i = ∆i1 ∪∆i2 , Γi = Γi1 ∪ Γi2 .
The same reasoning can be done with the sequence ωj that would build the algebraic structure

Sj = (ωj ,
∆τij
+), such as ωj ⊆ ∆j × Γj , ∆j = ∆j1 ∪∆j2 , Γj = Γj1 ∪ Γj2 .

The choice of an adequate algebraic structure is important because this choice has conse-
quences on the observable space, that is to say, on the modeling and on the behaviour of the
observed process. An algebraic structure has also its own level of abstraction and thus its own
syntax and its own semantic that describe the observed process.

In order to specify which algebraic structure we consider, we denote TOT (∆i), the TOT
Category whose object is the Unary Observer Θi(xi,∆i). This leads us to the definition of a
TOT (∆i) Category :

Definition 7.1 TOT (∆i) Category
A TOT (∆i) Category is the TOT Category whose object is the Unary Observer Θi(xi,∆i). Such

7.3. THE CATEGORIES OF THE TOT 89

a TOT (∆i) Category is algebraically structured with Si = (ωi,
∆τij
+), ωi ⊆ ∆i × Γi.

Any set ∆i of constants δik is a discrete and finite set. It is then possible to map such a set
to a subset of Z according to an adequate mapping function. The section 7.4 introduces such
a mapping thanks to the Gödel numbering function. Thus, the most general TOT Category is
the category TOT (Z) whatever the integer zi ∈ Z represents (i.e. a real number, a string of
characters, etc.). As a consequence, the building of the category TOT (R) is not possible.

7.3.1 Modeling Functors

Let us consider the TOT (∆i) Category whose object is Unary Observer Θi(xi,∆i) defining the

algebraic structure Si = (ωi,
∆τij
+), ωi ⊆ ∆i × Γi. Let us consider the TOT (∆j) Category whose

object is Unary Observer Θj(xj ,∆j) defining the algebraic structure Sj = (ωj ,
∆τij
+), ωj ⊆ ∆j×Γj .

Let us consider the morphism fij ∈ mor(TOT) linking Unary Observer Θi(xi,∆i) with Unary
Observer Θj(xj ,∆j).

Let us recall that such a morphism maps some timed observations (δik , tik) of sequence ωi(tni)
with some timed observations (δjl , tjl) of sequence ωj(tnj). A priori, such a mapping is not known.
Let us suppose that there exists a well known relation, denoted R∆i→∆j : ∆i → ∆j , linking set of
constants ∆i with set of constants ∆j . This means that the mapping of constants δik of ∆i with
constants δjl of ∆j is well known. So, according to the relation R∆i→∆j , we are able to know
which timed observations (δik , tik) of sequence ωi(tni) maps which timed observations (δjl , tjl) of
sequence ωj(tnj):

δikR∆i→∆jδjl ⇒ (δik , tik)fij(δjl , tjl) (7.11)

Thus, the morphism fij can be built and known according to the relation R∆i→∆j . This
leads us to the defintion of a Modeling functor :

Definition 7.2 Modeling Functor
Let us consider two TOT Categories TOT (∆i) and TOT (∆i) whose objects are respectively Unary
Observers Θi(xi,∆i) and Θj(xj ,∆j). If there exists a relation R∆i→∆j linking sets of constants
∆i and ∆j then the morphism fij linking Θi(xi,∆i) and Θj(xj ,∆j) is called a Modeling functor.
Such a Modeling functor links categories TOT (∆i) and TOT (∆i) and is denoted TOT (∆i) →
TOT (∆i).

The relation R∆i→∆j can be anything: injective, surjective or bijective. A Modeling functor
is then a morphism allowing to go from one particular TOT Category to another particular TOT
Category. Each particular TOT Category has its own level of abstraction, that is to say, its own
syntax and its own semantic to describe the observed process. In other words, each particular
TOT Category has its own point of view to describe and model the system under observation.
A Modeling functor is then a tool allowing to change the point of view under which the system
is observed.

90 CHAPTER 7. THE TOT CATEGORY

7.3.2 Level of Abstraction of a TOT (∆m) Category

Let us consider the TOT Category composed of n ∈ N? independent Unary Observers Θi(xi,∆i),
i ∈ [1;n] such as

⋂
i∈[1;n]

∆i = ∅. According to the superposition theorem 3.2, let us consider the

observed process (X(t),Θ(X,∆)) such as:

• X(t) =
⋃

i∈[1;n]

{xi(t)};

• X =
⋃

i∈[1;n]

{xi};

• ∆ =
⋃

i∈[1;n]

∆i;

• Θ(X,∆) =
⋃

i∈[1;n]

Θi(xi,∆i).

Let us consider the observed process (Xm(t),Θ(Xm,∆m)), m ∈ N?, m ≤ n, such as:

• Xm(t) =
⋃

i∈[1;m]

{xi(t)} ⊆ X(t);

• Xm =
⋃

i∈[1;m]

{xi} ⊆ X;

• ∆m =
⋃

i∈[1;m]

∆i ⊆ ∆;

• Θm(Xm,∆m) =
⋃

i∈[1;m]

Θi(xi,∆i).

Let be Γm the stochastic clock such as Γm =
⋃

i∈[1;m]

Γi. Let be Ωm the m-ary superposition

such as Ωm =
⋃

i∈[1;m]

ωi. Let us consider the TOT (∆m) Category defining the algebraic structure

Sm = (Ωm,
∆τij
+), Ωm ⊆ ∆m × Γm. Let be Tm = (Ωm, Im), the observable space of the observed

process (Xm(t),Θm(Xm,∆m)) where Im is the collection related to Ωm (see property 5.1).

Definition 7.3 Level of Abstraction of a TOT (∆m) Category
The structure Lm = 〈Sm, Tm〉 is the level of abstraction of the TOT (∆m) Category.

The LoA Lm = 〈Sm, Tm〉 of a TOT (∆m) Category is then composed of:

• an algebraic structure Sm = (Ωm,
∆τij
+), Ωm ⊆ ∆m × Γm, from which we can get all the

constants δmk ∈ ∆m and all the variable names xi, i ∈ [1;m]: these constants together with
these variable names represent the syntax and the semantic of the LoA Lm, that is to say,
provides a particular point of view of the observed process (X(t),Θ(X,∆));

• an observable space Tm = (Ωm, Im) from which we can build the abstract chronicle model
Mm whose instance is the behaviour Bm of the observed process (Xm(t),Θm(Xm,∆m)).

7.3. THE CATEGORIES OF THE TOT 91

7.3.3 Abstraction Functors

Let us consider the TOT (∆0) Category composed of two Unary Observers Θi(xi,∆i) and Θj(xj ,∆j)

such as ∆0 = ∆i ∪∆j and ∆i ∩∆j = ∅. Let be L0 = 〈S0, T 0〉, the level of abstraction of the
TOT (∆0) Category where S0 and T 0 are respectively the algebraic structure and observable
space of the TOT (∆0) Category.

Let us consider the operation of composition of observers, denoted
⊕

, defined in 4.5:

Θk(xk,∆
1) = Θi(xi,∆i)

⊕
Θj(xj ,∆j) (7.12)

This operation is based on the application of the Modus Ponens with the following rule:

∀tim ∈ Γi, ∀tjn ∈ Γj ,

θi(xi, δim , tim) ∧ θj(xj , δjn , tjn) ∧ |tjn − tim | ∈ ∆τimjn
⇒ ∃δkl ∈ ∆1, θk(xk, δkl , tkl) ∧ tkl ∈ {tim , tjn}

(7.13)

Let us consider the TOT (∆1) Category whose object is the Unary Observer Θk(xk,∆
1). Let

us denote Ω1 the sequence of timed observations Okl(tkl) ≡ (δkl , tkl) written by Θk(xk,∆
1).

According to definition 7.3, the LoA of TOT (∆1) Category is the structure L1 = 〈S1, T 1〉 where

S1 = (Ω1,
∆τij
+) and T 1 = (Ω1, I1) are respectively the algebraic structure and observable space

of the TOT (∆1) Category.
By construction, each couple of constants (δim , δjn) ∈ ∆i × ∆j ⊂ ∆0 × ∆0 is mapped to

the constant δkl ∈ ∆1. The composition of observers induces then a surjective relation denoted
∆0×∆0 → ∆1 linking sets of constants ∆0×∆0 to set of constants ∆1. Such a relation induces
the existence of a morphism, denoted TOT (∆0)→ TOT (∆1), linking categories TOT (∆0) and
TOT (∆1). Such a morphism maps couples of timed observations ((δim , tim), (δjn , tjn)) produced
respectively by Unary Observers Θi(xi,∆i) and Θj(xj ,∆j) of TOT (∆0) Category to timed ob-
servation (δkl , tkl) produced by Unary Observer Θk(xk,∆

1) of TOT (∆1) Category:

TOT (∆0)→ TOT (∆1) : TOT (∆0) → TOT (∆1)

((δim , tim), (δjn , tjn)) 7→ (δkl , tkl)
(7.14)

This leads us to the defintion of an Abstraction functor :

Definition 7.4 Abstraction Functor
Let us consider two categories, TOT (∆0) and TOT (∆1). Let us consider a surjective relation
∆0×∆0 → ∆1 built from the application of the Modus Ponens with the rule 7.13. Any morphism,
denoted TOT (∆0) → TOT (∆1), linking categories TOT (∆0) and TOT (∆1) according to the
relation ∆0 × ∆0 → ∆1 is an Abstraction functor. Such an Abstraction functor is said to
implement the composition of observers.

From this definition, we can deduce the following properties:

Property 23
According to property 22, the LoA L1 is higher or more abstract than the LoA L0.

Property 24
If the rule 7.13 is applied in the particular case where tjn = tjm+1 then the Unary Observer

92 CHAPTER 7. THE TOT CATEGORY

Θk(xk,∆
1) of the TOT (∆1) Category can be decomposed into the four Abstract Binary Ob-

servers Θii({φii}, {δii}), Θij({φij}, {δij}), Θji({φji}, {δji}), Θjj({φjj}, {δjj}), defined in 4.7.
Timed observations of the TOT (∆1) Category represent the observation of binary sequences
((δim , tim), (δjm+1 , tjm+1)) from consecutive timed observations produced by Unary Observers Θi(xi,∆i)

and Θj(xj ,∆j) of the TOT (∆0) Category (see chapter 8, section 8.6.4, for a concrete utilisa-
tion).

Property 25
If the rule 7.13 is applied in the particular case where only the Unary Observer Θi(xi,∆i) is
concerned (i.e. there is no Unary Observer Θj(xj ,∆j) and no timed constraints):

∀tim ∈ Γi,

θi(xi, δim , tim)⇒ ∃δkl ∈ ∆1, θk(xk, δkl , tim)
(7.15)

Then the Abstraction functor is built according to a surjective relation of the form:

∆0 → ∆1 : ∆0 → ∆1

δim 7→ δkl
(7.16)

Such a relation can be a usual application µ such as:

µ : ∆0 → ∆1

δim 7→ µ(δim)
(7.17)

A concrete example of such an application, called the classification function, is given in
chapter 8.

Property 26
Given two sets of constants ∆0 and ∆1:

• if the relation ∆0 → ∆1 is not surjective then the morphism TOT (∆0) → TOT (∆1) is a
Modeling functor,

• if the relation ∆0 → ∆1 is surjective then:

– if the relation ∆0 → ∆1 is induced by the application of the Modus Ponens with the
rule 7.13 then the morphism TOT (∆0)→ TOT (∆1) is an Abstraction functor,

– else the morphism TOT (∆0)→ TOT (∆1) is a Modeling functor.

Modeling functors can be injective, surjective or bijective morphisms. Their goal is to change
the point of view under which the system is observed. They link TOT categories whose LoAs are
as abstract as each other, that is to say, the syntax and the semantic in each LoA is equivalent.

Abstraction functors are necessarily surjective morphisms that generate, on one hand, a loss
of informations between the input category and the output category but, on the other hand,
allows to make easier reasonings in the output category in a way to get detailed informations on

7.3. THE CATEGORIES OF THE TOT 93

the input one. There exists famous functors such as the ”forgetting” functor or the Poincaré’s
functor (see [Mer83] for details).

This leads us to the following definition of a gradient of abstraction of the TOT Category :

Definition 7.5 Gradient of Abstraction of the TOT Category
Let us consider the n ∈ N? categories TOT (∆i), i ∈ [1;n].
Let be Li = 〈Si, Ti〉, the LoA of the TOT (∆i) Category.
Let be Bi, the behaviour of the observed process of the TOT (∆i) Category.
A gradient of abstraction (GoA) of the TOT Category is a collection G = {Li, i ∈ [0;n]} of
n ∈ N? LoAs Li such as:

• there exists an Abstraction functor TOT (∆i) → TOT (∆i+1) linking two consecutive cate-
gories TOT (∆i) and TOT (∆i+1) for all i ∈ [0;n− 1];

• the behaviour at the LoA Li+1 is stronger than the behaviour at the LoA Li:

∀i ∈ [0;n− 1],Bi+1 ⇒ Bi (7.18)

The consequence of the first point is that the LoA Li+1 is higher or more abstract than the
LoA Li for all i ∈ [0;n− 1].

Figure 7.5: Gradient of abstraction in the TOT Category

Figure 7.5 represents a gradient of abstraction containing three levels of abstraction:

• The level L0 = 〈S0, T 0〉 is composed of two TOT Categories TOT (∆i) and TOT (∆j)

defining two LoAs Li = 〈Si, Ti〉 and Lj = 〈Sj , Tj〉: categories TOT (∆i) and TOT (∆j) are
linked by a Modeling functor TOT (∆i)→ TOT (∆j) built according to a relation ∆i → ∆j .

• The level L1 = 〈S1, T 1〉 is composed of the TOT (∆1) Category: an Abstraction functor
TOT (∆0)→ TOT (∆1) links categories TOT (∆0) and TOT (∆1) according to a surjective
relation ∆0 ×∆0 → ∆1 as described in definition 7.4 or property 24.

94 CHAPTER 7. THE TOT CATEGORY

• The level L2 = 〈S2, T 2〉 is composed of the TOT (∆2) Category: an Abstraction functor
TOT (∆1)→ TOT (∆2) links categories TOT (∆1) and TOT (∆2) according to a surjective
relation ∆1 → ∆2 as described in property 25.

7.4 Syntactic Arithmetization

As said in 7.3, any set ∆i of constants δik is finite and discrete. It is then possible to link such
a set with a subset Pi of Z according to an adequate numbering function g : ∆i → Pi ⊆ Z.
In his thesis [Göd31], Kurt Gödel provides a general and adequate numbering function, called
the Gödel numbering function, mapping any primitive symbol, expression and finite sequence of
expressions e belonging to a language LK of a theory K with a positive integer of N?:

g : LK → N?

e 7→ g(e)
(7.19)

The language LTOT of the Timed Observation Theory is composed of the following symbols:

• connectors: ∧, ⇒;

• quantifiers: ∀, ∃, ∈;

• ponctuation: (,), ",", {, }, [,];

• variable names: xi;

• constants: δij ;

• timestamps: tij ;

• observation classes: Oij ;

• time constraints: τ−ij , τ
+
ij ;

• predicates: θi;

• abstract predicates: θij ;

• abstract constants: δij .

In a first step, the function g maps any symbol e of LTOT with its Gödel number g(e) such
as, for all i ≥ 1 and j ≥ 1 :

7.4. SYNTACTIC ARITHMETIZATION 95

g(∧) = 3 g(xi) = 3 + 8 ∗ i
g(⇒) = 5 g(θi) = 5 + 8 ∗ i
g(∀) = 7 g(δij) = 3 + 8 ∗ 2i ∗ 3j

g(∃) = 9 g(tij) = 5 + 8 ∗ 2i ∗ 3j

g(∈) = 11 g(Oij) = 7 + 8 ∗ 2i ∗ 3j

g(() = 13 g(τ−ij) = 9 + 8 ∗ 2i ∗ 3j

g()) = 15 g(τ+
ij) = 11 + 8 ∗ 2i ∗ 3j

g(,) = 17 g(θij) = 13 + 8 ∗ 2i ∗ 3j

g({) = 19 g(δij) = 15 + 8 ∗ 2i ∗ 3j

g(}) = 21

g([) = 23

g(]) = 25

(7.20)

In a second step, any expression u0u1...ur made of symbols u0, u1, ..., ur is mapped with its
Gödel number according the following way:

g(u0u1...ur) = 2g(u0)3g(u1)...pg(ur)r (7.21)

where pr is the rth prime number.
In last step, any sequence of expressions e0, e1, ..., er is mapped with its Gödel number ac-

cording the following way:

g(e0, e1, ..., er) = 2g(e0)3g(e1)...pg(er)r (7.22)

where pr is the rth prime number.
The key point is, given an element e of the language LTOT , its Gödel number is unique:

∀e ∈ LTOT ,∃!g(e) ∈ N? (7.23)

Thus, the Gödel numbering function is a bijective homomorphism between any algebraic

structure Si = (ωi,
∆τij
+), ωi ⊆ ∆i × Γi of the TOT (∆i) Category and algebraic structure S ′i =

(Pi,+), mapping any timed observation Oij (tij) of ωi with a unique positive integer pij of Pi:

g : ωi → Pi
Oij (tij) 7→ pij

(7.24)

such that:

∀Oij (tij) ∈ ωi,∃!pij ∈ Pi, g(Oij (tij)) = pij

∀Oij (tij) ∈ ωi, ∀Oik(tik) ∈ ωi, g(Oij (tij)
∆τik
+ Oik(tik)) = pij + pik

(7.25)

In this case, the TOT (∆i) Category is isomorphic with the TOT (Pi) Category and then the
following properties can be provided:

Property 27 Modeling Functor
Let us consider P and Q, two subsets of N?.
If there exists a relation P→ Q between P and Q then there exists a Modeling functor TOT (P)→

96 CHAPTER 7. THE TOT CATEGORY

TOT (Q) between categories TOT (P) and TOT (Q).

Property 28 Abstraction Functor
If the relation P→ Q is surjective and induced by the application of the Modus Ponens with the
rule 7.13 then the morphism TOT (P) → TOT (Q) is an Abstraction functor between categories
TOT (P) and TOT (Q).

Working with a TOT (Pi) Category, Pi ⊆ Z, allows the renaming of elements composing the
TOT (∆i) Category into natural numbers. Such a renaming is, in practice, very useful when
implemented in computer programs.

7.5 Sum and Product in the TOT Category

Let us consider the TOT Category and two objects, that is to say, two Unary Observers
Θi(xi,∆i) ≡ Θi and Θj(xj ,∆j) ≡ Θj . This aim of this section is to give a definition and
an interpretation of what a sum and a product of objects in the TOT Category represent. The
general definitions of sum and product can be found in 2.4.

7.5.1 Sum in the TOT Category

The sum between the object Θi and the object Θj , denoted ΘΣ ≡ Θi + Θj , is an object of the
TOT Category associated with two morphisms, fiΣ : Θi → ΘΣ and fjΣ : Θj → ΘΣ, such that,
for all object Θk ∈ ob(TOT) and for all couple of morphisms fik : Θi → Θk and fjk : Θj → Θk

in mor(TOT), there exists a unique morphism fΣk : ΘΣ → Θk such as :{
fik = fΣk ◦ fiΣ
fjk = fΣk ◦ fjΣ

(7.26)

The morphism fik maps timed observations (δi, ti) written by Θi with timed observations
(δk, tk) written by Θk:

fik : Θi → Θk

(δi, ti) 7→ (δk, tk)
(7.27)

The morphism fjk maps timed observations (δj , tj) written by Θj with timed observations
(δk, tk) written by Θk:

fjk : Θj → Θk

(δj , tj) 7→ (δk, tk)
(7.28)

Let us consider that the Unary Observer ΘΣ is the result of the operation of composition of
observers of equation 7.7:

ΘΣ = Θi

⊕
Θj (7.29)

In that case, timed observations written by ΘΣ are of the form (δΣ, tΣ) where:

7.5. SUM AND PRODUCT IN THE TOT CATEGORY 97

δΣ = (δi, δj)

tΣ ∈ {ti, tj}
(7.30)

Thus, morphism fiΣ maps timed observations (δi, ti) written by Θi with timed observations
(δΣ, tΣ) ≡ ((δi, δj), tΣ ∈ {ti, tj}) written by ΘΣ such as:

fiΣ : Θi → ΘΣ

(δi, ti) 7→ (δΣ, tΣ) ≡ ((δi, δj), tΣ ∈ {ti, tj})
(7.31)

And morphism fjΣ maps timed observations (δj , tj) written by Θj with timed observations
(δΣ, tΣ) ≡ ((δi, δj), tΣ ∈ {ti, tj}) written by ΘΣ such as:

fjΣ : Θj → ΘΣ

(δj , tj) 7→ (δΣ, tΣ) ≡ ((δi, δj), tΣ ∈ {ti, tj})
(7.32)

Let us have a look on the morphism fΣk. Such a morphism maps timed observations (δΣ, tΣ) ≡
((δi, δj), tΣ ∈ {ti, tj}) written by ΘΣ with timed observations (δk, tk) written by Θk such as:

fΣk : ΘΣ → Θk

(δΣ, tΣ) ≡ ((δi, δj), tΣ ∈ {ti, tj}) 7→ (δk, tk)
(7.33)

Let us now suppose that there exists another morphism denoted f
′
Σk linking observers ΘΣ

and Θk. If such a morphism exists, this means that the observer ΘΣ would be able to write a
timed observation of the form (δ

′
Σ, t

′
Σ) whose constant δ′Σ and timestamp t′Σ would be different

than δΣ and timestamp tΣ:

• timestamps t′Σ and tΣ are arbitrarily chosen in {ti, tj}, we can then impose t′Σ = tΣ;

• by hypothesis (see 3.4), the observer ΘΣ is a safe program, that is to say, it cannot write
simultaneous timed observations. Thus, at the date t′Σ = tΣ, we have:

(δ
′
Σ, tΣ) = (δΣ, tΣ)⇒ δ

′
Σ = δΣ (7.34)

This means that the morphism fΣk is unique.

Figure 7.6: Sum of objects in the TOT Category

This leads us to the following properties:

Property 29

98 CHAPTER 7. THE TOT CATEGORY

The sum of two objects Θi(xi,∆i) and Θj(xj ,∆j) in the TOT Category is an observer ΘΣ(xΣ,∆Σ)

writing timed observation of the form (δΣ, tΣ) such as:

δΣ = (δi, δj), δi ∈ ∆i, δj ∈ ∆j

tΣ ∈ {ti, tj}, ti ∈ Γi, tj ∈ Γj
(7.35)

Morphism fiΣ allows to map the constant δi to the constant δΣ = (δi, δj).
Morphism fjΣ allows to map the constant δj to the constant δΣ = (δi, δj).

Property 30
The sum of two objects in the TOT Category corresponds to the operation of composition of
observers.

Property 31
The sum of two objects in the TOT Category induces an abstraction process.

Property 32
An Abstraction functor implements the sum of objects in the TOT Category.

7.5.2 Product in the TOT Category

The product between the object Θi and the object Θj , denoted ΘΠ ≡ Θi × Θj is an object
associated with two morphisms, fΠi : ΘΠ → Θi and fΠj : ΘΠ → Θj , such that, for all object
Θk ∈ ob(TOT) and for all couple of morphisms fki : Θk → Θi and fkj : Θk → Θj ∈ mor(TOT),
there exists a unique morphism fkΠ : Θk → ΘΠ such as:{

fΠi ◦ fkΠ = fki

fΠj ◦ fkΠ = fkj
(7.36)

The morphism fki maps timed observations (δk, tk) written by Θk with timed observations
(δi, ti) written by Θi:

fki : Θk → Θi

(δk, tk) 7→ (δi, ti)
(7.37)

The morphism fkj maps timed observations (δk, tk) written by Θk with timed observations
(δj , tj) written by Θj :

fkj : Θk → Θj

(δk, tk) 7→ (δj , tj)
(7.38)

Let us consider that the Unary Observer ΘΠ writes timed observations of the form (δΠ, tΠ)

where:

δΠ = (δi, δj)

tΠ ∈ {ti, tj}
(7.39)

7.5. SUM AND PRODUCT IN THE TOT CATEGORY 99

where δi ∈ ∆i, δj ∈ ∆j , ti ∈ Γi and tj ∈ Γj .
Thus, morphism fΠi maps timed observations (δΠ, tΠ) ≡ ((δi, δj), tΣ ∈ {ti, tj}) written by

ΘΠ with timed observations (δi, ti) written by Θi such as:

fΠi : ΘΠ → Θi

(δΠ, tΠ) ≡ ((δi, δj), tΣ ∈ {ti, tj}) 7→ (δi, ti)
(7.40)

The set ∆Π containing constants δΠ being a subset of ∆i×∆j , morphism fΠi is the projection
of ∆i ×∆j in ∆i.

Morphism fΠj maps timed observations (δΠ, tΠ) ≡ ((δi, δj), tΣ ∈ {ti, tj}) written by ΘΠ with
timed observations (δj , tj) written by Θj such as:

fΠj : ΘΠ → Θj

(δΠ, tΠ) ≡ ((δi, δj), tΣ ∈ {ti, tj}) 7→ (δj , tj)
(7.41)

The set ∆Π containing constants δΠ being a subset of ∆i×∆j , morphism fΠj is the projection
of ∆i ×∆j in ∆j .

Let us have a look on the morphism fkΠ. Such a morphism maps timed observations (δk, tk)

written by Θk with timed observations (δΠ, tΠ) ≡ ((δi, δj), tΠ ∈ {ti, tj}) written by ΘΠ such as:

fkΠ : Θk → ΘΠ

(δk, tk) 7→ (δΠ, tΠ) ≡ ((δi, δj), tΠ ∈ {ti, tj})
(7.42)

With the same reasoning than the one made for the sum, we demonstrate that the morphism
fkΠ is unique.

Figure 7.7: Product of objects in the TOT Category

This leads us to the following properties:

Property 33
The product of two objects Θi(xi,∆i) and Θj(xj ,∆j) in the TOT Category is an observer
ΘΠ(xΠ,∆Π), where ∆Π ⊆ ∆i × ∆j, writing timed observation of the form (δΠ, tΠ) such as:

δΠ = (δi, δj), δi ∈ ∆i, δj ∈ ∆j

tΠ ∈ {ti, tj}, ti ∈ Γi, tj ∈ Γj
(7.43)

Morphism fΠi is the projection of ∆i ×∆j in ∆i.

100 CHAPTER 7. THE TOT CATEGORY

Morphism fΠj is the projection of ∆i ×∆j in ∆j.

Property 34
The product of two objects Θi(xi,∆i) × Θj(xj ,∆j) in the TOT Category allows to get Unary
Observers Θi(xi,∆i) and Θj(xj ,∆j).

Property 35
The product of two objects in the TOT Category induces a reification process.

Property 36
A morphism implementing the product of objects in the TOT Category is called a reification
functor.

7.6 Conclusion

This chapter provides the basis of abstraction and reification reasonings according to Category
Theory. Characteristic elements composing the TOT Category were given in order to define
the concept of Modeling and Abstraction functors. Such functors are tools aiming at linking
particular TOT (∆i) Categories which are isomorphic to TOT (Pi) Categories, Pi ∈ Z, whose
elements are represented with natural numbers. These functors are of the main importance to
choose the adequate level of abstraction in order to model the observed process.

Modeling the observed process at the right level of abstraction provides a powerful solution
to solve a given problem. The next chapter proposes an organisation of these reasonings under
the form of a the TOM4A methodology (Timed Observations Methodology for Abstraction) im-
plementing a Recursive Abstraction Reification Based Problem Solving Method (AR-PSM). An
application of such an AR-PSM is implemented on a concrete problem concerning the discovering
and the modeling of internal fraudulent transactions in a famous French bank.

CHAPTER 8

The TOM4A Methodology

8.1 Introduction

This section is dedicated to the definition of the principles of a problem solving method (PSM)
based on recursive abstraction reification reasoning process, called AR-PSM (Recursive Abstrac-
tion Reification Based Problem Solving Method). Such a process is an application of abstraction
functors of the TOT(Z) Category presented in the preceding section. This section illustrates the
AR-PSM principles with an application which aims at discovering potential frauds in a stream
of banking transactions. This example comes from a famous French bank for which the princi-
ples of the proposed AR-PSM have been implemented in an algorithm called TOM4FFS (Timed
Observations Mining for Fraud Fighting System).

Nevertheless, the annexe B describes another application of the AR-PSM principles. This
application is the paper [LGV17] published in the proceeding of the ICAART international
congres in 2017. This application is our running example of the conversation between Alice,
Bob and Carol. It is to note that this paper has been cited by Floridi himself in [Flo17]. If less
concrete than the fraud detection problem, this application aims at showing that the principles
of the proposed AR-PSM are useful in current life activities.

Next section recalls some important aspects of any PSM in order to introduce TOM4A basic
cognitive operations in the TOT framework in section 8.3.

The following sections are all dedicated to the application of the TOM4 Methodology to the
concrete problem of the internal fraud detection in the banking industry.

8.2 Problem Solving Method

Let us introduce the basis about problem solving (cf. figure 8.1). A problem P exists in a
concrete space generally called the real world. The aim of a PSM is to allow the implementation
S of a solution such that P disappears: S ≡ P−1. In practice, any implementation using specific
technologies, a concrete solution is such that S ≈ P−1 (cf. technologies are approximation, in
[New81]).

To this aim, a PSM is always based on two basic operations: the observation of the problem
O(P) and the implementation of an abstract solution. The observation aims at building a model
of the problem M(O(P)), which is used by a PSM to build a model M(S) of all the solutions
S that can be implemented given the available technologies. In other words, M(S) contains
all the constraints that any concrete solution S must satisfy in order to be a concrete solution:
S ≈ P−1.

101

102 CHAPTER 8. THE TOM4A METHODOLOGY

Figure 8.1: Problem Solving Method

The important point here is that model of the observed problem M(O(P)) and the model
M(S) of the solutions S belong to an abstract world, the model’s world. This world is dual: it
is made of a semantic space and a syntactic space (figure 8.2). The role of the concept of formal
system is precisely to establish and to clarify the relations between these two spaces: this is the
fundamental role of the knowledge representation and interpretation dual operations (figure 8.3).

Figure 8.2: Semantic and Syntactic Spaces

As a consequence, solving a problem consists in an adequate suite of cognitive processes be-
longing to one of the four basic cognitive operations (Observation, Representation, Interpretation
and Implementation) as illustrated by figure 8.3. Such a suite can be any length, chaining in an
arbitrary number and in an arbitrary order of the four basic cognitive operations.

In this figure, the concept of problem has been generalized with the one of Observed Process,
the Knowledge Model contains all the knowledge in the mind of a Human Observer (i.e. the
knowledge about the problem and the solutions) and the Representations’ Model contains all the
syntactic formulas built over a given formal system.

Figure 8.3 allows to formulate the hypothesis of the TOM4A Methodology:

Definition 8.1 TOM4A Hypothesis

8.2. PROBLEM SOLVING METHOD 103

Figure 8.3: Knowledge Model and the Model of the Knowledge Representation’s

Representation and Interpretation cognitive processes correspond respectively to Abstraction and
Reification reasonings.

Such an hypothesis seems to be quite obvious when considering that the knowledge model
of the observed process (i.e. the one leaving in the Semantic Space of figure 8.3) resides at the
same level of abstraction than the observed process itself: both exist in real worlds even if the
real world of the problem may differ from the real world of the model (i.e. the semantic space is
in the mind of the observers). But, according to our analysis, there is no evidence to place these
two worlds in different levels of abstractions and it is simpler to consider that these two worlds
are two parts of a unique world, the real world.

On the contrary, it seems quite obvious that the Representations’ Model leaves at another
level of abstraction than the Knowledge Model or the Observed Process. So the hypothesis of the
TOM4A Methodology only asserts that the LoA of the Representations’ Model is more abstract
than the one of the Knowledge Model and the Observed Process. With this hypothesis in mind,
a simple analogy allows to deduce that, according to the Category Theory, the Representation
cognitive process is a kind of Abstraction operation and that the Interpretation cognitive process
is a kind of Reification operation. Figure 8.4 aims at illustrating this idea. In this figure, both
the Observed Process and the Knowledge Model reside at the same LoA, those of the concrete
world (i.e. the real world) and the Representations’ Model resides at a higher abstraction level,
denoted consequently the LoA 1.

Figure 8.4: TOM4A Hypothesis

The major interest of such an hypothesis is that it is possible to build a nested GoA composed
of as many LoAs as necessary (cf. figure 8.5):

104 CHAPTER 8. THE TOM4A METHODOLOGY

Figure 8.5: Nested GoA composed of several LoAs

8.3 TOM4A, an AR-PSM based on TOT (Z) Category

Let us consider the four basic cognitive operations of any PSM (cf. figure 8.2):

• Observation.
The instrumentation (sensors and actuators) of the observed process (i.e. from which a
problem occurs) produces a flow of information (typically a flow of sequence of characters)
that associates messages and timestamps (i.e. timed messages). The human analysis of
such a flow of timed messages allows the construction of the Knowledge Model. Such a
Knowledge Model belongs to the semantic space (see figure 8.2) and may be composed of
a collection of timed functions producing the flow of information, a set of discrete values
that timed functions can take, a set of relations between these discrete values, etc. All
elements of the semantic space can be given a semantic interpretation by humans. This
Knowledge Model represents the most concrete level of abstraction of the observed process
(see figure 8.4). Such a LoA is denoted L0 and is said to be at the level 0 of abstraction.

• Representation.
From the Observation step, basic elements of the TOT framework can be defined:

– timed functions xi(t),

– variable names xi,

– constants δik and sets of constants ∆i,

– stochastic clocks Γi,

– relations ∆i → ∆j between sets of constants ∆i and ∆j ,

8.3. TOM4A, AN AR-PSM BASED ON TOT (Z) CATEGORY 105

– observed process (X(t),Θ(X,∆)).

From these basic elements, observations classes Oik = {(xi, δik)} are built, linking variables
names xi with constant δik .

Timed messages are represented as timed observations (δik , tik), that is to say, occur-
rences of observation classes Oik(tik) ≡ (δik , tik): these timed observations are written
by a Unary Observer Θi(xi,∆i) whose meaning is the assignation θi(xi, δik , tik) of the
predicate θΘi(xΘi , δΘi , tΘi). The observed process is represented by the superposition⋃
i∈[1;m]

(xi(t),Θi(xi,∆i)) of m safe Unary Observers Θi(xi,∆i) observing timed function

xi(t). The observed flow of information is represented with a m-ary sequences Ω1 =⋃
i∈[1;m]

ωi(tni), m ∈ N?. Each sequence ωi(tni) = {Oik(tik) ≡ (δik , tik), δik ∈ ∆i, tik ∈ Γi}

contains ni ∈ N? timed observations. As seen in chapter 7, the TOT (∆1) Category can be
built where ∆1 =

⋃
i∈[1;m]

∆i.

According to chapter 5, the LoA L1 = 〈S1, T 1〉 can be defined where:

– S1 = (Ω1,
∆τij
+) is the algebraic structure of the observed process;

– T 1 = (Ω1, I1) is the observable space of the observed process.

From observable space T 1, the abstract chronicle modelM1 can be built. This means that
the representation cognitive process called the Representations’ Model is represented with
the abstract chronicle model M1 in the TOT mathematical framework. From relations
between sets of constants ∆i and ∆j , Modeling functors TOT (∆i) → TOT (∆j) between
categories TOT (∆i) and TOT (∆j) can be built at this level of abstraction (see chapter
7). Abstraction functors implementing the composition of observers are also built. They
link a category at a given LoA to a category at a more abstract LoA, syntacticly poorer
and semantically richer. Abstraction functors allows to change the LoA of the observed
process in order to solve the observed problem at the adequate LoA. These categories and
its elements may be arithmetized thanks to the Gödel numbering function seen in 7.4 in
oder to work only with categories of the form TOT (Pi) with Pi ⊆ Z.

• Interpretation.
From the Representation step, a reification process is operated in order to provide a solution
of the observed problem at a more concrete level of abstraction. This step specifies then
an interpretable solution by humans of the observed problem.

• Implementation.
Using the adequate (and available) technologies, the specified solution allows the design of
technical artifacts that can be implemented in the real world to improve the observability
of the process. An improved observability of the process makes possible or simplifies all the
operations that can be made on the process (monitoring, diagnosis, prognosis or control
for instance).

106 CHAPTER 8. THE TOM4A METHODOLOGY

These four basic cognitive operations are part of the TOM4A Methodology: next sections
give a concrete application of these steps concerning the discovering of potential internal fraud
models in a stream of banking transactions.

8.4 Internal Fraud Detection in the Banking Industry

For the last three decades, the exponential development of the information systems of banks
and financial companies has allowed the usage of Data Mining and Machine Learning techniques
to define new services. In particular, these techniques have been used to tackle the problem
of fraud detection in the banking industry where two types of fraud are distinguished: exter-
nal and internal frauds. External fraud is the usual notion of fraud: a swindler uses a bank
customer’s payment means to get money illegaly. Internal frauds are, fortunately, less common
and less frequent: the swindler is an employee of the bank having the access rights to execute
transactions. This peculiarity of internal frauds has a significant impact on the fraud detection
problem. Because the swindler is an employee of the bank, the fraud is based on a set of pairs of
transactions, the first being a debit to the account of a customer and the second being a credit
to the account of a bank employee. In other words, the internal fraud detection problem is based
on the discovering of pairs of potentially fraudulent transactions establishing a binary relation
between a customer and a bank employee. By contrast, detecting external frauds is based on the
discovering of a set of single potentially fraudulent transactions. But in both cases, the problem
of fraud detection is particularly difficult to solve because since, by construction, swindlers are
very imaginative, the models of fraud evolve continuously so that the fraud detection systems
must learn from the new fraud techniques.

This section proposes a concrete application of the TOM4A Methodology to detect internal
frauds and model the fraud technique with a simple graph describing the financial movements
characterizing the fraud technique. The major benefits of the proposed approach are (i) the re-
duction of the complexity of the problem from O(n2) to O(n) and (ii) the ability of representing
the fraud technique at three levels of abstraction simultaneously (customer, account and trans-
action type levels). This approach is implemented in a Java program called TOM4FFS (Timed
Observations Mining for Fraud Fighting System), that is able to detect and model internal frauds
online, in real time, using a mere professional personal computer. This program can handle more
than 4 billions transactions a day.

In order to solve such a problem, basic cognitive operations of the TOM4A Methodology
are concretely implemented. Next section is concerned with the Observation step followed by
a section dealing with the Representation step for finally ending with a section concerning the
Interpretation step.

8.5 Observation Step

8.5.1 Problem of the Observed Process

An internal fraud is a particular sequence of non-compliant transactions whose aim is to move
money from customer accounts to some account of a tactless bank employee. The type of fraud
sequences studied in this paper is made of a set of pairs (aki(tki), akj (tkj)) of transactions where

8.5. OBSERVATION STEP 107

Figure 8.6: Observation step in the TOM4 Methodology

the first transaction aki(tki) of each pair debits an amount aki of money from an account of a
customer before the second transaction akj (tkj) credits the same amount to one of the accounts
of the tactless employee of the bank (i.e. tki < tkj).

The problem of the internal fraud detection is then to find the minimal set of transaction
pairs (aki(tki), akj (tkj)) satisfying the following constraints:

Definition 8.2 Internal Fraud Constraints

1. The debited account belongs to a bank customer.

2. The credited account belongs to a bank employee.

3. The debited and credited amounts are the same: aki = −akj .

4. The debiting transaction precedes the crediting transaction: tki ≤ tkj .

Given a database of n transactions, the brute-force solution of this problem consists in build-
ing a n × n matrix to check the constraints of definition 8.2 for each pair of transactions. The
complexity of this problem is thus O(n2): for example, when n is evaluated in hundreds of thou-
sands of transactions (i.e. 100 000 or 105), which is very frequent in the banking domain, the
number of pairs to analyze is evaluated in dozens of billion (i.e. 1010), making the problem hard
for humans as much as for computers. As an illustration, the internal fraud studied in this section
has been detected by one of the victims (i.e. a customer) some time after the fraud. The bank’s
expert took around 6 months to demonstrate non-compliance of the fraud with the following
method: 1°) getting an extraction of the agency database containing the potentially fraudulent
transaction, 2°) reducing (in time and space) this extraction to a minimal set of transactions,
3°) finding the pairs of fraudulent transactions in this minimal set, and 4°) build the model of
the fraud technique used by the tactless employee. With such a proof, the bank can refund the
customer and take action toward the tactless employee. Anyway, such a theoretical complexity
of O(n2) is hardly compatible with a program aiming to detect and model, online and in real
time, the potentially fraudulent transactions from a continuous flow (note that a transaction
remains potentially fraudulent until its non-compliance has been demonstrated). This example
shows that internal fraud bank’s experts need tools to assist the steps 2 (database reduction),
3 (detection of potentially fraudulent transactions) and 4 (fraud modeling). It is appropriate to
mention that the bank’s expert considers that the example under study is a particularly compli-
cated fraud case. In this section, we present the TOM4FFS program designed for online and real
time internal fraud detection in the banking domain. TOM4FFS supports the steps 2 (database
reduction), 3 (potentially fraudulent transaction detection) and 4 (fraud modeling) of the general
problem solving method of internal fraud detection.

108 CHAPTER 8. THE TOM4A METHODOLOGY

8.5.2 Knowledge Model of the Observed Problem

Figure 8.7 represents the first rows of the transaction database from which we have to find the
set of potential fraudulent transactions. This datababe contains a total of 1492 rows and six
columns:

• column "ID_CLI" represents the identification number of a client. There are four clients
denoted 1001 to 1004 defining a set ∆ID_CLI such as:

ID_CLI ∈ {1001; 1002; 1003; 1004} ≡ ∆ID_CLI (8.1)

Moreover, we know that the client 1003 is the manager of the bank.

• column "ID_CPTE" represents the identification number of a banking account. There are
30 banking accounts denoted 2001 to 2024 and 2026 to 2031 defining a set ∆ID_CPTE such
as:

ID_CPTE ∈ {2001; ...; 2024} ∪ {2026; ...; 2031} ≡ ∆ID_CPTE (8.2)

We know that:

– client 1001 owns 8 banking accounts: 2006, 2008, 2009, 2012, 2013, 2014, 2015 and
2022.

ID_CLI = 1001⇒ ID_CPTE ∈ {2006; 2008; 2009; 2012; 2013; 2014; 2015; 2022}
(8.3)

– client 1002 owns 4 banking accounts: 2005, 2011, 2019 and 2023.

ID_CLI = 1002⇒ ID_CPTE ∈ {2005; 2011; 2019; 2023} (8.4)

– client 1003 (i.e. the manager) owns 11 banking accounts: 2001, 2002, 2003, 2004,
2024, 2026, 2027, 2028, 2029, 2030 and 2031.

ID_CLI = 1003⇒
ID_CPTE ∈ {2001; 2002; 2003; 2004; 2024; 2026; 2027; 2028; 2029; 2030; 2031}

(8.5)

– client 1004 owns 7 banking accounts: 2007, 2010, 2016, 2017, 2018, 2020 and 2021.

ID_CLI = 1004⇒ ID_CPTE ∈ {2007; 2010; 2016; 2017; 2018; 2020; 2021} (8.6)

• column "ID_TYP_EVT" represents the identification number of a transaction type. There
are 40 transaction types denoted 3001 to 3040 defining a set ∆ID_TY P_EV T such as:

ID_TY P_EV T ∈ {3001; ...; 3040} ≡ ∆ID_TY P_EV T (8.7)

• column "ID_MVT" represents the identification number of a transaction: each transaction
has a unique identification number (between 8 and 2920) defining a set ∆ID_MV T . Such a
number is not used in our analyses.

8.5. OBSERVATION STEP 109

• column "DAT_EVT" represents the date and time a transaction type. The first transaction
occurs on 2009-01-02 at 01:19:18 and the last transaction on 2010-03-12 at 01:12:09 defining
a set ∆DAT_EV T such as:

DAT_EV T ∈ {2009− 01− 02 01 : 19 : 18; ...; 2010− 03− 12 01 : 12 : 09} ≡ ∆DAT_EV T

(8.8)
This database represents then transactions spread over 1 year and 2 months.

• column "MT_EVT" represents the amount of money (in €) of a transaction. This involves
amounts of money from −445200.00€ to 460614.36€ defining an interval ∆MT_EV T such
as:

MT_EV T ∈ [−445200.00; ...; 460614.36] ≡ ∆MT_EV T (8.9)

Amount of money are real numbers of R with a two digits precision. Multiplying them by
100 allows us to consider these numbers as relative integers of Z and, in this case, these
numbers represent cents of €.

Figure 8.7: First rows of the transaction database

110 CHAPTER 8. THE TOM4A METHODOLOGY

Let us denote:

• xi(t), i ∈ ∆ID_CLI , the temporal evolution of the transaction amount of client id i;

• xj(t), j ∈ ∆ID_CPTE , the temporal evolution of the transaction amount of account id j;

• xl(t), l ∈ ∆ID_TY P_EV T , the temporal evolution of the transaction amount of transaction
type id l;

All these temporal functions are Z-valued piecewise functions defined on R:

∀α ∈ {i, j, l},∀aαk ∈ Z,∀tk ∈ R,
xα : R → Z

t 7→
∑+∞

k=−∞ aαk .H(t− tk)
(8.10)

The function H(t) is the Heaviside step function:

H(t) =

{
0 if t < 0

1 if t ≥ 0
(8.11)

Figure 8.8: Piecewise functions for accounts 2001 and 2007

Figure 8.8 illustrates the piecewise functions representing the evolution over time of the
transaction amount expressed in cents for banking account ids 2001 and 2007.

From such a database, some relations between sets ∆ID_CLI , ∆ID_CPTE and ∆ID_TY P_EV T

can be revealed. Claiming that client id 1001 owns 8 banking accounts subsumes the existence
of a relation denoted R1001

ID_CLI→ID_CPTE linking sets ∆ID_CLI and ∆ID_CPTE such as:

R1001
ID_CLI→ID_CPTE : ∆ID_CLI → ∆ID_CPTE

1001 7→ 2006

1001 7→ 2008

1001 7→ 2009

1001 7→ 2012

1001 7→ 2013

1001 7→ 2014

1001 7→ 2015

1001 7→ 2022

(8.12)

8.6. REPRESENTATION STEP 111

The same reasoning can be done concerning clients 1002, 1003 and 1004 revealing relations
respectively denoted R1002

ID_CLI→ID_CPTE , R1003
ID_CLI→ID_CPTE and R1004

ID_CLI→ID_CPTE . From
this relations, the relation denoted RID_CLI→ID_CPTE mapping client ids with account ids can
be built:

RID_CLI→ID_CPTE =

R1001
ID_CLI→ID_CPTE

⋃
R1002
ID_CLI→ID_CPTE

⋃
R1003
ID_CLI→ID_CPTE

⋃
R1004
ID_CLI→ID_CPTE

(8.13)

From this relation, we can build the inverse relation denoted RID_CPTE→ID_CLI linking sets
∆ID_CPTE to ∆ID_CLI .

With the same method, relation RID_CPTE→ID_TY PE_EV T between sets ∆ID_CPTE and
∆ID_TY P_EV T can be built. For example, the first row of the database of figure 8.7 shows that
the account id 2008 is related to the transaction type id 3019. Doing so for the whole database al-
lows to buildRID_CPTE→ID_TY PE_EV T . Once built, the reverse relationRID_TY PE_EV T→ID_CPTE

can also be built. And again with the same method, relations RID_CLI→ID_TY PE_EV T and
RID_TY PE_EV T→ID_CLI between sets ∆ID_CLI and ∆ID_TY P_EV T can also be built. These
relation are anything: injective, surjective, etc.

To sum up the situation, at this stage of the methodology, we have then:

• a collection of piecewise functions representing the evolution over time of the transaction
amounts according to the client ids, banking account ids and transaction type ids;

• relations between sets of client ids, banking account ids and transaction type ids.

These elements represent the semantic space of the observed problem which is the most
concrete description of the situation. The Knowledge Model represents the most concrete level
of abstraction of the observed problem. Such a LoA is denoted L0 and is said to be at the level
0 of abstraction.

Let us now deal with the Representation step of the TOM4A Methodology.

8.6 Representation Step

Figure 8.9: Representation step in the TOM4 Methodology

112 CHAPTER 8. THE TOM4A METHODOLOGY

8.6.1 Representation of a transaction

Let us consider the first transaction of the database, "1001|2008|3019|978|2009-01-02 01:19:18|-
6,10". Such a transaction is represented with a timed observationO(t1) ≡ (δ1, t1) ≡ (”1001|2008|3019|978|−
6, 10”, 2009− 01− 02 01 : 19 : 18) where constant δ1 = ”1001|2008|3019|978| − 6, 10” and times-
tamp t1 = 2009− 01− 02 01 : 19 : 18.

Thus, the constant δ1 has a particular structure containing the symbol "|" breaking this latter
in five different items:

1. the client id 1001,

2. the account id 2008,

3. the transaction type id 3019,

4. the index of the transaction 978 and

5. the amount of the transaction -6,10.

In a more general way, a constant δk is an instance of the following general structure:

δk = ”p1(k)|p2(k)|p3(k)|p4(k)|p5(k)” (8.14)

Where:

1. p1(k) is an element of the set ∆ID_CLI ,

2. p2(k) is an element of the set ∆ID_CPTE ,

3. p3(k) is an element of the set ∆ID_TY PE_EV T ,

4. p4(k) is an element of the set ∆ID_MV T ,

5. p5(k) is an element of the set ∆MT_EV T .

In order to solve the internal fraud problem introduced in section 8.5.1 with respect of the
internal fraud constraints of definition 8.2, the analyse of the transactions contained in the
database of figure 8.7 can be done according to three different categories:

• the category of the clients: to this aim, the set ∆ID_CLI of client ids is considered;

• the category of the banking accounts: to this aim, the set ∆ID_CPTE of account ids is
considered;

• the category of the transaction types: to this aim, the set ∆ID_TY PE_EV T of transaction
type ids is considered.

The next section details these points.

8.6. REPRESENTATION STEP 113

8.6.2 Syntactic Model of the Observed Problem at the First LoA

Let us first deal with the category of the clients. To this aim let us consider that the transaction
database has been provided by the observed process (XCLI(t),ΘCLI(XCLI ,∆

1
CLI)) where the

dynamic process XCLI(t) is composed of the four piecewise functions xi(t) representing the
evolution over time of transaction amounts for client ids i ∈ ∆ID_CLI :

XCLI(t) = {xi(t), i ∈ ∆ID_CLI} = {x1001(t), x1002(t), x1003(t), x1004(t)} (8.15)

This allows to define the set XCLI of variable names such as:

XCLI = {xi, i ∈ ∆ID_CLI} = {x1001, x1002, x1003, x1004} (8.16)

Each variable name xi takes discrete values δik of the form:

δik = ”i|p2(k)|p3(k)|p4(k)|p5(k)” (8.17)

Let be ∆1
i the set of ni ∈ N constants δik for the client id i ∈ ∆ID_CLI :

∀i ∈ ∆ID_CLI ,∆
1
i = {δik , k ∈ [1;ni], ni ∈ N} (8.18)

The set ∆1
CLI containing constants δk of the form 8.14 from the transaction database, it can

be partitioned into four sets ∆1
i such as:

∆1
CLI =

⋃
i∈∆ID_CLI

∆1
i = ∆1

1001

⋃
∆1

1002

⋃
∆1

1003

⋃
∆1

1004

∀(i, j) ∈ ∆2
ID_CLI , i 6= j,∆1

i

⋂
∆1
j = ∅

(8.19)

According to the superposition theorem 3.2, the program ΘCLI(XCLI ,∆
1
CLI) can be decom-

posed into a superposition of four Unary Observers such as:

ΘCLI(XCLI ,∆
1
CLI) =

⋃
i∈∆ID_CLI

Θi(xi,∆
1
i)

= Θ1001(x1001,∆
1
1001)

⋃
Θ1002(x1002,∆

1
1002)

⋃
Θ1003(x1003,∆

1
1003)

⋃
Θ1004(x1004,∆

1
1004)

(8.20)

Each Unary Observer Θi(xi,∆
1
i) implements a predicate denoted θi(xθi , δθi , tθi) such as:

θi(xθi , δθi , tθi) ≡ p1(θi) = i ∧ tθi−1 < tθi ∧ xθi(tθi−1) 6= xθi(tθi) (8.21)

Each Unary Observer Θi(xi,∆
1
i) writes a timed observation denoted O(tik) ≡ (δik , tik) for

each assignation θi(xi, δik , tik) of the predicate θi(xθi , δθi , tθi):

θi(xi, δik , tik)⇒ write(O(tik) ≡ (δik , tik)) (8.22)

According to the predicate 8.21, the assignation 8.22 means that the Unary Observer Θi(xi,∆
1
i)

writes a timed observation O(tik) ≡ (δik , tik) each time the value of the function xi(t), for the
client id i, changes.

Let us denote Oik = {(xi, δik)}, the observation class linking variable name xi to constant

114 CHAPTER 8. THE TOM4A METHODOLOGY

δik . Let us denote ω1
i (tni) = {O(tik) ≡ (δik , tik), δik ∈ ∆1

i , tik ∈ Γi}, the sequence of ni ∈ N
timed observations O(tik). Such a sequence defines the stochastic clock Γi = {tik , ik ∈ [1;ni]} of
timestamps tik .

Let us denote Ω1
CLI =

⋃
i∈∆ID_CLI

ω1
i (tni), the superposition of the four sequences of timed

observations ω1
i (tni).

Sequence ni
ω1

1001(tn1001) 180
ω1

1002(tn1002) 103
ω1

1003(tn1003) 709
ω1

1004(tn1004) 407
Total 1399

Table 8.1: Number ni of timed observations for sequences ω1
i (tni), i ∈ ∆ID_CLI

Table 8.1 sums up the number of timed observations for each client id. It is notable that the
most active client is the manager of the bank (client 1003).

As seen in chapter 7, we can build the TOT (∆1
CLI) Category where:

• objects are Unary Observers Θi(xi,∆
1
i), i ∈ ∆ID_CLI ;

• morphisms are relations fij : Θi → Θj , (i, j) ∈ ∆ID_CLI ×∆ID_CLI .

According to definition 7.3, let us consider the level of abstraction of the TOT (∆1
CLI) Cate-

gory, denoted L1
CLI = 〈S1

CLI , T 1
CLI〉, where:

• S1
CLI = (Ω1

CLI ,
∆τij
+) is the algebraic structure of the observed process (XCLI(t),ΘCLI(XCLI ,∆

1
CLI));

• T 1
CLI = (Ω1

CLI , I1
CLI) is the observable space of the observed process (XCLI(t),ΘCLI(XCLI ,∆

1
CLI)).

Let us recall that the algebraic structure S1
CLI provides a particular description of the trans-

action database according to the point of view of client identification numbers. From observable
space T 1

CLI , we can build the abstract chronicle model M1
CLI containing all temporal binary

relations rikjk+1
(Oik , Ojk+1

,∆τikjk+1
) between observation classes Oik and Ojk+1

(see section 5.5
and property 19):

M1
CLI = {rikjk+1

(Oik , Ojk+1
,∆τikjk+1

), (i, j) ∈ ∆ID_CLI ×∆ID_CLI} (8.23)

The abstract chronicle modelM1
CLI represents all binary sequences of successive transactions

from a client i ∈ ∆ID_CLI to a client j ∈ ∆ID_CLI under the temporal constraint ∆τikjk+1
that

may be observable in the transaction database. The size of such an abstract chronicle model
M1

CLI is, according to property 20:

Card(M1
CLI) =

∑
(i,j)∈∆2

ID_CLI
i 6=j

(Ni +Nj)
2 (8.24)

The number Ni represents the number of observations classes associated to the sequence
ω1
i (tni). In this case, this number is equal to the number of timed observations contained in this

sequence. Thus, equation 8.24 leads to:

8.6. REPRESENTATION STEP 115

Card(M1
CLI) = (N1001 +N1002)2 + (N1001 +N1003)2 + (N1001 +N1004)2+

(N1002 +N1003)2 + (N1002 +N1004)2+

(N1003 +N1004)2

Card(M1
CLI) = (180 + 103)2 + (180 + 709)2 + (180 + 407)2+

(103 + 709)2 + (103 + 407)2+

(709 + 407)2

Card(M1
CLI) = 3 379 879

(8.25)

Thus, the abstract chronicle modelM1
CLI contains 3 379 879 temporal binary relations mod-

eling all the successive transactions between a client i ∈ ∆ID_CLI to a client j ∈ ∆ID_CLI . There
exists then 3 379 879 binary sequences of transactions to analyse in order to find the ones which
are potentially fraudulent. Let us remark that transactions from a client i to himself are con-
tained in this model. Such transactions have no real interrest in our particular problem. At this
stage of the TOM4A Methodology, the complexity of this problem needs to be reduced. In the
next sections, we demonstrate that operating an abstraction on the raw data of the database
simplifies widely the problem.

But before this, let us deal with the category of the banking accounts. The reasoning is the
same than the one operated for the clients.

Let us consider that the transaction database has been provided by the observed process
(XCPTE(t),ΘCPTE(XCPTE ,∆

1
CPTE)) where the dynamic process XCPTE(t) is composed of the

30 piecewise functions xj(t) representing the evolution over time of transaction amounts for
account ids j ∈ ∆ID_CPTE :

XCPTE(t) = {xj(t), j ∈ ∆ID_CPTE} = {x2001(t), x2002(t), ..., x2024(t)} ∪ {x2026(t), ..., x2031(t)}
(8.26)

This allows to define the set XCPTE of variable names such as:

XCPTE = {xj , j ∈ ∆ID_CPTE} = {x2001, x2002, ..., x2024} ∪ {x2026, ..., x2031} (8.27)

Each variable name xj takes discrete values δjk of the form:

δjk = ”p1(k)|j|p3(k)|p4(k)|p5(k)” (8.28)

Let be ∆1
j the set of nj ∈ N constants δjk for the account id j ∈ ∆ID_CPTE :

∀j ∈ ∆ID_CPTE ,∆
1
j = {δjk , k ∈ [1;nj], nj ∈ N} (8.29)

The set ∆1
CPTE containing constants δk of the form 8.14 from the transaction database, it

can be partitioned into 30 sets ∆1
j such as:

116 CHAPTER 8. THE TOM4A METHODOLOGY

∆1
CPTE =

⋃
j∈∆ID_CPTE

∆1
j

∀(i, j) ∈ ∆2
ID_CPTE , i 6= j,∆1

i

⋂
∆1
j = ∅

(8.30)

According to the superposition theorem 3.2, the program ΘCPTE(XCPTE ,∆
1
CPTE) can be

decomposed into a superposition of 30 Unary Observers such as:

ΘCPTE(XCPTE ,∆
1
CPTE) =

⋃
j∈∆ID_CPTE

Θj(xj ,∆
1
j) (8.31)

Each Unary Observer Θj(xj ,∆
1
j) implements a predicate denoted θj(xθj , δθj , tθj) such as:

θj(xθj , δθj , tθj) ≡ p2(θj) = j ∧ tθj−1 < tθj ∧ xθj (tθj−1) 6= xθj (tθj) (8.32)

Each Unary Observer Θj(xj ,∆
1
j) writes a timed observation denoted O(tjk) ≡ (δjk , tjk) for

each assignation θj(xj , δjk , tjk) of the predicate θj(xθj , δθj , tθj):

θj(xj , δjk , tjk)⇒ write(O(tjk) ≡ (δjk , tjk)) (8.33)

According to the predicate 8.32, the assignation 8.33 means that the Unary Observer Θj(xj ,∆
1
j)

writes a timed observation O(tjk) ≡ (δjk , tjk) each time the value of the function xj(t), for the
account id j, changes.

Let us denote Ojk = {(xj , δjk)}, the observation class linking variable name xj to constant
δjk . Let us denote ω1

j (tnj) = {O(tjk) ≡ (δjk , tjk), δjk ∈ ∆1
j , tjk ∈ Γj}, the sequence of nj ∈ N

timed observations O(tjk). Such a sequence defines the stochastic clock Γj = {tjk , ik ∈ [1;nj]}
of timestamps tjk .

Let us denote Ω1
CPTE =

⋃
j∈∆ID_CPTE

ω1
j (tnj), the superposition of the 30 sequences of timed

observations ω1
j (tnj).

Sequence nj Sequence nj Sequence nj
ω1

2001(tn2001) 486 ω1
2011(tn2011) 3 ω1

2021(tn2021) 1
ω1

2002(tn2002) 6 ω1
2012(tn2012) 5 ω1

2022(tn2022) 2
ω1

2003(tn2003) 4 ω1
2013(tn2013) 1 ω1

2023(tn2023) 1
ω1

2004(tn2004) 11 ω1
2014(tn2014) 2 ω1

2024(tn2024) 198
ω1

2005(tn2005) 95 ω1
2015(tn2015) 1 ω1

2026(tn2026) 2
ω1

2006(tn2006) 14 ω1
2016(tn2016) 2 ω1

2027(tn2027) 2
ω1

2007(tn2007) 381 ω1
2017(tn2017) 10 ω1

2028(tn2028) 2
ω1

2008(tn2008) 149 ω1
2018(tn2018) 3 ω1

2029(tn2029) 2
ω1

2009(tn2009) 2 ω1
2019(tn2019) 4 ω1

2030(tn2030) 2
ω1

2010(tn2010) 3 ω1
2020(tn2020) 3 ω1

2031(tn2031) 6
Total 1403

Table 8.2: Number nj of timed observations for sequences ω1
j (tnj), j ∈ ∆ID_CPTE

Table 8.2 sums up the number of timed observations for each account id. We can notice
here that accounts 2001, 2007, 2008 and 2024 are the ones on which most transactions occur.
Accounts 2001 and 2024 belong to the manager (client id 1003). Account 2007 belongs to client
1004. Account 2008 belongs to client 1001.

8.6. REPRESENTATION STEP 117

As seen in chapter 7, we can build the TOT (∆1
CPTE) Category where:

• objects are Unary Observers Θj(xj ,∆
1
j), j ∈ ∆ID_CPTE ;

• morphisms are relations fij : Θi → Θj , (i, j) ∈ ∆ID_CPTE ×∆ID_CPTE .

According to definition 7.3, let us consider the level of abstraction of the TOT (∆1
CPTE)

Category, denoted L1
CPTE = 〈S1

CPTE , T 1
CPTE〉, where:

• S1
CPTE = (Ω1

CPTE ,
∆τij
+) is the algebraic structure of the observed process

(XCPTE(t),ΘCPTE(XCPTE ,∆
1
CPTE));

• T 1
CPTE = (Ω1

CPTE , I1
CPTE) is the observable space of the observed process

(XCPTE(t),ΘCPTE(XCPTE ,∆
1
CPTE)).

The algebraic structure S1
CPTE provides a particular description of the transaction database

according to the point of view of account identification numbers. From observable space T 1
CPTE ,

we can build the abstract chronicle model M1
CPTE containing all temporal binary relations

rikjk+1
(Oik , Ojk+1

,∆τikjk+1
) between observation classes Oik and Ojk+1

:

M1
CPTE = {rikjk+1

(Oik , Ojk+1
,∆τikjk+1

), (i, j) ∈ ∆ID_CPTE ×∆ID_CPTE} (8.34)

The abstract chronicle modelM1
CPTE represents all binary sequences of successive transac-

tions from a account i ∈ ∆ID_CPTE to a account j ∈ ∆ID_CPTE under the temporal constraint
∆τikjk+1

that may be observable in the transaction database. The size of such an abstract
chronicle modelM1

CPTE is, according to property 20:

Card(M1
CPTE) =

∑
(i,j)∈∆2

ID_CPTE
i 6=j

(Ni +Nj)
2 (8.35)

In this case, equation 8.35 leads to:

Card(M1
CPTE) = 14 635 861 (8.36)

Thus, the abstract chronicle model M1
CPTE contains 14 635 861 temporal binary relations

modeling all the successive transactions between an account i ∈ ∆ID_CLI to an account j ∈
∆ID_CLI . So, when considering the category of the account ids, there exists 14 635 861 binary
sequences of transactions to analyse in order to find the ones which are potentially fraudulent.
This means that if we choose to analyse the database according to the point of view of the
banking account ids, it would take four times more operations than if we had chosen the point
of view of the client ids. This demonstrates, in a pratical way, that choosing the right category
is important to model a given problem in order to bring a solution. This confirms also the need
of an abstraction of the raw data in order to reduce the syntax and improve the semantic of the
model of such a problem.

118 CHAPTER 8. THE TOM4A METHODOLOGY

Let us consider that the transaction database has been provided by the observed process
(XTY P (t),ΘTY P (XTY P ,∆

1
TY P)) where the dynamic process XTY P (t) is composed of the 40

piecewise functions xl(t) representing the evolution over time of transaction amounts for trans-
action type ids l ∈ ∆ID_TY P_EV T_EV T :

XTY P (t) = {xl(t), l ∈ ∆ID_TY P_EV T } = {x3001(t), x3002(t), ..., x3040(t)} (8.37)

This allows to define the set XTY P of variable names such as:

XTY P = {xl, l ∈ ∆ID_TY P_EV T } = {x3001, x3002, ..., x3040} (8.38)

Each variable name xl takes discrete values δlk of the form:

δlk = ”p1(k)|p2(k)|l|p4(k)|p5(k)” (8.39)

Let be ∆1
l the set of nl ∈ N constants δlk for the transaction type id l ∈ ∆ID_TY P_EV T :

∀l ∈ ∆ID_TY P_EV T ,∆
1
l = {δlk , k ∈ [1;nl], nl ∈ N} (8.40)

The set ∆1
TY P containing constants δk of the form 8.14 from the transaction database, it can

be partitioned into 40 sets ∆1
l such as:

∆1
TY P =

⋃
l∈∆ID_TY P_EV T

∆1
l

∀(i, j) ∈ ∆2
ID_TY P_EV T , i 6= j,∆1

i

⋂
∆1
j = ∅

(8.41)

According to the superposition theorem 3.2, the program ΘTY P (XTY P ,∆
1
TY P) can be de-

composed into a superposition of 40 Unary Observers such as:

ΘTY P (XTY P ,∆
1
TY P) =

⋃
l∈∆ID_TY P_EV T

Θl(xl,∆
1
l) (8.42)

Each Unary Observer Θl(xl,∆
1
l) implements a predicate denoted θl(xθl , δθl , tθl) such as:

θl(xθl , δθl , tθl) ≡ p3(θl) = l ∧ tθl−1 < tθl ∧ xθl(tθl−1) 6= xθl(tθl) (8.43)

Each Unary Observer Θl(xl,∆
1
l) writes a timed observation denoted O(tlk) ≡ (δlk , tlk) for

each assignation θl(xl, δlk , tlk) of the predicate θl(xθl , δθl , tθl):

θl(xl, δlk , tlk)⇒ write(O(tlk) ≡ (δlk , tlk)) (8.44)

According to the predicate 8.43, the assignation 8.44 means that the Unary Observer Θl(xl,∆
1
l)

writes a timed observation O(tlk) ≡ (δlk , tlk) each time the value of the function xl(t), for the
transaction type id l, changes.

Let us denote Olk = {(xl, δlk)}, the observation class linking variable name xl to constant
δlk . Let us denote ω1

l (tnl) = {O(tlk) ≡ (δlk , tlk), δlk ∈ ∆1
l , tlk ∈ Γl}, the sequence of nl ∈ N

timed observations O(tlk). Such a sequence defines the stochastic clock Γl = {tlk , ik ∈ [1;nl]} of
timestamps tlk .

8.6. REPRESENTATION STEP 119

Let us denote Ω1
TY P =

⋃
l∈∆ID_TY P_EV T

ω1
l (tnl), the superposition of the 40 sequences of timed

observations ω1
l (tnl).

Sequence nl Sequence nl Sequence nl Sequence nl
ω1

3001(tn3001) 3 ω1
3011(tn3011) 1 ω1

3021(tn3021) 0 ω1
3031(tn3031) 57

ω1
3002(tn3002) 3 ω1

3012(tn3012) 0 ω1
3022(tn3022) 9 ω1

3032(tn3032) 2
ω1

3003(tn3003) 20 ω1
3013(tn3013) 1 ω1

3023(tn3023) 24 ω1
3033(tn3033) 1

ω1
3004(tn3004) 146 ω1

3014(tn3014) 0 ω1
3024(tn3024) 238 ω1

3034(tn3034) 37
ω1

3005(tn3005) 1 ω1
3015(tn3015) 0 ω1

3025(tn3025) 5 ω1
3035(tn3035) 27

ω1
3006(tn3006) 65 ω1

3016(tn3016) 0 ω1
3026(tn3026) 17 ω1

3036(tn3036) 23
ω1

3007(tn3007) 2 ω1
3017(tn3017) 66 ω1

3027(tn3027) 3 ω1
3037(tn3037) 10

ω1
3008(tn3008) 3 ω1

3018(tn3018) 21 ω1
3028(tn3028) 3 ω1

3038(tn3038) 33
ω1

3009(tn3009) 1 ω1
3019(tn3019) 422 ω1

3029(tn3029) 3 ω1
3039(tn3039) 63

ω1
3010(tn3010) 1 ω1

3020(tn3020) 7 ω1
3030(tn3030) 59 ω1

3040(tn3040) 16
Total 1409

Table 8.3: Number nl of timed observations for sequences ω1
l (tnl), l ∈ ∆ID_TY P_EV T

Table 8.3 sums up the number of timed observations for each transaction type id. We can
notice here that most of the transactions are of types 3004, 3019 and 3024.

As seen in chapter 7, we can build the TOT (∆1
TY P) Category where:

• objects are Unary Observers Θl(xl,∆
1
l), l ∈ ∆ID_TY P_EV T ;

• morphisms are relations fij : Θi → Θl, (i, j) ∈ ∆ID_TY P_EV T ×∆ID_TY P_EV T .

According to definition 7.3, let us consider the level of abstraction of the TOT (∆1
TY P) Cat-

egory, denoted L1
TY P = 〈S1

TY P , T 1
TY P 〉, where:

• S1
TY P = (Ω1

TY P ,
∆τij
+) is the algebraic structure of the observed process

(XTY P (t),ΘTY P (XTY P ,∆
1
TY P));

• T 1
TY P = (Ω1

TY P , I1
TY P) is the observable space of the observed process

(XTY P (t),ΘTY P (XTY P ,∆
1
TY P)).

The algebraic structure S1
TY P provides a particular description of the transaction database

according to the point of view of transaction type identification numbers. From observable space
T 1
TY P , we can build the abstract chronicle modelM1

TY P containing all temporal binary relations
rikjk+1

(Oik , Ojk+1
,∆τikjk+1

) between observation classes Oik and Ojk+1
:

M1
TY P = {rikjk+1

(Oik , Ojk+1
,∆τikjk+1

), (i, j) ∈ ∆ID_TY P_EV T ×∆ID_TY P_EV T } (8.45)

The abstract chronicle modelM1
TY P represents all binary sequences of successive transactions

from a transaction type i ∈ ∆ID_TY P_EV T to a transaction type j ∈ ∆ID_TY P_EV T under the
temporal constraint ∆τikjk+1

that may be observable in the transaction database. The size of
such an abstract chronicle modelM1

CPTE is, according to property 20:

120 CHAPTER 8. THE TOM4A METHODOLOGY

Card(M1
TY P) =

∑
(i,j)∈∆2

ID_TY P_EV T
i 6=j

(Ni +Nj)
2 (8.46)

In this case, equation 8.35 leads to:

Card(M1
TY P) = 12 630 799 (8.47)

Thus, the abstract chronicle model M1
TY P contains 12 630 799 temporal binary relations

modeling all the successive transactions between a transaction type i ∈ ∆ID_TY P_EV T to a
transaction type j ∈ ∆ID_TY P_EV T . So, when considering the category of the transaction type
ids, there exists 12 630 799 binary sequences of transactions to analyse in order to find the ones
which are potentially fraudulent which is equivalent of the size of accounts abstract chronicle
model.

These three categories represent then three ways to describe and to model the observed prob-
lem. In other words, the observed problem can be seen under three different points of view or
three levels of abstraction. Each level of abstraction has its own syntax and semantic. As seen
in section 7.3.1, Modeling functors are tools to change the point of view of a given observed
problem. Let us now see how to implement such Modeling functors in the current case of study.

We have seen in section 8.5.2 that there exists a relation RID_CLI→ID_CPTE mapping client
ids of the set ∆ID_CLI and banking account ids of the set ∆ID_CPTE :

RID_CLI→ID_CPTE : ∆ID_CLI → ∆ID_CPTE

i 7→ j
(8.48)

Such a relation implies the existence of another relation denoted ∆1
CLI → ∆1

CPTE between
sets of constants ∆1

CLI and ∆1
CPTE :

i RID_CLI→ID_CPTE j ⇒ ∃∆1
CLI → ∆1

CPTE , δik (∆1
CLI → ∆1

CPTE) δjk (8.49)

And:

δik (∆1
CLI → ∆1

CPTE) δjk ⇒ (δik , tik)fij(δjk , tjk) (8.50)

So, from relation ∆1
CLI → ∆1

CPTE , we know all the morphisms fij linking Unary Observers
Θi(xi,∆

1
i) of the TOT (∆1

CLI) Category with Unary Observers Θj(xj ,∆
1
j) of the TOT (∆1

CPTE)

Category.
For example, let us focus on client 1002 owning accounts 2005, 2011, 2019 and 2023:

R1002
ID_CLI→ID_CPTE : ∆ID_CLI → ∆ID_CPTE

1002 7→ 2005

1002 7→ 2011

1002 7→ 2019

1002 7→ 2023

(8.51)

Relation 8.51 implies the existence of the relation ∆1
CLI → ∆1

CPTE such as:

8.6. REPRESENTATION STEP 121

∆1
CLI → ∆1

CPTE : ∆ID_CLI → ∆ID_CPTE

δ1002k 7→ δ2005k

δ1002k 7→ δ2011k

δ1002k 7→ δ2019k

δ1002k 7→ δ2023k

(8.52)

The concerned morphisms are then:

f1002,2005 : Θ1002 → Θ2005

(δ1002k , t1002k) 7→ (δ2005k , t2005k)

f1002,2011 : Θ1002 → Θ2011

(δ1002k , t1002k) 7→ (δ2011k , t2011k)

f1002,2019 : Θ1002 → Θ2019

(δ1002k , t1002k) 7→ (δ2019k , t2019k)

f1002,2023 : Θ1002 → Θ2023

(δ1002k , t1002k) 7→ (δ2023k , t2023k)

(8.53)

Morphism f1002,2005 maps timed observations of the sequence ω1
1002(tn1002) with timed ob-

servations of the sequence ω1
2005(tn2005). Morphism f1002,2011 maps timed observations of the

sequence ω1
1002(tn1002) with timed observations of the sequence ω1

2011(tn2011). Morphism f1002,2019

maps timed observations of the sequence ω1
1002(tn1002) with timed observations of the sequence

ω1
2019(tn2019). Morphism f1002,2023 maps timed observations of the sequence ω1

1002(tn1002) with
timed observations of the sequence ω1

2023(tn2023). In this particular case, the Modeling functor
TOT (∆1

CLI)→ TOT (∆1
CPTE) would implement all the morphisms f1002,2005, f1002,2011, f1002,2019

and f1002,2023.
In a more general way, the Modeling functor TOT (∆1

CLI) → TOT (∆1
CPTE) can be built

according to the relation ∆1
CLI → ∆1

CPTE . Such a building is consistent with the definition
7.2 of a Modeling functor. Such a Modeling functor implements then all concerned morphisms
fij : Θi → Θj where Θi is an object of the TOT (∆1

CLI) Category and Θj is an object of
the TOT (∆1

CPTE) Category. Morphism fij maps timed observations (δik , tik), representing a
transaction for a client i, with a timed observation (δjk , tjk), representing a transaction on a
banking account j.

This Modeling functor aims at changing the way to model the observed problem: from the
model of client to the model of accounts.

Program TOM4FFS, given the relationRID_CLI→ID_CPTE , builds and implements the Mod-
eling functor TOT (∆1

CLI) → TOT (∆1
CPTE). It does the same to build the other Modeling

functors of the syntactic model of the first level of abstraction:

• from relation RID_CPTE→ID_CLI , it builds relation ∆1
CPTE → ∆1

CLI then Modeling func-
tor TOT (∆1

CPTE)→ TOT (∆1
CLI);

• from relationRID_CPTE→ID_TY P_EV T , it builds relation ∆1
CPTE → ∆1

TY P then Modeling
functor TOT (∆1

CPTE)→ TOT (∆1
TY P);

• from relationRID_TY P_EV T→ID_CPTE , it builds relation ∆1
TY P → ∆1

CPTE then Modeling
functor TOT (∆1

TY P)→ TOT (∆1
CPTE);

122 CHAPTER 8. THE TOM4A METHODOLOGY

• from relation RID_TY P_EV T→ID_CLI , it builds relation ∆1
TY P → ∆1

CLI then Modeling
functor TOT (∆1

TY P)→ TOT (∆1
CLI);

• from relation RID_CLI→ID_TY P_EV T , it builds relation ∆1
CLI → ∆1

TY P then Modeling
functor TOT (∆1

CLI)→ TOT (∆1
TY P);

Such a LoA, denoted L1, is composed of:

• three TOT Categories providing different ways to model the observed problem;

• six Modeling functors to change the way to model the observed problem.

8.6.3 Syntactic Model of the Observed Problem at the Second LoA

This step consists of a spacial reduction of the observed process using the property 25 introduced
in chapter 7. Let us recall that the structure of a constant δik contains the attribute p5(k)

corresponding to the amount of the kth transaction of the database. This amount in an integer
of Z representing cents of €. Thus, the number of observation classes Oik = (xi, δik) is, a priori,
infinite. In order to make this number finite, the idea is to define an abstract representation of
the transaction amounts, inspired from the Benford’s Law [Ben38], also called the First-Digit
Law, to define a compact set of constants.

An amount z = p5(k) = xi(tki) of a transaction is a signed sum of powers of 10 (see 8.54)
where (i) s(z) is the sign function of z (i.e. s : Z→ {−1, 1}, z 7→ −1 if z < 0, 1 otherwise), (ii) n
is the highest power of 10 of z (n ≥ 0) and (iii) aj ∈ D = {1, ..., 9} is the digit defining the value
of the coefficient of the jth power of z:

∀z ∈ Z, z = s(z) ·
n∑
j=0

aj · 10j . (8.54)

Let us then define the following abstraction function µ, called classification function:

µ : Z → M
z 7→ µ(z) = s(z).(10.n+ an)

(8.55)

The classification function µ(z) associates any element z of Z with an element of the subset
M of Z: M = {..., -21, -19, ..., -11, -9, -8, ..., -2, -1, 1, 2, ..., 8, 9, 11, ..., 19, 21, ... }. Each
element µ(z) of M is made with the sign of z followed by two digits, the first representing the
highest power of 10 of z and the second representing its first digit. For example, z = - 7 451 214
is mapped to µ(z) = - 67. Clearly, this classification function is a surjective application. Classi-
fication function µ provides a mean to define a finite set O of observation classes Oi = (φi, δi):
each constant δi is an element of a finite subset ∆2 of M (the abstract variable φi has no concrete
meaning).

Let us consider the dynamic process ΦCLI(t) = {φi(t), i ∈ ∆ID_CLI} composed of four
undefined abstract functions φi(t), i ∈ ∆ID_CLI . Such a dynamic process defines the set
ΦCLI = {φi, i ∈ ∆ID_CLI} of four variable names φi, i ∈ ∆ID_CLI . Let us consider the in-
dependent program of observation Θ2

CLI(ΦCLI ,∆
2
CLI) observing the dynamic process ΦCLI(t).

8.6. REPRESENTATION STEP 123

Let us consider the observed process (ΦCLI(t),Θ
2
CLI(ΦCLI ,∆

2
CLI)). According to the Superpo-

sition Theorem 3.2, the program Θ2
CLI(ΦCLI ,∆

2
CLI) can be decomposed in a superposition of

four independent Unary Observers Θ2
i (φi,∆

2
i), i ∈ ∆ID_CLI . Any Unary Observer Θ2

i (φi,∆
2
i)

implements a predicate denoted θ2
i (xθ2i

, δθ2i
, tθ2i

) based on the application of the Modus Ponens
with the rule 7.8 in the particular case described in property 25:

θi(xi, δik , tik)⇒ ∃mk ∈ ∆2
i , θ

2
i (φi,mk, tik) (8.56)

Unary Observer Θ2
i (φi,∆

2
i) writes then a timed observation denoted O2

mk
(tik) ≡ (mk, tik) for

each assignation θ2
i (φi,mk, tik) of the predicate θ2

i (xθ2i
, δθ2i

, tθ2i
):

θ2
i (φi,mk, tik)⇒ write(O2

mk
(tik) ≡ (mk, tik)) (8.57)

Since predicate θi(xθi , δθi , tθi) implements the equation 8.21, implications 8.56 and 8.57 are
equivalent to:

p1(ik) = i ∧ tik−1
< tik ∧ xi(tik−1

) 6= xi(tik)

⇒ ∃mk ∈ ∆2
i , θ

2
i (φi,mk, tik)

⇒ write(O2
mk

(tik) ≡ (mk, tik))

(8.58)

Let us now impose that mk = µ(xi(tik)), where µ is the classification function of 8.55,
equation 8.58 leads to:

p1(ik) = i ∧ tik−1
< tik ∧ xi(tik−1

) 6= xi(tik)

⇒ θ2
i (φi, µ(xi(tik)), tik)

⇒ write(O2
mk

(tik) ≡ (mk, tik))

(8.59)

This means that Unary Observer Θ2
i (φi,∆

2
i) writes a timed observation O2

mk
(tik) ≡ (mk, tik)

where mk = µ(xi(tik)) each time the value of the function xi(t), for the client id i, changes.
Let us denote O2

mk
= {(φi,mk)}, the observation class linking abstract variable name φi to

constant mk = µ(xi(tik)).
Let us denote ω2

i (tn(2)
i

) = {O2
mk

(tik) ≡ (mk, tik),mk ∈ ∆2
i , tik ∈ Γi, i ∈ ∆ID_CLI}, the

sequences of n(2)
i ∈ N timed observations O2

mk
(tik).

Let us denote Ω2
CLI =

⋃
i∈∆ID_CLI

ω2
i , the superposition of the four sequences of timed obser-

vations ω2
i .

Let us build the TOT (∆2
CLI) Category where:

• objects are Unary Observers Θ2
i (φi,∆

2
i), i ∈ ∆ID_CLI ;

• morphisms are relations f2
ij : Θ2

i → Θ2
j , (i, j) ∈ ∆ID_CLI ×∆ID_CLI .

Let us consider the level of abstraction of the TOT (∆2
CLI) Category, denoted L2

CLI =

〈S2
CLI , T 2

CLI〉, where:

• S2
CLI = (Ω2

CLI ,
∆τij
+) is the algebraic structure of the observed process

(ΦCLI(t),Θ
2
CLI(ΦCLI ,∆

2
CLI));

124 CHAPTER 8. THE TOM4A METHODOLOGY

• T 2
CLI = (Ω2

CLI , I2
CLI) is the observable space of the observed process

((ΦCLI(t),Θ
2
CLI(ΦCLI ,∆

2
CLI)).

From observable space T 2
CLI , we can build the abstract chronicle model M2

CLI containing
all temporal binary relations r2

mkmk+1
(O2

mk
, O2

mk+1
,∆τmkmk+1

) between observation classes O2
mk

and O2
mk+1

:

M2
CLI = {r2

mkmk+1
(O2

mk
, O2

mk+1
,∆τikjk+1

), (i, j) ∈ ∆ID_CLI ×∆ID_CLI} (8.60)

The abstract chronicle modelM2
CLI contains all binary sequences of successive transactions

from a client i ∈ ∆ID_CLI to a client j ∈ ∆ID_CLI , under the temporal constraint ∆τmkmk+1
,

that may be observable in the transaction database, but represented under their amounts compact
form.

Sequence N
(2)
i

ω2
1001(t

n
(2)
1001

) 51

ω2
1002(t

n
(2)
1002

) 43

ω2
1003(t

n
(2)
1003

) 61

ω2
1004(t

n
(2)
1004

) 60

Table 8.4: Number N (2)
i of observation classes associated with sequences ω2

i (tn(2)
i

), i ∈ ∆ID_CLI

Table 8.4 sums up the number of observation classes associated with sequences ω2
i (tn(2)

i

) for
each client id i ∈ ∆ID_CLI . This table allows to compute the size of the abstract chronicle model
M2

CLI according to property 20:

Card(M2
CLI) = (N

(2)
1001 +N

(2)
1002)2 + (N

(2)
1001 +N

(2)
1003)2 + (N

(2)
1001 +N

(2)
1004)2+

(N
(2)
1002 +N

(2)
1003)2 + (N

(2)
1002 +N

(2)
1004)2+

(N
(2)
1003 +N

(2)
1004)2

Card(M2
CLI) = (51 + 43)2 + (51 + 61)2 + (51 + 60)2+

(43 + 61)2 + (43 + 60)2+

(61 + 60)2

Card(M2
CLI) = 69 767

(8.61)

At this level of abstraction L2
CLI , the abstract chronicle modelM2

CLI contains 69 767 tem-
poral binary relations modeling all the successive transactions between a client i ∈ ∆ID_CLI to
a client j ∈ ∆ID_CLI . Compared to the 3 379 879 temporal binary relations contained in the
abstract chronicle modelM1

CLI at the LoA L1
CLI , the number of temporal binary relations has

been reduced to 97, 94%.

According to definition 7.4 of chapter 7, an Abstraction functor, denoted TOT (∆1
CLI) →

TOT (∆2
CLI), can be built according to the surjective classification function µ, linking TOT (∆1

CLI)

Category to TOT (∆2
CLI) Category. Such an Abstraction functor maps timed observations

Oik(tik) of TOT (∆1
CLI) Category to its more abstract form O2

mk
(tik) of TOT (∆2

CLI) Category:

8.6. REPRESENTATION STEP 125

TOT (∆1
CLI)→ TOT (∆2

CLI) : TOT (∆1
CLI) → TOT (∆2

CLI)

Oik(tik) ≡ (δik , tik) 7→ O2
mk

(tik) ≡ (mk, tik)
(8.62)

Let us consider the dynamic process ΦCPTE(t) = {φj(t), j ∈ ∆ID_CPTE} composed of 30
undefined abstract functions φj(t), j ∈ ∆ID_CPTE . Such a dynamic process defines the set
ΦCPTE = {φj , j ∈ ∆ID_CPTE} of 30 variable names φj , j ∈ ∆ID_CPTE . Let us consider the
independent program of observation Θ2

CPTE(ΦCPTE ,∆
2
CPTE) observing the dynamic process

ΦCPTE(t). Let us consider the observed process (ΦCPTE(t),Θ2
CPTE(ΦCPTE ,∆

2
CPTE)).

With the same reasoning, we can build the superposition Ω2
CPTE =

⋃
j∈∆ID_CPTE

ω2
j of the

30 sequences of timed observations ω2
j . A sequence ω2

j (tn(2)
j

) = {O2
mk

(tjk) ≡ (mk, tjk),mk ∈

∆2
j , tjk ∈ Γj , j ∈ ∆ID_CPTE} contains n(2)

j ∈ N timed observations of the form O2
mk

(tjk) ≡
(mk, tjk) where mk = µ(xj(tjk)).

Let us build the TOT (∆2
CPTE) Category where:

• objects are Unary Observers Θ2
j (φj ,∆

2
j), j ∈ ∆ID_CPTE ;

• morphisms are relations f2
ij : Θ2

i → Θ2
j , (i, j) ∈ ∆ID_CPTE ×∆ID_CPTE .

Let us consider the level of abstraction of the TOT (∆2
CPTE) Category, denoted L2

CPTE =

〈S2
CPTE , T 2

CPTE〉, where:

• S2
CPTE = (Ω2

CPTE ,
∆τij
+) is the algebraic structure of the observed process

(ΦCPTE(t),Θ2
CPTE(ΦCPTE ,∆

2
CPTE));

• T 2
CPTE = (Ω2

CPTE , I2
CPTE)

is the observable space of the observed process ((ΦCPTE(t),Θ2
CPTE(ΦCPTE ,∆

2
CPTE)).

From observable space T 2
CPTE , we can build the abstract chronicle modelM2

CPTE containing
all temporal binary relations r2

mkmk+1
(O2

mk
, O2

mk+1
,∆τmkmk+1

) between observation classes O2
mk

and O2
mk+1

:

M2
CPTE = {r2

mkmk+1
(O2

mk
, O2

mk+1
,∆τikjk+1

), (i, j) ∈ ∆ID_CPTE ×∆ID_CPTE} (8.63)

The abstract chronicle model M2
CPTE contains all binary sequences of successive transac-

tions from account i ∈ ∆ID_CPTE to account j ∈ ∆ID_CPTE , under the temporal constraint
∆τmkmk+1

, that may be observable in the transaction database, but represented under their
amounts compact form.

The size of such an abstract chronicle modelM2

CPTE is then:

Card(M2
CPTE) =

∑
(i,j)∈∆2

ID_CPTE
i 6=j

(Ni +Nj)
2 = 404 797 (8.64)

126 CHAPTER 8. THE TOM4A METHODOLOGY

Sequence N
(2)
j Sequence N

(2)
j Sequence N

(2)
j

ω2
2001(t

n
(2)
2001

) 47 ω2
2011(t

n
(2)
2011

) 2 ω2
2021(t

n
(2)
2021

) 1

ω2
2002(t

n
(2)
2002

) 2 ω2
2012(t

n
(2)
2012

) 2 ω2
2022(t

n
(2)
2022

) 2

ω2
2003(t

n
(2)
2003

) 2 ω2
2013(t

n
(2)
2013

) 1 ω2
2023(t

n
(2)
2023

) 1

ω2
2004(t

n
(2)
2004

) 2 ω2
2014(t

n
(2)
2014

) 2 ω2
2024(t

n
(2)
2024

) 46

ω2
2005(t

n
(2)
2005

) 40 ω2
2015(t

n
(2)
2015

) 1 ω2
2026(t

n
(2)
2026

) 2

ω2
2006(t

n
(2)
2006

) 9 ω2
2016(t

n
(2)
2016

) 2 ω2
2027(t

n
(2)
2027

) 2

ω2
2007(t

n
(2)
2007

) 57 ω2
2017(t

n
(2)
2017

) 2 ω2
2028(t

n
(2)
2028

) 2

ω2
2008(t

n
(2)
2008

) 45 ω2
2018(t

n
(2)
2018

) 2 ω2
2029(t

n
(2)
2029

) 2

ω2
2009(t

n
(2)
2009

) 2 ω2
2019(t

n
(2)
2019

) 4 ω2
2030(t

n
(2)
2030

) 2

ω2
2010(t

n
(2)
2010

) 3 ω2
2020(t

n
(2)
2020

) 3 ω2
2031(t

n
(2)
2031

) 3

Table 8.5: Number N (2)
j of observation classes for sequences ω2

j (tn(2)
j

), j ∈ ∆ID_CPTE

At this level of abstraction L2
CPTE , the abstract chronicle model M2

CPTE contains 404 797

temporal binary relations modeling all the successive transactions between an account i ∈
∆ID_CPTE to an account j ∈ ∆ID_CPTE . Compared to the 14 635 861 temporal binary re-
lations contained in the abstract chronicle model M1

CPTE at the LoA L1
CPTE , the number of

temporal binary relations has been reduced to 97, 23%.
Again, an Abstraction functor, denoted TOT (∆1

CPTE)→ TOT (∆2
CPTE), can be built accord-

ing to the surjective classification function µ, linking TOT (∆1
CPTE) Category to TOT (∆2

CPTE)

Category. Such an Abstraction functor maps timed observations Ojk(tjk) of TOT (∆1
CPTE) Cat-

egory to its more abstract form O2
mk

(tjk) of TOT (∆2
CPTE) Category:

TOT (∆1
CPTE)→ TOT (∆2

CPTE) : TOT (∆1
CPTE) → TOT (∆2

CPTE)

Ojk(tjk) ≡ (δjk , tjk) 7→ O2
mk

(tjk) ≡ (mk, tjk)
(8.65)

Let us consider the dynamic process ΦTY P (t) = {φl(t), l ∈ ∆ID_TY P_EV T } composed of 40
undefined abstract functions φl(t), l ∈ ∆ID_TY P_EV T . Such a dynamic process defines the set
ΦTY P = {φl, l ∈ ∆ID_TY P_EV T } of 40 variable names φl, l ∈ ∆ID_TY P_EV T . Let us consider
the independent program of observation Θ2

TY P (ΦTY P ,∆
2
TY P) observing the dynamic process

ΦTY P (t). Let us consider the observed process (ΦTY P (t),Θ2
TY P (ΦTY P ,∆

2
TY P)).

With the same reasoning, we can build the superposition Ω2
TY P =

⋃
l∈∆ID_TY P_EV T

ω2
l of the 40

sequences of timed observations ω2
l . A sequence ω2

l (tn(2)
l

) = {O2
mk

(tlk) ≡ (mk, tlk),mk ∈ ∆2
l , tlk ∈

Γl, l ∈ ∆ID_TY P_EV T } contains n(2)
l ∈ N timed observations of the form O2

mk
(tlk) ≡ (mk, tlk)

where mk = µ(xl(tlk)).
Let us build the TOT (∆2

TY P) Category where:

• objects are Unary Observers Θ2
l (φl,∆

2
l), l ∈ ∆ID_TY P_EV T ;

• morphisms are relations f2
ij : Θ2

i → Θ2
l , (i, j) ∈ ∆ID_TY P_EV T ×∆ID_TY P_EV T .

8.6. REPRESENTATION STEP 127

Let us consider the level of abstraction of the TOT (∆2
TY P) Category, denoted L2

TY P =

〈S2
TY P , T 2

TY P 〉, where:

• S2
TY P = (Ω2

TY P ,
∆τij
+) is the algebraic structure of the observed process

(ΦTY P (t),Θ2
TY P (ΦTY P ,∆

2
TY P));

• T 2
TY P = (Ω2

TY P , I2
TY P) is the observable space of the observed process

((ΦTY P (t),Θ2
TY P (ΦTY P ,∆

2
TY P)).

From observable space T 2
TY P , we can build the abstract chronicle model M2

TY P containing
all temporal binary relations r2

mkmk+1
(O2

mk
, O2

mk+1
,∆τmkmk+1

) between observation classes O2
mk

and O2
mk+1

:

M2
TY P = {r2

mkmk+1
(O2

mk
, O2

mk+1
,∆τikjk+1

), (i, j) ∈ ∆ID_TY P_EV T ×∆ID_TY P_EV T } (8.66)

The abstract chronicle modelM2
TY P contains all binary sequences of successive transactions

from transaction type i ∈ ∆ID_TY P_EV T to transaction type j ∈ ∆ID_TY P_EV T , under the
temporal constraint ∆τmkmk+1

, that may be observable in the transaction database, but repre-
sented under their amounts compact form.

Sequence N
(2)
l Sequence N

(2)
l Sequence N

(2)
l Sequence N

(2)
l

ω2
3001(t

n
(2)
3001

) 3 ω2
3011(t

n
(2)
3011

) 1 ω2
3021(t

n
(2)
3021

) 0 ω2
3031(t

n
(2)
3031

) 8

ω2
3002(t

n
(2)
3002

) 3 ω2
3012(t

n
(2)
3012

) 0 ω2
3022(t

n
(2)
3022

) 7 ω2
3032(t

n
(2)
3032

) 1

ω2
3003(t

n
(2)
3003

) 3 ω2
3013(t

n
(2)
3013

) 1 ω2
3023(t

n
(2)
3023

) 12 ω2
3033(t

n
(2)
3033

) 1

ω2
3004(t

n
(2)
3004

) 25 ω2
3014(t

n
(2)
3014

) 0 ω2
3024(t

n
(2)
3024

) 15 ω2
3034(t

n
(2)
3034

) 15

ω2
3005(t

n
(2)
3005

) 1 ω2
3015(t

n
(2)
3015

) 0 ω2
3025(t

n
(2)
3025

) 4 ω2
3035(t

n
(2)
3035

) 14

ω2
3006(t

n
(2)
3006

) 7 ω2
3016(t

n
(2)
3016

) 0 ω2
3026(t

n
(2)
3026

) 3 ω2
3036(t

n
(2)
3036

) 12

ω2
3007(t

n
(2)
3007

) 2 ω2
3017(t

n
(2)
3017

) 24 ω2
3027(t

n
(2)
3027

) 3 ω2
3037(t

n
(2)
3037

) 7

ω2
3008(t

n
(2)
3008

) 3 ω2
3018(t

n
(2)
3018

) 6 ω2
3028(t

n
(2)
3028

) 3 ω2
3038(t

n
(2)
3038

) 14

ω2
3009(t

n
(2)
3009

) 1 ω2
3019(t

n
(2)
3019

) 23 ω2
3029(t

n
(2)
3029

) 3 ω2
3039(t

n
(2)
3039

) 24

ω2
3010(t

n
(2)
3010

) 1 ω2
3020(t

n
(2)
3020

) 6 ω2
3030(t

n
(2)
3030

) 12 ω2
3040(t

n
(2)
3040

) 10

Table 8.6: Number N (2)
l of observation classes for sequences ω2

l (tn(2)
l

), l ∈ ∆ID_TY P_EV T

The size of the abstract chronicle modelM2

TY P is then:

Card(M2
TY P) =

∑
(i,j)∈∆2

ID_TY P_EV T
i 6=j

(Ni +Nj)
2 = 231 640 (8.67)

At this level of abstraction L2
TY P , the abstract chronicle model M2

CPTE contains 231 640

temporal binary relations modeling all the successive transactions between a transaction type
i ∈ ∆ID_TY P_EV T to a transaction type j ∈ ∆ID_TY P_EV T . Compared to the 12 630 799

temporal binary relations contained in the abstract chronicle model M1
TY P at the LoA L1

TY P ,
the number of temporal binary relations has been reduced to 98, 16%.

128 CHAPTER 8. THE TOM4A METHODOLOGY

Again, an Abstraction functor, denoted TOT (∆1
TY P)→ TOT (∆2

TY P), can be built according
to the surjective classification function µ, linking TOT (∆1

TY P) Category to TOT (∆2
TY P) Cate-

gory. Such an Abstraction functor maps timed observations Olk(tlk) of TOT (∆1
TY P) Category

to its more abstract form O2
mk

(tlk) of TOT (∆2
TY P) Category:

TOT (∆1
TY P)→ TOT (∆2

TY P) : TOT (∆1
TY P) → TOT (∆2

TY P)

Olk(tlk) ≡ (δlk , tlk) 7→ O2
mk

(tlk) ≡ (mk, tlk)
(8.68)

According to property 23, the LoA L2 is higher or more abstract than the LoA L1. Thus,
each time the value of the function xi(t) changes, a timed observation Oik(tik) ≡ (δik , tik) is
written at the LoA 1 of abstraction, representing a transaction of the database and, at the same
time, another timed observation O2

mk
(tik) ≡ (mk, tik) is written, representing the amount of this

transaction into a more abstract form and residing at a more abstract level of abstraction.
Such a LoA, denoted L2, is composed of:

• three TOT Categories modeling the observed problem, still into three different point of
view but also into a more compact form;

• three Abstraction functors linking categories belonging to the first LoA with categories
belonging to the second LoA.

Categories Card(M1) at LoA L1 Card(M2) at LoA L2 Data Reduction Rate
Clients 3 379 879 69 767 97, 94%

Banking Accounts 14 635 861 404 797 97, 23%

Transaction Types 12 630 799 231 640 98, 16%

Table 8.7: Reduction rate of data to be analysed when abstracting from LoA L1 to LoA L2

It has been demonstrated in this section that the reduction rate of data to be analysed
is around 98% (see table 8.7): data at the second LoA are semantically richer and syntacticly
poorer than data at the first LoA. Abstraction functors allow the existence of a mapping between
concrete timed observations of the first LoA and abstract timed observations of the second LoA.
On one hand, a concrete timed observation of the LoA L1 have no existence out of its own LoA:
it is definitively forgotten. On the other hand, an abstract timed observation of the LoA L2,
thanks to the existence of an Abstraction functor, can always be linked to its more concrete
form. In other word, an abstract timed observation has always an interpretation and can always
be reified under its more concrete form.

Section 8.7 gives a concrete application of this concept of reification when solving the internal
fraud problem.

8.6.4 Syntactic Model of the Observed Problem at the Third LoA

This step consists of observing binary sequences of successive timed observations of the form(
O(tik) ≡ (mk, tik), O(tjk+1

) ≡ (mk+1, tjk+1
)
)
at the LoA L2 for categories TOT (∆2

CLI), TOT (∆2
CPTE)

and TOT (∆2
TY P). The observation of such binary sequences is based on the operation of com-

position of observers
⊕

(see 4.5 and 7.12) in these TOT Categories at the level of abstraction
L2.

8.6. REPRESENTATION STEP 129

Let us consider the TOT (∆2
CLI) Category whose objects are the four Unary Observers

Θ2
i (φi,∆

2
i), i ∈ ∆ID_CLI . Let us apply the operation of composition of observers on these

objects:

∀(i, j) ∈ ∆2
ID_CLI ,Θ

3
k(φk,∆

3) = Θ2
i (φi,∆

2
i)
⊕

Θ2
j (φj ,∆

2
j) (8.69)

Since we only deal with the observation of successive timed observations, according to
property 24, observer Θ3

k(φk,∆
3) can be decomposed into the four Abstract Binary Observers

Θ3
ii({φii}, {δii}), Θ3

ij({φij}, {δij}), Θ3
ji({φji}, {δji}) and Θ3

jj({φjj}, {δjj}). Abstract Binary Ob-
server Θ3

ii({φii}, {δii}) observes binary sequences of successive timed observations from a client
i to the same client i: it is then useless for our concerned problem since these kind of trans-
actions cannot be concerned by the fraud. With the same idea, Abstract Binary Observer
Θ3
jj({φjj}, {δjj}) is also useless. So, only Abstract Binary Observers Θ3

ij({φij}, {δij}) and
Θ3
ji({φji}, {δji}) are concerned.
Considering Abstract Binary Observers Θ3

ij({φij}, {δij}), equation 8.69 leads then to (the
reasoning is the same with Θ3

ji({φji}, δji) by swapping index i and j):

∀(i, j) ∈ ∆2
ID_CLI ,Θ

3
ij({φij}, {δij}) = Θ2

i (φi,∆
2
i)
⊕

Θ2
j (φj ,∆

2
j) (8.70)

The operation 8.70 corresponds then to the operation of addition of timed observations under

temporal constraints
∆τikjk+1

+ . At the LoA L2, such an operation is written:

O3
ij(tjk+1

) = O2
mk

(tik)
∆τikjk+1

+ O2
mk+1

(tjk+1
) (8.71)

This operation corresponds to the application of the Modus Ponens with the following rule:

θ2
i (φi,mk, tik) ∧ θ2

j (φj ,mk+1, tjk+1
) ∧ |tjk+1

− tik | ∈ ∆τikjk+1

⇒ θ3
ij(φij , δ

ij , tjk+1
)

(8.72)

where mk = µ(xi(tik)) and mk+1 = µ(xj(tjk+1
)).

In order to respect constraints number one and two of the internal fraud constraints of
definition 8.2, (i) the debited account belongs to a bank customer and (ii) credited account belongs
to a bank employee, we must impose i 6= 1003 and j = 1003. In order to respect the constraint
number three of the internal fraud constraints of definition 8.2, (iii) the debited and credited
amounts are the same, we must impose abstract amounts inM to be of opposite signs, that is
to say, mk + mk+1 = 0 for all k. Constraint number four, (iv) the debiting transaction precedes
the crediting transaction, is always respected since, by construction, tik < tjk+1

, for all k.
Let us then rewrite the constant δij as the concatenation of the abstract amounts −mk and

mk:

δij ≡ −mkmk (8.73)

Thus, the rule 8.72 becomes:

θ2
i (φi,mk, tik) ∧ θ2

j (φj ,−mk, tjk+1
) ∧ |tjk+1

− tik | ∈ ∆τikjk+1

⇒ θ3
ij(φij ,−mkmk, tjk+1

)
(8.74)

130 CHAPTER 8. THE TOM4A METHODOLOGY

Thus, for each assignation θ3
ij(φij ,−mkmk, tjk+1

), Abstract Binary Observer Θ3
ij({φij}, {δij})

writes a timed observation of the form O3
ij(tjk+1

) ≡ (δij ≡ −mkmk, tjk+1
) ≡ O3

−mkmk(tjk+1
). Such

a timed observation means that it has been observed, in the superposition Ω2
CLI =

⋃
i∈∆ID_CLI

ω2
i ,

at the date tjk+1
, a timed observation O2

mk
(tik) ≡ (mk, tik), i 6= 1003, followed by a timed ob-

servation O2
−mk(tjk+1

) ≡ (−mk, tjk+1
), j = 1003, in a time interval of ∆τikjk+1

. Such a timed
observation corresponds then to an instance r2

−mkmk(O2
mk

(tik), O2
−mk(tjk+1

)) of the temporal
binary relation r2

−mkmk(O2
mk
, O2
−mk ,∆τikjk+1

). Such an instance composes the set B2
CLI corre-

sponding to the behaviour of the observed process (ΦCLI(t),Θ
2
CLI(ΦCLI ,∆

2
CLI)) (see 5.6) in the

TOT (∆2
CLI) Category. Thus, in other words, this step consists of determining the behaviour

B2
CLI in the TOT (∆2

CLI) Category. Let us recall that such a behaviour B2
CLI is an instance of

the abstract chronicle modelM2
CLI at the LoA L2.

Let us now give more precisely the composition of the behaviour model B2
CLI . To this aim,

let us first fix the temporal constraints to:

∀k ∈ N,∆τikjk+1
= [τ−ik ; τ+

jk+1
] = [0; 30 days] (8.75)

This concretely means that only pairs of transactions whose duration is inferior to 30 days
are concerned.

Three Abstract Binary Observers Θ3
ij({φij}, {δij}) ≡ Θ3

ij observe binary sequences of timed
observations of the form(
O2
mk

(tik) ≡ (mk, tik), O2
−mk(tjk+1

) ≡ (−mk, tjk+1
)
)
from client i 6= 1003 to client j = 1003.

Table 8.8 provides binary sequences of timed observations that has been observed by Abstract
Binary Observer Θ3

1001,1003 from sequence ω2
1001(t

n
(2)
1001

) associated to client id 1001 to sequence

ω2
1003(t

n
(2)
1003

) associated to the bank manager (client id 1003). This table also provides the
instances of concerned temporal binary relations as well as timed observations written by this
Abstract Binary Observer. The list of corresponding timestamps is given in table 8.14.

Observed binary sequence Instance of Timed observation
temporal binary relation written by Θ3

1001,1003

((−55, t10011), (55, t10031)) r2
−5555(O−55(t10011), O55(t10031)) O3

−5555(t10031) ≡ (−5555, t10031)

((−65, t10012), (65, t10032)) r2
−6565(O−65(t10012), O65(t10032)) O3

−6565(t10032) ≡ (−6565, t10032)

Table 8.8: Observation of binary sequences by Abstract Binary Observer Θ3
1001,1003 from client

id 1001 to bank manager

Second Abstract Binary Observer, Θ3
1002,1003, does the same job in order to find binary se-

quences from sequence of timed observations ω2
1002(t

n
(2)
1002

) associated to client id 1002 to sequence
associated to the bank manager (see table 8.9):

Observed binary sequence Instance of Timed observation
temporal binary relation written by Θ3

1002,1003

((−61, t10021), (61, t10033)) r2
−6161(O−61(t10021), O61(t10033)) O3

−6161(t10033) ≡ (−6161, t10033)

((−62, t10022), (62, t10034)) r2
−6262(O−62(t10022), O62(t10034)) O3

−6262(t10034) ≡ (−6262, t10034)

Table 8.9: Observation of binary sequences by Abstract Binary Observer Θ3
1002,1003 from client

id 1002 to bank manager

8.6. REPRESENTATION STEP 131

And the third, Θ3
1004,1003, from sequence of timed observations ω2

1004(t
n
(2)
1004

) associated to
client id 1004 to sequence associated to the bank manager (see table 8.10):

Observed binary sequence Instance of Timed observation
temporal binary relation written by Θ3

1004,1003

((−51, t10041), (51, t10035)) r2
−5151(O−51(t10041), O51(t10035)) O3

−5151(t10035) ≡ (−5151, t10035)

((−51, t10042), (51, t10036)) r2
−5151(O−51(t10042), O51(t10036)) O3

−5151(t10036) ≡ (−5151, t10036)

((−52, t10043), (52, t10037)) r2
−5252(O−52(t10043), O52(t10037)) O3

−5252(t10037) ≡ (−5252, t10037)

((−52, t10044), (52, t10038)) r2
−5252(O−52(t10044), O52(t10038)) O3

−5252(t10038) ≡ (−5252, t10038)

((−52, t10045), (52, t10039)) r2
−5252(O−52(t10045), O52(t10039)) O3

−5252(t10039) ≡ (−5252, t10039)

((−54, t10046), (54, t100310)) r2
−5454(O−54(t10046), O54(t100310)) O3

−5454(t100310) ≡ (−5454, t100310)

((−55, t10047), (55, t100311)) r2
−5555(O−55(t10047), O55(t100311)) O3

−5555(t100311) ≡ (−5555, t100311)

((−55, t10048), (55, t100312)) r2
−5555(O−55(t10048), O55(t100312)) O3

−5555(t100312) ≡ (−5555, t100312)

((−55, t10049), (55, t100313)) r2
−5555(O−55(t10049), O55(t100313)) O3

−5555(t100313) ≡ (−5555, t100313)

((−55, t100410), (55, t100314)) r2
−5555(O−55(t100410), O55(t100314)) O3

−5555(t100314) ≡ (−5555, t100314)

((−61, t100411), (61, t100315)) r2
−6161(O−61(t100411), O61(t100315)) O3

−5555(t100315) ≡ (−6161, t100315)

((−61, t100412), (61, t100316)) r2
−6161(O−61(t100412), O61(t100316)) O3

−5555(t100316) ≡ (−6161, t100316)

((−61, t100413), (61, t100317)) r2
−6161(O−61(t100413), O61(t100317)) O3

−5555(t100317) ≡ (−6161, t100317)

((−61, t100414), (61, t100318)) r2
−6161(O−61(t100414), O61(t100318)) O3

−5555(t100318) ≡ (−6161, t100318)

Table 8.10: Observation of binary sequences by Abstract Binary Observer Θ3
1004,1003 from client

id 1004 to bank manager

Three other Abstract Binary Observers Θ3
ji({φji}, {δji}) observe binary sequences of timed

observations of the form(
O2
mk

(tjk) ≡ (mk, tjk), O2
−mk(tik+1

) ≡ (−mk, tik+1
)
)
from client j = 1003 to client i 6= 1003.

Table 8.11 shows that there is no observed binary sequence neither instance of temporal
binary relations nor timed observation written by this Abstract Binary Observer Θ3

1003,1001 from
sequence ω2

1003(t
n
(2)
1003

) associated to the bank manager to sequence ω2
1001(t

n
(2)
1001

) associated client
id 1001.

Observed binary sequence Instance of Timed observation
temporal binary relation written by Θ3

1003,1001

None None None

Table 8.11: There is no observation of binary sequence by Abstract Binary Observer Θ3
1003,1001

from bank manager to client id 1001

On the other side, there exists binary sequences of timed observations observed by Ab-
stract Binary Observer Θ3

1003,1002 from sequence associated to the bank manager to sequence
ω2

1002(t
n
(2)
1002

) associated client id 1002. Table 8.12 provides these sequence as well as instances
of concerned temporal binary relations and timed observations written by this Abstract Binary
Observer.

And there also exists binary sequences of timed observations observed by Abstract Binary
Observer Θ3

1003,1004 from sequence associated to the bank manager to sequence ω2
1004(t

n
(2)
1004

)

associated client id 1004 (see table 8.13):
Thus, the behaviour model B2

CLI is composed of the 24 instances of temporal binary relations
listed in tables 8.8 to 8.13. Table 8.14 provides the list of the database datetimes corresponding
to timestamps tik present in these tables.

132 CHAPTER 8. THE TOM4A METHODOLOGY

Observed binary sequence Instance of Timed observation
temporal binary relation written by Θ3

ji({φji}, {δji})
((−51, t100319), (51, t10023)) r2

−5151(O−51(t100319), O51(t10023)) O3
−5151(t100319) ≡ (−5151, t100319)

((−51, t100320), (51, t10024)) r2
−5151(O−51(t100320), O51(t10024)) O3

−5151(t100320) ≡ (−5151, t100320)

Table 8.12: There is no observation of binary sequence by Abstract Binary Observer
Θ3
ji({φji}, {δji}) from bank manager to client id 1002

Observed binary sequence Instance of Timed observation
temporal binary relation written by Θ3

1003,1004

((−51, t100321), (51, t100415)) r2
−5151(O−51(t100321), O51(t100415)) O3

−5151(t100321) ≡ (−5151, t100321)

((−51, t100322), (51, t100416)) r2
−5151(O−51(t100322), O51(t100416)) O3

−5151(t100322) ≡ (−5151, t100322)

((−51, t100323), (51, t100417)) r2
−5151(O−51(t100323), O51(t100417)) O3

−5151(t100323) ≡ (−5151, t100323)

((−55, t100324), (55, t100418)) r2
−5555(O−51(t100324), O51(t100418)) O3

−5555(t100324) ≡ (−5151, t100324)

Table 8.13: There is no observation of binary sequence by Abstract Binary Observer Θ3
1003,1004

from bank manager to client id 1004

Timestamp Datetime Timestamp Datetime
t10011 2009-09-28 02:03:55 t10031 2009-10-08 03:24:52
t10012 2009-11-17 02:21:37 t10032 2009-11-18 06:20:55
t10021 2009-11-19 06:26:46 t10033 2009-11-23 09:07:10
t10022 2009-11-19 03:16:45 t10034 2009-11-27 09:08:00
t10041 2009-03-09 05:07:30 t10035 2009-03-10 05:30:41
t10042 2009-04-22 02:43:58 t10036 2009-05-22 03:12:18
t10043 2009-04-08 01:25:30 t10037 2009-04-28 03:35:43
t10044 2009-09-10 06:58:34 t10038 2009-09-16 02:33:07
t10045 2009-09-16 06:48:48 t10039 2009-09-28 08:03:11
t10046 2009-02-13 06:05:04 t100310 2009-02-26 03:53:07
t10047 2009-02-13 04:59:56 t100311 2009-02-17 01:36:17
t10048 2009-09-16 07:46:36 t100312 2009-09-18 05:48:22
t10049 2009-09-18 12:02:32 t100313 2009-09-21 03:23:20
t100410 2009-09-21 04:31:59 t100314 2009-10-08 03:24:52
t100411 2009-03-16 07:49:24 t100315 2009-03-17 03:29:01
t100412 2009-10-16 04:59:22 t100316 2009-10-30 09:33:29
t100413 2009-11-09 09:39:00 t100317 2009-11-13 04:53:17
t100414 2009-11-13 08:43:05 t100318 2009-11-23 09:07:10
t100319 2009-11-12 02:19:11 t10023 2009-11-18 05:11:08
t100320 2009-11-24 04:31:59 t10024 2009-11-30 03:18:00
t100321 2009-01-09 02:28:34 t100415 2009-01-22 02:34:23
t100322 2009-06-04 03:49:44 t100416 2009-06-12 04:47:47
t100323 2009-12-22 04:47:11 t100417 2009-12-22 07:38:53
t100324 2009-03-20 03:45:22 t100418 2009-03-30 05:27:06

Table 8.14: List of database datetimes corresponding to timestamps present in tables 8.8 to 8.13

According to property 22, the existence of the behaviour model B2
CLI at the LoA L2

CLI induces
an abstraction process which allows to define a higher (or more abstract) LoA denoted L3

CLI . At
this third LoA, reside timed observations of the form O3

ij(tjk+1
) (resp. O3

ji(tik+1
)) produced by

Abstract Binary Observer Θ3
ij({φij}, {δij}) (resp. Θ3

ji({φji}, δji)).

8.6. REPRESENTATION STEP 133

Let us denote ω3
ij(tn(3)

ij

) = {O3
ij(tjk+1

), i 6= 1003, j = 1003} ≡ ω3
ij , the six sequences of n(3)

ij

timed observations such as i 6= 1003 and j = 1003. Let us denote Ω3 =
⋃

i 6=1003,j=1003

ω3
ij(tn(3)

ij

),

the superposition of the six sequences ω3
ij(tn(3)

ij

).

Let us compute the cardinal of the abstract chronicle modelM3
CLI at this level L3

CLI of ab-
straction. To this aim, we must compute the number of observation classesO3

−mkmk = {(φij , δij ≡
−mkmk)} at level L3

CLI .

Sequence N
(3)
ij

ω3
1001,1003 2
ω3

1002,1003 2
ω3

1004,1003 5
ω3

1003,1001 0
ω3

1003,1002 1
ω3

1003,1004 2

Table 8.15: Number N (3)
ij of observation classes associated with sequences ω3

ij , i 6= 1003, j = 1003

Table 8.15 sums up the number of observation classes associated with sequences ω3
ij , i 6=

1003, j = 1003. This table allows to compute the size of the abstract chronicle model M3

CLI

according to property 20:

Card(M3
CLI) = (2 + 2)2 + (2 + 5)2 + (2 + 0)2 + (2 + 1)2 + (2 + 2)2+

(2 + 5)2 + (2 + 0)2 + (2 + 1)2 + (2 + 2)2+

(5 + 0)2 + (5 + 1)2 + (5 + 2)2+

(0 + 1)2 + (0 + 2)2+

(1 + 2)2

Card(M3
CLI) = 296

(8.76)

At this level of abstraction L3
CLI , the abstract chronicle modelM3

CLI contains 296 temporal
binary relations modeling all the successive timed observations of the form

(
O3
−mkmk(tk), O

3
−mk+1mk+1

(tk+1)
)

and respecting the internal fraud constraints of definition 8.2. Compared to the 69 767 temporal
binary relations contained in the abstract chronicle modelM2

CLI at the LoA L2
CLI , the number

of temporal binary relations has been reduced to 99, 58%. The operation of abstraction from
LoA L2

CLI to LoA L3
CLI demonstrates again that data at the third LoA are semantically richer

and syntacticly poorer than data at the second LoA.
Let us then build the TOT (∆3

CLI) Category whose :

• objects are Abstract Binary Observers Θ3
ij({φij}, {δij}) and Θ3

mn({φmn}, {δmn}), (i, j,m, n) ∈
∆4
ID_CLI .

• morphisms are relations f3
ijmn : Θ3

ij → Θ3
mn, (i, j,m, n) ∈ ∆4

ID_CLI .

According to the definition 7.4, an Abstraction functor denoted TOT (∆2
CLI)→ TOT (∆3

CLI)

can be built. This Abstraction functor links categories TOT (∆2
CLI) to TOT (∆3

CLI) and maps
binary sequences of timed observations

(
O2
mk

(tik) ≡ (mk, tik), O2
mk+1

(tjk+1
) ≡ (−mk, tjk+1

)
)
with

a timed observation of the form O3
−mkmk(tjk+1

) ≡ (−mkmk, tjk+1
):

134 CHAPTER 8. THE TOM4A METHODOLOGY

TOT (∆2
CLI)→ TOT (∆3

CLI) : TOT (∆2
CLI) → TOT (∆3

CLI)

((mk, tik), (−mk, tjk+1
)) 7→ (−mkmk, tjk+1

)
(8.77)

Timed observations at the level L3
CLI of abstraction are of the form O3

−mkmk(tjk+1
) ≡

(−mkmk, tjk+1
). By construction, constants −mkmk does not depend on the category we con-

sider: they are the same whatever the observed process is. As a consequence, the superposition
Ω3 of timed observation O3

−mkmk(tjk+1
), at this third LoA, is the same whatever we choose to

observe the process associated to clients, accounts or transaction types. The difference comes
from the way this superposition is produced, that is to say, from the number of Abstract Binary
Observers involved to produce such a superposition.

For example, when considering the category of the clients, Abstract Binary Observer Θ3
1001,1003

observes binary sequences ((−55, t10011), (55, t10031)) and ((−65, t10012), (65, t10032)) in the super-
position Ω3 (see table 8.8), writing respectively timed observationsO3

−5555(t10031) andO3
−6565(t10032).

When considering the category of accounts, binary sequence ((−55, t10011), (55, t10031)) is ob-
served by Abstract Binary Observer Θ3

2008,2001 while binary sequence ((−65, t10012), (65, t10032)) is
observed by Abstract Binary Observer Θ3

2009,2024. Nevertheless, both Abstract Binary Observers
write the same timed observations i.e. O3

−5555(t10031) and O3
−6565(t10032). As a consequence, in-

stances of temporal binary relations r2
−5555(O−55(t10011), O55(t10031)) and r2

−6565(O−65(t10012), O65(t10032))

are also the same.
Let us then consider the TOT (∆3

CPTE) Category whose objects are Abstract Binary Ob-
servers Θ3

ij({φij}, {δij}) where (i, j) ∈ ∆ID_CPTE × ∆ID_CPTE . Let us then consider also
the TOT (∆3

TY P) Category whose objects are Abstract Binary Observers Θ3
ij({φij}, {δij}) where

(i, j) ∈ ∆ID_TY P_EV T ×∆ID_TY P_EV T .
Table 8.16 lists the concerned Abstract Binary Observers (ABS) in the category of the account

ids and in the category of the event type ids for observed binary sequences and instances of
temporal binary relations of tables 8.8 to 8.13.

Thus, we can affirm that behaviour models associated to clients, accounts and transaction
types, at the LoA L2, are the same:

B2
CLI = B2

CPTE = B2
TY P = B2 (8.78)

Furthermore, there exists, in the the TOT (∆3
CPTE) Category, 13 different Abstract Binary

Observers corresponding to 13 sequences ω3
ij(tn(3)

ij

), (i, j) ∈ ∆ID_CPTE × ∆ID_CPTE of timed

observations O3
−mkmk(tjk+1

). The superposition Ω3, in this category, is then a superposition of
13 sequences.

And there exists, in the the TOT (∆3
TY P) Category, 17 different Abstract Binary Observers

corresponding to 17 sequences ω3
ij(tn(3)

ij

), (i, j) ∈ ∆ID_TY P_EV T × ∆ID_TY P_EV T of timed

observations O3
−mkmk(tjk+1

). The superposition Ω3, in this category, is then a superposition of
17 sequences.

Let us compute the cardinal of the abstract chronicle modelM3
CPTE at the level L3

CPTE of
abstraction. To this aim, les us compute the number of observation classes O3

−mkmk = {(φij , δij ≡

8.6. REPRESENTATION STEP 135

Observed Instance of Concerned ABS Concerned ABS
binary sequence temporal binary in account id in transaction

relation category type id category
((−55, t10011), (55, t10031)) r2

−5555(O−55(t10011), O55(t10031)) Θ3
2008,2001 Θ3

3034,3023

((−65, t10012), (65, t10032)) r2
−6565(O−65(t10012), O65(t10032)) Θ3

2009,2024 Θ3
3038,3023

((−61, t10021), (61, t10033)) r2
−6161(O−61(t10021), O61(t10033)) Θ3

2005,2028 Θ3
3034,3017

((−62, t10022), (62, t10034)) r2
−6262(O−62(t10022), O62(t10034)) Θ3

2011,2027 Θ3
3038,3010

((−51, t10041), (51, t10035)) r2
−5151(O−51(t10041), O51(t10035)) Θ3

2007,2001 Θ3
3004,3023

((−51, t10042), (51, t10036)) r2
−5151(O−51(t10042), O51(t10036)) Θ3

2007,2001 Θ3
3004,3005

((−52, t10043), (52, t10037)) r2
−5252(O−52(t10043), O52(t10037)) Θ3

2007,2001 Θ3
3004,3040

((−52, t10044), (52, t10038)) r2
−5252(O−52(t10044), O52(t10038)) Θ3

2020,2001 Θ3
3038,3039

((−52, t10045), (52, t10039)) r2
−5252(O−52(t10045), O52(t10039)) Θ3

2020,2001 Θ3
3038,3039

((−54, t10046), (54, t100310)) r2
−5454(O−54(t10046), O54(t100310)) Θ3

2007,2001 Θ3
3034,3039

((−55, t10047), (55, t100311)) r2
−5555(O−55(t10047), O55(t100311)) Θ3

2007,2001 Θ3
3034,3023

((−55, t10048), (55, t100312)) r2
−5555(O−55(t10048), O55(t100312)) Θ3

2007,2001 Θ3
3034,3039

((−55, t10049), (55, t100313)) r2
−5555(O−55(t10049), O55(t100313)) Θ3

2010,2001 Θ3
3038,3039

((−55, t100410), (55, t100314)) r2
−5555(O−55(t100410), O55(t100314)) Θ3

2010,2001 Θ3
3038,3023

((−61, t100411), (61, t100315)) r2
−6161(O−61(t100411), O61(t100315)) Θ3

2007,2001 Θ3
3004,3039

((−61, t100412), (61, t100316)) r2
−6161(O−61(t100412), O61(t100316)) Θ3

2010,2003 Θ3
3038,3017

((−61, t100413), (61, t100317)) r2
−6161(O−61(t100413), O61(t100317)) Θ3

2010,2024 Θ3
3038,3023

((−61, t100414), (61, t100318)) r2
−6161(O−61(t100414), O61(t100318)) Θ3

2010,2028 Θ3
3038,3017

((−51, t100319), (51, t10023)) r2
−5151(O−51(t100319), O51(t10023)) Θ3

2024,2019 Θ3
3004,3017

((−51, t100320), (51, t10024)) r2
−5151(O−51(t100320), O51(t10024)) Θ3

2024,2005 Θ3
3036,3035

((−51, t100321), (51, t100415)) r2
−5151(O−51(t100321), O51(t100415)) Θ3

2001,2007 Θ3
3031,3023

((−51, t100322), (51, t100416)) r2
−5151(O−51(t100322), O51(t100416)) Θ3

2001,2007 Θ3
3004,3023

((−51, t100323), (51, t100417)) r2
−5151(O−51(t100323), O51(t100417)) Θ3

2024,2007 Θ3
3024,3023

((−55, t100324), (55, t100418)) r2
−5555(O−51(t100324), O51(t100418)) Θ3

2001,2007 Θ3
3036,3035

Table 8.16: Observed binary sequences, instances of temporal binary relations and their con-
cerned Abstract Binary Observer in the TOT (∆3

CPTE) Category and in the TOT (∆3
TY P) Cate-

gory

−mkmk)} at level L3
CPTE .

Sequence N
(3)
ij Sequence N

(3)
ij

ω3
2008,2001 1 ω3

2010,2003 1
ω3

2009,2024 1 ω3
2010,2024 1

ω3
2005,2028 1 ω3

2010,2028 1
ω3

2011,2027 1 ω3
2024,2019 1

ω3
2007,2001 4 ω3

2024,2005 1
ω3

2020,2001 1 ω3
2024,2007 1

ω3
2010,2001 1

Table 8.17: Number N (3)
ij of observation classes associated with sequences ω3

ij(tn(3)
ij

), (i, j) ∈
∆ID_CPTE ×∆ID_CPTE

Table 8.17 sums up the number of observation classes associated with sequences ω3
ij(tn(3)

ij

),

(i, j) ∈ ∆ID_CPTE×∆ID_CPTE . This table allows to compute the size of the abstract chronicle
modelM3

CPTE according to property 20:

136 CHAPTER 8. THE TOM4A METHODOLOGY

Card(M3
CPTE) =

∑
(i,j)∈∆2

ID_CPTE
i 6=j

(Ni +Nj)
2

Card(M3
CPTE) = 564

(8.79)

At this level of abstraction L3
CPTE , the abstract chronicle modelM3

CPTE contains 564 tempo-
ral binary relations modeling all the successive timed observations of the form

(
O3
−mkmk(tk), O

3
−mk+1mk+1

(tk+1)
)

and respecting the internal fraud constraints of definition 8.2. Compared to the 404 797 tempo-
ral binary relations contained in the abstract chronicle modelM2

CPTE at the LoA L2
CPTE , the

number of temporal binary relations has been reduced to 99, 86%. The operation of abstraction
from LoA L2

CPTE to LoA L3
CPTE demonstrates again that data at the third LoA are semantically

richer and syntacticly poorer than data at the second LoA.
Now, let us compute the cardinal of the abstract chronicle modelM3

TY P at the level L3
TY P

of abstraction.

Sequence N
(3)
ij Sequence N

(3)
ij

ω3
3034,3023 1 ω3

3034,3023 1
ω3

3038,3023 1 ω3
3004,3039 1

ω3
3034,3017 1 ω3

3038,3017 1
ω3

3038,3010 1 ω3
3004,3017 1

ω3
3004,3023 4 ω3

3036,3035 1
ω3

3004,3035 1 ω3
3031,3023 1

ω3
3004,3040 1 ω3

3024,3023 1
ω3

3038,3039 1 ω3
3036,3035 1

ω3
3034,3039 1

Table 8.18: Number N (3)
ij of observation classes associated with sequences ω3

ij(tn(3)
ij

), (i, j) ∈
∆ID_TY P_EV T ×∆ID_TY P_EV T

Table 8.18 sums up the number of observation classes associated with sequences ω3
ij(tn(3)

ij

),

(i, j) ∈ ∆ID_TY P_EV T ×∆ID_TY P_EV T . This table allows to compute the size of the abstract
chronicle modelM3

TY P according to property 20:

Card(M3
TY P) =

∑
(i,j)∈∆2

ID_TY P_EV T
i 6=j

(Ni +Nj)
2

Card(M3
TY P) = 906

(8.80)

At this level of abstraction L3
TY P , the abstract chronicle modelM3

TY P contains 906 temporal
binary relations modeling all the successive timed observations of the form

(
O3
−mkmk(tk), O

3
−mk+1mk+1

(tk+1)
)

and respecting the internal fraud constraints of definition 8.2. Compared to the 231 640 tem-
poral binary relations contained in the abstract chronicle model M2

TY P at the LoA L2
TY P , the

number of temporal binary relations has been reduced to 99, 61%. The operation of abstraction
from LoA L2

TY P to LoA L3
TY P demonstrates again that data at the third LoA are semantically

richer and syntacticly poorer than data at the second LoA.
According to the definition 7.4, two Abstraction functors denoted TOT (∆2

CPTE)→ TOT (∆3
CPTE)

and TOT (∆2
TY P)→ TOT (∆3

TY P) can be built.
Abstraction functor TOT (∆2

CPTE)→ TOT (∆3
CPTE) links categories TOT (∆2

CPTE) to TOT (∆3
CPTE)

and maps binary sequences of timed observations
(
O2
mk

(tik) ≡ (mk, tik), O2
mk+1

(tjk+1
) ≡ (−mk, tjk+1

)
)

8.6. REPRESENTATION STEP 137

with a timed observation of the form O3
−mkmk(tjk+1

) ≡ (−mkmk, tjk+1
):

TOT (∆2
CPTE)→ TOT (∆3

CPTE) : TOT (∆2
CPTE) → TOT (∆3

CPTE)

((mk, tik), (−mk, tjk+1
)) 7→ (−mkmk, tjk+1

)
(8.81)

Abstraction functor TOT (∆2
TY P)→ TOT (∆3

TY P) links categories TOT (∆2
TY P) to TOT (∆3

TY P)

and maps binary sequences of timed observations
(
O2
mk

(tik) ≡ (mk, tik), O2
mk+1

(tjk+1
) ≡ (−mk, tjk+1

)
)

with a timed observation of the form O3
−mkmk(tjk+1

) ≡ (−mkmk, tjk+1
):

TOT (∆2
TY P)→ TOT (∆3

TY P) : TOT (∆2
TY P) → TOT (∆3

TY P)

((mk, tik), (−mk, tjk+1
)) 7→ (−mkmk, tjk+1

)
(8.82)

Thus, the LoA L3 is composed of:

• three TOT Categories containing the same sequence Ω3 of timed observations;

• three Abstraction functors linking categories belonging to the second LoA with categories
belonging to the third LoA.

Categories Card(M2) at LoA L2 Card(M3) at LoA L3 Data Reduction Rate
Clients 69 767 296 99, 58%

Banking Accounts 404 797 564 99, 86%

Transaction Types 231 640 906 99, 61%

Table 8.19: Reduction rate of data to be analysed when abstracting from LoA L2 to LoA L3

It has been demonstrated in this section that the reduction rate of data to be analysed is
more than 99% (see table 8.19): data at the third LoA are semantically richer and syntacticly
poorer than data at the second LoA. Abstraction functors allow the existence of a mapping
between abstract timed observations of the second LoA and abstract timed observations of the
third LoA. These Abstraction functors allow to keep the link between timed observations of the
third LoA and timed observations of the second LoA. Keeping such a link is the key in order to
be able to reify the data from a higher LoA to a lower LoA. Again, section 8.7 gives a concrete
application of this concept of reification when solving the internal fraud problem.

Now all elements are in place to build the gradient of abstraction (GoA) of the observed
problem.

8.6.5 Gradient of Abstraction of the Observed Problem

Let us then sum up elements we have:

• at the first LoA L1:

– the LoA L1
CLI = 〈S1

CLI , T 1
CLI〉 of the TOT (∆1

CLI) Category and its behaviour model
B1
CLI as an instance of the abstract chronicle modelM1

CLI ;

– the LoA L1
CPTE = 〈S1

CPTE , T 1
CPTE〉 of the TOT (∆1

CPTE) Category and its behaviour
model B1

CPTE as an instance of the abstract chronicle modelM1
CPTE ;

138 CHAPTER 8. THE TOM4A METHODOLOGY

– the LoA L1
TY P = 〈S1

TY P , T 1
TY P 〉 of the TOT (∆1

TY P) Category and its behaviour model
B1
TY P as an instance of the abstract chronicle modelM1

TY P ;

– Modeling functors TOT (∆1
CLI) → TOT (∆1

CPTE), TOT (∆1
CPTE) → TOT (∆1

TY P)

and TOT (∆1
TY P)→ TOT (∆1

CLI);

– Modeling functors TOT (∆1
CPTE) → TOT (∆1

CLI), TOT (∆1
TY P) → TOT (∆1

CPTE)

and TOT (∆1
CLI)→ TOT (∆1

TY P).

Behaviour models B1
CLI , B1

CPTE and B1
TY P are obviously not given since the aim of this

chapter is to compute these behaviour models at a higher LoA. Nevertheless, they do exist.

• at the second LoA L2:

– the LoA L2
CLI = 〈S2

CLI , T 2
CLI〉 of the TOT (∆2

CLI) Category and its behaviour model
B2
CLI as an instance of the abstract chronicle modelM2

CLI ;

– the LoA L2
CPTE = 〈S2

CPTE , T 2
CPTE〉 of the TOT (∆2

CPTE) Category and its behaviour
model B2

CPTE as an instance of the abstract chronicle modelM2
CPTE ;

– the LoA L2
TY P = 〈S2

TY P , T 2
TY P 〉 of the TOT (∆2

TY P) Category and its behaviour model
B2
TY P as an instance of the abstract chronicle modelM2

TY P ;

– Abstract functors TOT (∆1
CLI)→ TOT (∆2

CLI), TOT (∆1
CPTE)→ TOT (∆2

CPTE) and
TOT (∆1

TY P)→ TOT (∆2
TY P).

And it has been seen that B2
CLI = B2

CPTE = B2
TY P = B2.

• at the third LoA L3:

– the LoA L3
CLI = 〈S3

CLI , T 3
CLI〉 of the TOT (∆3

CLI) Category and its the abstract
chronicle modelM3

CLI ;

– the LoA L3
CPTE = 〈S3

CPTE , T 3
CPTE〉 of the TOT (∆3

CPTE) Category and its abstract
chronicle modelM3

CPTE ;

– the LoA L3
TY P = 〈S3

TY P , T 3
TY P 〉 of the TOT (∆3

TY P) Category and its abstract chron-
icle modelM3

TY P ;

– Abstract functors TOT (∆2
CLI)→ TOT (∆3

CLI), TOT (∆2
CPTE)→ TOT (∆3

CPTE) and
TOT (∆2

TY P)→ TOT (∆3
TY P).

Thus, the gradient of abstraction of the observed problem is, according to definition 7.5, the
collection G of LoAs:

G = {L1
CLI ,L1

CPTE ,L1
TY P ,L2

CLI ,L2
CPTE ,L2

TY P ,L3
CLI ,L3

CPTE ,L3
TY P } (8.83)

Such a GoA does present Abstractions functors linking two consecutive categories as well as
behaviour models.

8.7. INTERPRETATION STEP 139

Figure 8.10: Illustration of the Gradient of Abstraction G of the Observed Problem

8.7 Interpretation Step

Figure 8.11: Interpretation step in the TOM4 Methodology

8.7.1 Reification Process

Let us recall that (see section 8.6.4), at the level L3 of abstraction, the superposition Ω3 contains
the same timed observations of the form O3

−mkmk(tk) whatever the category of clients, accounts
or transaction types is considered. This superposition is composed of the 24 abstract timed
observations listed in tables 8.8 to 8.13. Each of these 24 abstract timed observations O3

−mkmk(tk)

respects the internal fraud constraints of definition 8.2 at this level L3 of abstraction. Now,
we need to know if the corresponding transactions at the concrete LoA L1 does respect those
constraints or not. To this aim, we use the mapping made by Abstraction functors between
categories of different level of abstractions.

Let us consider the TOT (∆3
CLI) Category at the level L3

CLI of abstraction.
Let us consider the abstract timed observation O3

−5252(t10037) ≡ (−5252, t10037) of table 8.10.
Thanks to Abstraction functor TOT (∆2

CLI) → TOT (∆3
CLI), we have access to the following

mapping (see 8.77):

140 CHAPTER 8. THE TOM4A METHODOLOGY

TOT (∆2
CLI)→ TOT (∆3

CLI) : TOT (∆2
CLI) → TOT (∆3

CLI)

((−52, t10043), (52, t10037)) 7→ (−5252, t10037)
(8.84)

Thanks to Abstraction functor TOT (∆1
CLI)→ TOT (∆2

CLI), we have access to the following
mappings (see 8.62):

TOT (∆1
CLI)→ TOT (∆2

CLI) : TOT (∆1
CLI) → TOT (∆2

CLI)

O10043(t10043) ≡ (δ10043 , t10043) 7→ O2
−52(t10043) ≡ (−52, t10043)

O10037(t10037) ≡ (δ10037 , t10037) 7→ O2
52(t10037) ≡ (52, t10037)

(8.85)
Let un now focus on constants δ10043 and δ10037 :

δ10043 = ”1004|2007|3004|258| − 2092, 00”

δ10037 = ”1003|2001|3040|1826|2500, 00”
(8.86)

The transaction amount associated to constant δ10043 , -2 092,00, is not the opposite of the
transaction amount associated to constant δ10037 , 2 500,00. In this case, this transaction does not
respect the internal fraud constraints and thus can not be selected to be a potential fraudulent
transaction.

Now, let us consider the abstract timed observation O3
−5252(t10038) ≡ (−5252, t10038) of table

8.10. Thanks to Abstraction functor TOT (∆2
CLI)→ TOT (∆3

CLI), we have access to the following
mapping:

TOT (∆2
CLI)→ TOT (∆3

CLI) : TOT (∆2
CLI) → TOT (∆3

CLI)

((−52, t10044), (52, t10038)) 7→ (−5252, t10038)
(8.87)

Thanks to Abstraction functor TOT (∆1
CLI)→ TOT (∆2

CLI), we have access to the following
mappings:

TOT (∆1
CLI)→ TOT (∆2

CLI) : TOT (∆1
CLI) → TOT (∆2

CLI)

O10044(t10044) ≡ (δ10044 , t10044) 7→ O2
−52(t10044) ≡ (−52, t10044)

O10038(t10038) ≡ (δ10038 , t10038) 7→ O2
52(t10038) ≡ (52, t10038)

(8.88)
Let un now focus on constants δ10044 and δ10038 :

δ10044 = ”1004|2020|3038|644| − 2000, 00”

δ10038 = ”1003|2001|3039|2345|2000, 00”
(8.89)

The transaction amount associated to constant δ10044 , -2 000,00, is the opposite of the trans-
action amount associated to constant δ10038 , 2 000,00. In this case, this transaction does re-
spect the internal fraud constraints and thus can be selected to be a potential fraudulent trans-
action. Thus, binary sequence (O10044(t10044) ≡ (δ10044 , t10044), O10038(t10038) ≡ (δ10038 , t10038))

represents a potential fraudulent transaction of 2000,00€from client 1004 to bank manager.

8.7. INTERPRETATION STEP 141

These both examples show how works the reification process: doing so with the 24 abstract
timed observations of the superposition Ω3, we can build, in fine, the set S1

CLI containing all bi-
nary sequences of timed observations of the form

(
Oik(tik) ≡ (δik , tik), Ojk+1

(tjk+1
) ≡ (δjk+1

, tjk+1
)
)

where i 6= 1003 and j = 1003 respecting the internal fraud constraints. The binary sequences
represent all potential fraudulent transactions from a client i 6= 1003 to the bank manager.

Thus, in fine, this set S1
CLI is composed of the eight following binary sequences of timed

observations:

S1
CLI =

{(O10011(t10011) ≡ (δ10011 , t10011), O10031(t10031) ≡ (δ10031 , t10031)) ,

(O10012(t10012) ≡ (δ10012 , t10012), O10032(t10032) ≡ (δ10032 , t10032)) ,

(O10044(t10044) ≡ (δ10044 , t10044), O10038(t10038) ≡ (δ10038 , t10038)) ,

(O10049(t10049) ≡ (δ10049 , t10049), O100313(t100313) ≡ (δ100313 , t100313)) ,

(O100410(t100410) ≡ (δ100410 , t100410), O100314(t100314) ≡ (δ100314 , t100314)) ,

(O100411(t100411) ≡ (δ100411 , t100411), O100315(t100315) ≡ (δ100315 , t100315)) ,

(O100413(t100413) ≡ (δ100413 , t100413), O100317(t100317) ≡ (δ100317 , t100317)) ,

(O100323(t100323) ≡ (δ100323 , t100323), O100417(t100417) ≡ (δ100417 , t100417))}

(8.90)

Where:

Constant Timestamp
δ10011 ≡ ”1001|2008|3034|1168| − 5000, 00” t10011 = 2009-09-28 02:03:55
δ10031 ≡ ”1003|2001|3023|2441|5000, 00” t10031 = 2009-10-08 03:24:52

δ10012 ≡ ”1001|2009|3038|1206| − 50000, 00” t10012 = 2009-11-17 02:21:37
δ10032 ≡ ”1003|2024|3023|2600|50000, 00” t10032 = 2009-11-18 06:20:55
δ10044 ≡ ”1004|2020|3038|644| − 2000, 00” t10044 = 2009-09-10 06:58:34
δ10038 ≡ ”1003|2001|3039|2345|2000, 00” t10038 = 2009-09-16 02:33:07
δ10049 ≡ ”1004|2010|3038|658| − 5000, 00” t10049 = 2009-09-18 12:02:32
δ100313 ≡ ”1003|2001|3039|2379|5000, 00” t100313 = 2009-09-16 02:33:07
δ100410 ≡ ”1004|2010|3038|662| − 5000, 00” t100410 = 2009-09-21 04:31:59
δ100314 ≡ ”1003|2001|3023|2441|5000, 00” t100314 = 2009-10-08 03:24:52
δ100411 ≡ ”1004|2007|3004|192| − 17000, 00” t100411 = 2009-03-16 07:49:24
δ100315 ≡ ”1003|2001|3039|1675|17000, 00” t100315 = 2009-03-17 03:29:01
δ100413 ≡ ”1004|2010|3038|756| − 10000, 00” t100413 = 2009-11-09 09:39:00
δ100317 ≡ ”1003|2024|3023|2591|10000, 00” t100317 = 2009-11-13 04:53:17
δ100323 ≡ ”1003|2024|3024|2726| − 1000, 00” t100323 = 2009-12-22 04:47:11
δ100417 ≡ ”1004|2007|3023|815|1000, 00” t100417 = 2009-12-22 07:38:53

Table 8.20: Table of constants and timestamps corresponding to potentially fraudulent transac-
tions in the client category

Any binary sequence of timed observations
(
Oik(tik), Ojk+1

(tjk+1
)
)
is an instance

rikjk+1
(Oik(tik), Ojk+1

(tjk+1
)) of a temporal binary relation rikjk+1

(Oik , Ojk+1
,∆τikjk+1

) contained
in the abstract chronicle modelM1

CLI . Thus, the set S1
CLI is an instance of this chronicle model

M1
CLI and is then, by definition, the behaviour model of the observed process associated to the

category of clients and respecting the internal fraud constraints of definition 8.2. We have seen
(see table 8.7) that the abstract chronicle modelM1

CLI contains 3 379 879 temporal binary re-
lations. Finding the 8 instances respecting the internal fraud constraints among these 3 379 879

142 CHAPTER 8. THE TOM4A METHODOLOGY

temporal binary relations would have been a very hard work without operating a process of
abstraction and reification of data. This demonstrates how such this abstraction and reification
method is a powerful tool.

Let us consider the TOT (∆3
CPTE) Category at the level L3

CLI of abstraction. Thanks to
Abstraction functors TOT (∆2

CPTE) → TOT (∆3
CPTE) and TOT (∆1

CPTE) → TOT (∆2
CPTE),

another reification process can be operated leading to the following set S1
CPTE of binary sequences

of timed observations:

S1
CPTE =

{(O20081(t20081) ≡ (δ20081 , t20081), O20011(t20011) ≡ (δ20011 , t20011)) ,

(O20092(t20092) ≡ (δ20092 , t20092), O20242(t20242) ≡ (δ20242 , t20242)) ,

(O20204(t20204) ≡ (δ20204 , t20204), O20018(t20018) ≡ (δ20018 , t20018)) ,

(O20109(t20109) ≡ (δ20109 , t20109), O200113(t200113) ≡ (δ200113 , t200113)) ,

(O201010(t201010) ≡ (δ201010 , t201010), O200114(t200114) ≡ (δ200114 , t200114)) ,

(O200711(t200711) ≡ (δ200711 , t200711), O200115(t200115) ≡ (δ200115 , t200115)) ,

(O201013(t201013) ≡ (δ201013 , t201013), O202417(t202417) ≡ (δ202417 , t202417)) ,

(O202423(t202423) ≡ (δ202423 , t202423), O200717(t200717) ≡ (δ200717 , t200717))}

(8.91)

Where:

Constant Timestamp
δ20081 ≡ ”1001|2008|3034|1168| − 5000, 00” t20081 = 2009-09-28 02:03:55
δ20011 ≡ ”1003|2001|3023|2441|5000, 00” t20011 = 2009-10-08 03:24:52

δ20092 ≡ ”1001|2009|3038|1206| − 50000, 00” t20092 = 2009-11-17 02:21:37
δ20242 ≡ ”1003|2024|3023|2600|50000, 00” t20242 = 2009-11-18 06:20:55
δ20204 ≡ ”1004|2020|3038|644| − 2000, 00” t20204 = 2009-09-10 06:58:34
δ20018 ≡ ”1003|2001|3039|2345|2000, 00” t20018 = 2009-09-16 02:33:07
δ20109 ≡ ”1004|2010|3038|658| − 5000, 00” t20109 = 2009-09-18 12:02:32
δ200113 ≡ ”1003|2001|3039|2379|5000, 00” t200113 = 2009-09-16 02:33:07
δ201010 ≡ ”1004|2010|3038|662| − 5000, 00” t201010 = 2009-09-21 04:31:59
δ200114 ≡ ”1003|2001|3023|2441|5000, 00” t200114 = 2009-10-08 03:24:52
δ200711 ≡ ”1004|2007|3004|192| − 17000, 00” t200711 = 2009-03-16 07:49:24
δ200115 ≡ ”1003|2001|3039|1675|17000, 00” t200115 = 2009-03-17 03:29:01
δ201013 ≡ ”1004|2010|3038|756| − 10000, 00” t201013 = 2009-11-09 09:39:00
δ200117 ≡ ”1003|2024|3023|2591|10000, 00” t202417 = 2009-11-13 04:53:17
δ202423 ≡ ”1003|2024|3024|2726| − 1000, 00” t202423 = 2009-12-22 04:47:11
δ200717 ≡ ”1004|2007|3023|815|1000, 00” t200717 = 2009-12-22 07:38:53

Table 8.21: Table of constants and timestamps corresponding to potentially fraudulent transac-
tions in the account category

Again the abstraction and reification process associated to the category of accounts allows to
easily find the 8 instances of temporal binary relations respecting the fraud constraints among the
14 635 861 temporal binary relations composing the abstract chronicle model mathcalM1

CPTE .

Let us consider the TOT (∆3
TY P) Category at the level L3

CLI of abstraction. Thanks to
Abstraction functors TOT (∆2

TY P) → TOT (∆3
TY P) and TOT (∆1

TY P) → TOT (∆2
TY P), another

8.7. INTERPRETATION STEP 143

reification process can be operated leading to the following set S1
TY P of binary sequences of timed

observations:

S1
TY P =

{(O30341(t30341) ≡ (δ30341 , t30341), O30231(t30231) ≡ (δ30231 , t30231)) ,

(O30382(t30382) ≡ (δ30382 , t30382), O30232(t30232) ≡ (δ30232 , t30232)) ,

(O30384(t30384) ≡ (δ30384 , t30384), O30398(t30398) ≡ (δ30398 , t30398)) ,

(O30389(t30389) ≡ (δ30389 , t30389), O303913(t303913) ≡ (δ303913 , t303913)) ,

(O303810(t303810) ≡ (δ303810 , t303810), O302314(t302314) ≡ (δ302314 , t302314)) ,

(O300411(t300411) ≡ (δ300411 , t300411), O303915(t303915) ≡ (δ303915 , t303915)) ,

(O303813(t303813) ≡ (δ303813 , t303813), O302317(t302317) ≡ (δ302317 , t302317)) ,

(O302423(t302423) ≡ (δ302423 , t302423), O302317(t302317) ≡ (δ302317 , t302317))}

(8.92)

Where:

Constant Timestamp
δ30341 ≡ ”1001|2008|3034|1168| − 5000, 00” t30341 = 2009-09-28 02:03:55
δ30231 ≡ ”1003|2001|3023|2441|5000, 00” t30231 = 2009-10-08 03:24:52

δ30382 ≡ ”1001|2009|3038|1206| − 50000, 00” t30382 = 2009-11-17 02:21:37
δ30232 ≡ ”1003|2024|3023|2600|50000, 00” t30232 = 2009-11-18 06:20:55
δ30384 ≡ ”1004|2020|3038|644| − 2000, 00” t30384 = 2009-09-10 06:58:34
δ30398 ≡ ”1003|2001|3039|2345|2000, 00” t30398 = 2009-09-16 02:33:07
δ30389 ≡ ”1004|2010|3038|658| − 5000, 00” t30389 = 2009-09-18 12:02:32
δ303913 ≡ ”1003|2001|3039|2379|5000, 00” t303913 = 2009-09-16 02:33:07
δ303810 ≡ ”1004|2010|3038|662| − 5000, 00” t303810 = 2009-09-21 04:31:59
δ302314 ≡ ”1003|2001|3023|2441|5000, 00” t302314 = 2009-10-08 03:24:52
δ300411 ≡ ”1004|2007|3004|192| − 17000, 00” t300411 = 2009-03-16 07:49:24
δ303915 ≡ ”1003|2001|3039|1675|17000, 00” t303915 = 2009-03-17 03:29:01
δ303813 ≡ ”1004|2010|3038|756| − 10000, 00” t303813 = 2009-11-09 09:39:00
δ303915 ≡ ”1003|2024|3023|2591|10000, 00” t302317 = 2009-11-13 04:53:17
δ302423 ≡ ”1003|2024|3024|2726| − 1000, 00” t302423 = 2009-12-22 04:47:11
δ302317 ≡ ”1004|2007|3023|815|1000, 00” t302317 = 2009-12-22 07:38:53

Table 8.22: Table of constants and timestamps corresponding to potentially fraudulent transac-
tions in the transaction type category

Again the abstraction and reification process associated to the category of transaction types
allows to easily find the 8 instances of temporal binary relations respecting the fraud constraints
among the 12 630 799 temporal binary relations composing the abstract chronicle modelM1

TY P .
There exists another way to get the sets S1

CPTE and S1
TY P . Given the Modeling functor

TOT (∆1
CLI)→ TOT (∆1

CPTE) defined at the level L1 of abstraction, we can build the set from
the set S1

CPTE from the set S1
CLI . For example, thanks to this Modeling functor, we have access

to the following mappings:

TOT (∆1
CLI)→ TOT (∆1

CPTE) : TOT (∆1
CLI) → TOT (∆1

CPTE)

O10011(t10011) ≡ (δ10011 , t10011) 7→ O20081(t20081) ≡ (δ20081 , t20081)

O10031(t10031) ≡ (δ10031 , t10031) 7→ O20011(t20011) ≡ (δ20011 , t20011)

(8.93)

144 CHAPTER 8. THE TOM4A METHODOLOGY

This mappings allow to build the binary sequence
(O20081(t20081) ≡ (δ20081 , t20081), O20011(t20011) ≡ (δ20011 , t20011)) which is an element of S1

CPTE .
Doing so with all the timed observations of S1

CPTE , we can build the whole set S1
CPTE . And,

with the same reasoning, from Modeling functor TOT (∆1
CLI)→ TOT (∆1

TY P), we can build the
set S1

TY P .
Thus, were determined sets S1

CLI , S1
CPTE and S1

TY P containing the eight binary sequences
of timed observations at the level L1 of abstraction representing the potential fraudulent trans-
actions in respectively the categories of clients, accounts and transaction types. Now, we need
to provide a representation of this potential fraudulent transactions that can be interpretable by
humans. This this the aim of the next section.

8.7.2 Knowledge Model of the Solution

To represent the behaviour model B = {rikjk+1
(Oik(tik), Ojk+1

(tjk+1
))}, being an instance of an

abstract chronicle modelM = {rikjk+1
(Oik , Ojk+1

,∆τikjk+1
)} of a given observed process, we use

an adaptation of a Kripke structure to the TOT framework.
A Kripke structure is a usual mathematical tool used to provide an interpretation of Temporal

Logic formulas [CGP99]. To this aim, a Kripke structure represents the behavior of a dynamic
process with a special kind of finite state machine where the nodes represent the reachable states
si of the machine and the edges represent state transitions:

Definition 8.3 Kripke Structure [CGP99]
Let AP be a set of atomic propositions, constants and predicate symbols of the first order predicate
calculus.
A Kripke structure defined over AP is a 4-tuple K = (S, I, R, L) consisting of:

• a finite set S = {si, i ∈ [1, nS], nS ∈ N∗} of states si;

• a set I ⊆ S of initial states;

• a transition relation R defined over S × S:

R : S → S

si 7→ sj
(8.94)

such that R is left-total:

∀si ∈ S, ∃sj ∈ S such that (si, sj) ∈ R (8.95)

• a labeling function L defined over S × 2AP , mapping each state si to a set L(si) of logical
properties that holds in this state:

L : S → 2AP

si 7→ L(si)
(8.96)

The interpretation of a given state si is then provided by L under the form of the set L(si).
This definition leads to the notion of path in a Kripke structure K:

8.7. INTERPRETATION STEP 145

Definition 8.4 Path in a Kripke Structure
A path in a Kripke structure K = (S, I, R, L) is a sequence of states P (K) = (si)si∈S such that
for each i > 0, R(si, si+1) holds.

This definition leads to the notion of word of a path W (K):

Definition 8.5 Word of a Path
A word W (K) of a path P (K) in a Kripke structure K = (S, I, R, L) is a sequence of sets of
atomic propositions W (K) = (L(si))si∈S.

In a Kripke structure a path is a sequence of states while in the TOT framework a path
is a sequence of temporal binary relations. This implies that the notion of states si in a
Kripke structure maps the notion of temporal binary relations rikjk+1

(Oik , Ojk+1
,∆τikjk+1

) be-
tween two observation classes Oik and Ojk+1

in the TOT framework. The temporal and logical
constraints associated with the instance rikjk+1

(Oik(tik), Ojk+1
(tjk+1

)) of a temporal binary rela-
tion rikjk+1

(Oik , Ojk+1
,∆τikjk+1

) play the same role than the logical properties L(si) that hold in
the state si. In a Kripke structe a word being a sequence of labels, this implies that the notion
of word in the TOT framework is then a sequence of instances of temporal binary relations, that
is to say, maps the notion of behaviour model.

Table 8.23 sums up the correspondances between a Kripke structure elements and TOT
elements.

Kripke Structure TOT framework
State si Temporal binary relation rikjk+1

(Oik , Ojk+1
,∆τikjk+1

)

Label L(si) Instance of a temporal binary relation rikjk+1
(Oik(tik), Ojk+1

(tjk+1
))

Path P (K) = (si)si∈S Abstract chronicle modelM = {rikjk+1
(Oik , Ojk+1

,∆τikjk+1
)}

Word W (K) = (L(si))si∈S Behaviour model B = {rikjk+1
(Oik(tik), Ojk+1

(tjk+1
))}

Table 8.23: Adaptation of a Kripke structure in the TOT Framework

Now it is possible to represent the potential fraudulent transactions in the category of clients.

Figure 8.12: Kripke structure representing the fraud scheme under the point of view of clients

This figure represents movements of money between client ids 1001 and 1002 with the man-
ager of the bank (client id 1003). Each shape represents a client id and is associated with an
observation class. The diamond labeled 1004 represents the client id 1004 and is associated
with the observation class denoted O1004 = {x1004,∆

1
1004}. The triangle labeled 1003 represents

the bank manager and is associated with the observation class denoted O1003 = {x1003,∆
1
1003}.

The rectangle labeled 1001 represents client id 1001 and is associated with the observation class
denoted O1001 = {x1001,∆

1
1001}.

The line linking client id 1004 with the bank manager represents all instances of the form
r1004k1003k+1

(O1004k(t1004k), O1003k+1
(t1003k+1

)) and r1003k1004k+1
(O1003k(t1003k), O1004k+1

(t1004k+1
))

contained in the behaviour model B1
CLI . The temporal and logical constraints are represented

146 CHAPTER 8. THE TOM4A METHODOLOGY

with a label of the form of an interval [-38 000€,38 000€] meaning that 38 000€ have been
transfered from client 1004 to the bank manager in a sliding period of 30 days.

The line linking client id 1001 with the bank manager represents all instances of the form
r1001k1003k+1

(O1001k(t1001k), O1003k+1
(t1003k+1

)) and r1003k1001k+1
(O1003k(t1003k), O1001k+1

(t1001k+1
))

contained in the behaviour model B1
CLI . Here, temporal and logical constraints mean that 55

000€ have been transfered from client 1001 to the bank manager in a sliding period of 30 days.
Thus, figure 8.12 allows, in an eye blink, to understand that the bank manager have poten-

tially stolen 93 000€ to his clients.
The point of view of accounts is also interesting because it allows to understand which

accounts have been used by the manager to bring these 93 000€ into his own accounts. Figure
8.13 provides the Kripke fraud scheme under the point of view to account ids.

Figure 8.13: Kripke structure representing the fraud scheme under the point of view of accounts

For example, we know from this scheme that the 55 000€ transfered from client 1001 corre-
spond to a transfert of 5 000€ from account 2008 (which belongs to client 1001) to account 2001
(which belongs to bank manager) and to another transfert of 50 000€ from account 2009 (which
belongs to client 1001) to account 2024 (which belongs to bank manager).

8.8. TOM4FFS ALGORITHM 147

Finally, the fraud scheme according to the point of view of transaction types can also be
provided (see figure 8.14):

Figure 8.14: Kripke structure representing the fraud scheme under the point of view of transaction types

Again fraud scheme 8.13 under the point of view of accounts and fraud scheme 8.14 under
the point of view of transaction types can be built thanks to Modeling functors TOT (∆1

CLI)→
TOT (∆1

CPTE) and TOT (∆1
CLI)→ TOT (∆1

TY P). As said in chapter 7, section 7.3.1, a Modeling
functor is a tool allowing to change the point of view under which the system is observed.

8.8 TOM4FFS Algorithm

This section provides a brief description about how program TOM4FFS works.
Algorithm Timed Observations Mining for Fraud Fighting System (TOM4FFS) has been

implemented in Java langage.
Inputs of the TOM4FFS program are the transaction databases and the relations between

clients ids, account ids and transaction type ids.
TOM4FFS builds then:

• elements characterizing the first LoA:

– observation classes;

– unary observers for the categories of clients, accounts and transaction types: these
unary observers all work in parallel, observing their own piecewise function and writing
timed observations of the form (δk, tk);

– Modeling functors between these categories: there are built thanks to relations given
as inputs.

• elements characterizing the second LoA:

– observation classes;

– unary observers for the categories of clients, accounts and transaction types: these
unary observers all work in parallel, observing their own piecewise function and writing
abstract timed observations of the form (mk, tk);

– Abstraction functors between categories of first LoA to second LoA.

• elements characterizing the third LoA:

148 CHAPTER 8. THE TOM4A METHODOLOGY

– observation classes;

– abstract binary observers for the categories of clients, accounts and transaction types:
these abstract unary observers all work in parallel, observing binary sequences of
timed observations ((mk, tk), (−mk, tk+1)) and writing abstract timed observations of
the form (−mkmk, tk+1);

– Abstraction functors between categories of second LoA to third LoA.

Each element built by TOM4FFS is given a unique name thanks to the syntactic arithmeti-
zation introduced in 7.4 allowing TOM4FFS to deal only with TOT (Z) categories. TOM4FFS
implements the reification process each time the internal fraud constraints are respected at the
third LoA: TOMFFS builds then the sets of potential fraudulent transactions in real time. Once
all sets of potential fraudulent transactions are built, TOM4FFS displays the fraud schemes
introduced in the preceding section.

TOM4FFS is then an on-line and real time program, being able to handle more than 4
billions transactions a day, allowing to reduce the complexity of the problem from O(n2) to
O(n), and having the ability of representing the fraud technique at simultaneously three levels
of abstraction: client, account and transaction type levels.

8.9 Conclusion

Considering properties 31 and 35 of chapter 7, considering a TOT i(Z) Category at the level Li

of abstraction, the TOM4A Methodology is based on the following equivalences:

• Representation ↔ Abstraction process ↔ Sum of objects in the TOT i(Z) Category;

• Interpretation ↔ Reification process ↔ Product of objects in the TOT i(Z) Category.

This chapter shows that the TOM4A Methodology, defined as a TOT (Z) based recursive
Abstraction-Reification reasoning, can be implemented in a basic computer. In practice, Mod-
eling functors and Abstraction functors have been implemented in the Tom4K Java platform as
the TOM4FFS Algorithm.

If not general, such an approach is nevertheless sufficient for many various concrete problems
as it has been done for the diagnosis system Sachem of the Arcelor-Mittal group [LeG04], [LeG06],
the modeling of the StMicroelectronics manufacturing road [BLGB06], [PVP10] or the modeling
of human activities [PGAP12], [PLPA11], [LBP15] for examples. These applications show that
the main difficulty is to define the first LoA, the LoA and to provide a human interpretation of
the abstract constants. Up to our knowledge, it is the first time that such a successive abstraction
and reification process is concretely implemented in a computer.

As a final note and in order to kill all suspense, let us say that the fraud schemes presented
in this chapter have all been validated by the concerned French bank: all fraud transactions that
were only considered as potential are actually real!

CHAPTER 9

Conclusion

9.1 Synthesis

This document concerns the development of a theoretical mathematical framework to provide
a technology able to manage some of the problematics of the Big Data Flows domain, which is
characterized by (i) temporal properties and (ii) high number of dimensions of the informational
space where it is defined.

More precisely, we propose to combine the Newell ontological point of view [New81] and
the Floridi epistemological point of view [Flo08] about abstraction to build tools that transform
models by abstraction by the mean of an adequate set of functors according to the Category
theory of Samuel Eilenberg and Saunders Mac Lane [ML71].

This kind of tools is called Problem Solving Methods (PSM) in the field of Knowledge Engi-
neering. Such a PSM relies on a real time abstraction reasoning process to produce, on line, two
dual effects:

1. Decreasing the flow data amount, that is to say, coming back to a data flow normal level
that a common computer can manage.

2. Increasing the semantic richness carried by the information flow, that is to say, resuming
a lot of semantically poor data into an equivalent but richer one.

The price to pay for such a semantic enrichment of information is the loss of syntactic data,
that is to say, accepting a forgetting process. This justifies the use of the Category Theory to
control the oversight phenomenon.

9.2 Contributions

Chapter 2 of this document introduces these theories to conclude on the feasibility of such a
PSM when two conditions are satisfied:

1. Only models are concerned by the PSM and

2. The oversight phenomenon is controlled rationally with the notion of functor of the Cate-
gory theory.

Therefore, to this aim, it is necessary to provide a mathematical core to the theories of Newel
and Floridi: this is the role of the TOT, the Timed Observations Theories of Le Goc [LeG06],
introduced in the chapter 3.

149

150 CHAPTER 9. CONCLUSION

Chapter 4 formally introduces theoretical concepts used in the TOT framework:

• neutral observation, observation of a timestamp, observation of a constant;

• deduction of a predicate assignation from two predicate assignations: the application of
the Modus Ponens to a given rule is the basis of such an assignation and is the origin of
the abstraction process in the TOT framework;

• addition operation of two timed observations under temporal constraints: some algebraic
properties of such an operation are demonstrated (existence of a neutral element, com-
mutativity and associativity). This operation allows the construction of any algebraic
structure.

• composition of observers: extends the notion of timed observations addition to two se-
quences of timed observations. This composition is essential when considering TOT Cat-
egories building since it plays the role of composition of objects in a category as well as
there exists a composition of morphisms in a such a category.

These concepts thus defined allows the building of Abstract Unary Observers and Abstract
Binary Observers. Abstract Binary Observers play a vital role in the process of abstraction and
are key elements in the construction of categories since they are category objects.

Chapter 5 formally presents the abstraction process in the TOT framework. We demonstrate
here that a superposition of m sequences of timed observations can be modeled thanks to a
collection of matrix of Abstract Binary Observers. This allows to build the algebraic structure
and observable space associated to any observed process. From these algebraic and observable
elements, is built the abstract chronicle model of this observed process whose behaviour model
is its instance. Definitions of level of abstraction (LoA) and gradient of abstraction (GoA) are
also given demonstrating their coherences with Floridi’s notions introduced in chapter 2. The
existence of a behaviour model generates an abstraction process allowing to affirm that timed
observation plays the role of paradigm in the TOT framework: this particular property allows to
repeat the abstraction process in a recursive way.

Chapter 6 highlights the existence of a homomorphism linking algebraic structure associated
to Dirac’s comb mathematical framework to algebraic structure associated to TOT mathematical
framework demonstrating that TOT concept of Unary Observer plays the role of sampler in TOT
framework. TOT sampler being based on the TOT spatial discretization principle, a Unary
Observer is the first brick of the theoretical construction of an abstraction based PSM. This
first brick is our first contribution. It is to note that appendix A proposes a concrete example
of TOT Unary Observer that has been used in different applications today. This appendix has
been joined to this document aiming at showing how to build a concrete TOT Unary Observer.

Chapter 7 is then dedicated to build an adequate category, the TOT (Z) Category, that is
used to formulate the proposed abstraction based PSM. This construction is our second con-
tribution. The interest of the TOT (Z) Category is to allow the building of adequate Modeling
and Abstraction functors, which are the basis of the proposed abstraction reasoning. This chap-
ter shows that the TOT (Z) Category allows the definition of an operational notion of level of
abstraction that is compatible with the theories of Newell and Floridi.

9.3. PERSPECTIVES 151

Finally, the required mathematical tools having been defined, it is possible to define a spe-
cific abstraction based PSM, which constitutes our third and last contribution: the AR-PSM
(Recursive Abstraction-Reification Based Problem Solving Method) called TOM4A (Timed Ob-
servations Methodology for Abstraction, cf. chapter 8).

The TOM4A Methodology is based on the following equivalences at a Level of Abstraction
Li:

• Representation ↔ Abstraction process ↔ Sum of objects in the TOT i(Z) Category;

• Interpretation ↔ Reification process ↔ Product of objects in the TOT i(Z) Category.

It has been shown that the Abstraction process reduces to around 98% the size of data to be
analysed.

A complete application of such a TOM4A Methodology has been provided for detecting and
modeling the complex problem of internal frauds in the banking industry. Another application
of the AR-PSM principles can be found in the appendix B.

Another good example is the Sachem knowledge based system of the Arcelor Mittal Group,
validated in October 1996 by the Chairman and Chief Executive Officer of Arcelor Group, M.
F. Mer. The publication [LeG04] and the Sachem’s US patten [LBD+03] or Sachem’s European
patent [LLB+08] show that the design of the Sachem system is based on a PSM such as the
TOM4A AR-PSM: Sachem’s real time abstraction reasoning process reduces to 50.000 the size
of the input data flow, a vector of above 1.450 real numbers each minute. And the economical
success of this system is sufficient to attest the concrete efficiency of such an approach.

9.3 Perspectives

Our contribution is the first mathematical formalization of the Newell and Floridi theories.
The TOT concerned dynamic processes and its applications to various domains generally

provide interesting results. This explains our insistence about the fact that all the propositions
formulated in this document have been implemented in the Tom4K Java platform, which has
been, notably, used to solve the fraud detection in the banking transaction domain reported in
[VLGBR16] and in chapter 8.

As a consequence, one of the most important prolongation of our work is to apply TOM4A to
much more numerous and various kind of problems than those cited here. Indeed, this is the only
way to assess the concrete value of such an approach. And obviously, finding new problematics
to evaluate TOM4A is a very difficult task because, there is no comparable works in the scientific
world in general, and Artificial Intelligence community in particular.

Currently, Researchers in Artificial Intelligence (AI) can fall into two broad categories: the
Artificial Neural Network and Bayesian group, representing the numerical approach of AI, and
the formal logic group, representing the symbolic approach of AI. However, the TOT notion
of timed observation has been designed to combine both numerical calculations and symbolic
computation in a unique and coherent approach of automatic learning and modeling of dynamic
processes. With such a perspective in mind, the closest work comes Qualitative Physics concept
or Continuous Dynamic Processes theory. And the fact is that currently, there are not many AI
researchers working in these areas right now.

152 CHAPTER 9. CONCLUSION

On the other hand, the Discrete Event System (DES) community proposes similar concepts
than those of Timed Observation and Discernible State of the TOT. But, up to our opinion, the
notions of state and discrete event in a Finite State Machine are not adequate to build levels
of abstraction according to Newell’s or Floridi’s point of views because it seems impossible to
merge together (or to add) states and discrete events together.

Of course, the aim of this document is not to demonstrate this point. We believe then that
the second important prolongation of this work is to clearly position TOM4A in the Artificial
Intelligence, the DES and the Continuous Dynamic Systems scientific domains.

An important consequence of our work concerns the Timed Observations Theory itself. The
notion of TOT (Z) Category and Level of Abstraction Li entail the need for a new formalization
of the whole theory in order to provide a clear and unified description of it. This constitutes an
important work that needs to be done.

To finish, let us cite Françoise DOUAY-SOUBLIN [DS87] when exposing the conception of
analogies according to Aristote:

• Aristote, while insisting on the correlations between series that entails an identical structure
(part-to-all relationship, from symbol to symbolized, of temporal order), actually makes the
analogical structure based on the prior existence of series already constituted: body parts,
animal species, the list of emblems, the pantheon of the gods, the hours of the day, the ages
of life.

• Conventional or "natural", these series have put or still put in order the symbolic universe,
and the history of symbolic forms, especially pre-scientific (Curtius, De Bruynhe, Yates) has
well highlighted the extraordinary analog potential the quadri-, tri-, and bi-categorizations:
the square, the triangle, and the couple, of which one of the most remarkable effects is to
organize in quadrennial, tri-, or bi-hierarchical quadri-, tri-, or bi-polar figures the setting
in comparison with the long series: climates, stars, metals, diseases...

• In the form and efficiency of a CWFA (cognitively well-formed analogy), the importance
of categorization and that of the predicative relation are somehow inversely proportional: if
the series and their hierarchies are in place, the predicate can be elided; this is what happens
in all the examples of analogy in the strict sense chosen by Aristotle, which can be reduced
to the formula "A is for B that C it is for D" because they operate in strongly connected
series.

• This is very clear in that of the French authors who has the most and best cultivated these
kinds of proportional analogies, the "La Rochefoucauld of the Maxims": only those that si-
multaneously implement strictly binary relations of inclusion or order (quality, high degree)
and bi-categorizations well established in the universe of reference, in this case morality
(the body and the spirit, the merit and the beauty, the vice and the virtue, ...) assume the
so-called canonical form, with elided prediction:

– Good grace is for the body what common sense is for mind.

– The elevation is for the merit what the adornment is for the beautiful people.

– Wisdom is for the soul what health is for the body.

9.3. PERSPECTIVES 153

Reasoning by analogy is the basis of human understanding and this reasoning is based on
the capacity for abstraction. Indeed, the formula "A is for B what C it is for D" can only work
under two necessary conditions:

1. Concepts A and C, as B and D, must belong to the same abstraction A(X) so that the
relations A(A)↔ A(C) and A(B)↔ A(D) can be possible;

2. Clocks related to the instances A(A) and A(C), as well as those of A(B) and A(D), must
be sufficiently correlated.

Therefore, a promising work perspective would be to confirm that any analogy reasoning is
underlied by an abstraction reasoning.

154 CHAPTER 9. CONCLUSION

Bibliography

[Ahb10a] A. Ahbad. Contribution to Bayesian Networks Learning from Timed Data to Diag-
nose Continuous Dynamic Process. PhD thesis, Aix-Marseille University, Marseille
(France), June 2010.

[Ahb10b] A. Ahbad. Contribution to Bayesian Networks Learning from Timed Data to Diag-
nose Continuous Dynamic Process. PhD thesis, Aix-Marseille University, Marseille
(France), June 2010.

[AL01] M Alavi and DE Leidner. Knowledge management and knowledge management
systems. Conceptual Foundations and Research Issues., 2001.

[Ben38] F. Benford. The law of anomalous numbers. Proceedings of the American Philo-
sophical Society, 1938.

[Ben10] N. Benayadi. Contribution à la découverte de connaissances à partir de données
datées. PhD thesis, Univertité Paul Cezanne Aix-Marseille III, 2010.

[BLGB06] N. Benayadi, M. Le Goc, and P. Bouché. Discovering manufacturing process from
timed data: the bjt4r algorithm. In Second International IEEE Workshop on
Mining Complex Data (MCD’06), IEEE International Conference on Data Mining
(ICDM’06). IEEE, December 2006.

[BLGC08] P. Bouché, M. Le Goc, and J. Coinu. A Global Model of Sequences of Discrete
Event Class Occurrences. In Proceedings of the Tenth International Conference
on Enterprise Information Systems (ICEIS 2008), volume AIDSS, pages 173–180,
2008.

[Bou05] P. Bouché. Une approche stochastique de modélisation de séquences d’événements
discrets pour le diagnostic des systèmes dynamiques. PhD thesis, Aix-Marseille
University, 2005.

[Bre94] B. Bredeweg. The CommonKads Library for Expertise Modelling, chapter Model-
based diagnosis and prediction, p.121-153. IOPress, 1994.

[CGP99] E. Clarke, O. Grumberg, and D. Peled. Model checking. MIT Press, page 14, 1999.

[CGTT93] L. Chittaro, L. Guida, L. Tasso, and E. Toppano. Functional and teological knowl-
edge in the multi-modeling approach for reasoning about physical systems: A case
study in diagnosis. In IEEE Transactions on Systems, Man, and Cybernetics, vol-
ume 23, pages 1718–1751, 1993.

155

156 BIBLIOGRAPHY

[CR99] L. Chittaro and R. Ranon. Diagnosis of multiple faults with flow-based functional
models: the functional diagnosis with efforts and flows approach. Reliability Engi-
neering and System Safety, 64(2):137-150, 1999., 1999.

[Dag01] P. Dagues. Diagnostic, Intelligence Artificielle et Reconnaissance des Formes, chap-
ter Théorie logique du diagnostic à base de modèles, pages 11–104. 2001.

[Dam99] A. Damasio. The feeling of what happens: Body and emotion in the making of
consciousness, harcourt. 1999.

[Dam05] A. Damasio. Descartes’ error: Emotion, reason, and the human brains. 2005.

[DS87] F. Douay-Soublin. La contre-analogie, réflexion sur la récusation de certaines analo-
gies pourtant bien formées cognitivement. G.T.A. Recueil de textes, 1987.

[Flo08] L. Floridi. The method of levels of abstraction. Minds and Machines, 18:303–329,
September 2008.

[Flo10] L. Floridi. Levels of abstraction and the turing test. Keybenetes, 39(3):423–440,
2010.

[Flo17] Luciano Floridi. The logic of design as a conceptual logic of information. Minds
and Machines, June 2017.

[FT98] G. Fauconnier and M. Turner. Conceptual integration networks. Cognitive Science,
(22):133–187, 1998.

[FT03] G. Fauconnier and M. Turner. Conceptual blending, form and meaning. Recherches
en communication, n ◦ 19 (2003)., (19):57–86, 2003.

[Göd31] K. Gödel. On Formally Undecidable Propositions of Principia Mathematica and
Related Systems I. PhD thesis, Vienna University, 1931.

[Hal74] F. Halbwachs. La pensée physique. Zeithos, Delachaux, Nestlé, 1974.

[Hue85] G. Huet. Initiation à la Théorie des Catégories, volume Fonctionnalité, Structures
de Calcul et Programmation. Université Paris VII, 1985.

[LA12] M. Le Goc and A. Ahdab. Learning Bayesian Networks From Timed Observations.
LAP LAMBERT Academic Publishing GmbH & Co. KG, 2012.

[LBD+03] Marc Le Goc, Michel Barles, Norbert Dolenc, François-Marie Lessaffre, and Claude
Thirion. Procedure for controlling a complex dynamic process. US Patent 6 560
585 B1 (Filing Date: 07/30/2000), May 2003.

[LBP15] Marc Le Goc, Fabien Barthelot, and Eric Pascual. Emergence of regularities in the
stochastic behavior of human. In IEEE International Conference on Data Mining
Workshop, ICDMW 2015, Atlantic City, NJ, USA, November 14-17, 2015, pages
381–388. IEEE Computer Society, July 2015.

BIBLIOGRAPHY 157

[LeG04] Marc LeGoc. Sachem. a real time intelligent diagnosis system based on the discrete
event paradigm. Simulation, The Society for Modeling and Simulation International
Ed., 80(11):591–617, Novembre 2004.

[LeG06] Marc LeGoc. Notion d’observation pour le diagnostic des processus dynamiques:
Application à Sachem et à la découverte de connaissances temporelles. Hdr, Aix-
Marseille University, Faculté des Sciences et Techniques de Saint Jérôme, novembre
2006.

[LGFCT13] M. Le Goc, I. Fakhfakh, C. Curt, and L. Torres. Hydraulic dam safety assessment
with the timed observations theory. R and C, 2013.

[LGG04] Marc Le Goc and Michel Gaeta. Modeling Strutures in Generic Space, a Condition
for Adaptiveness of Monitoring Cognitive Agent. Journal of Intelligent and Robotics
Systems, 41(2-3):113–140, January 2004.

[LGV17] M. Le Goc and F. Vilar. Operationalization of the blending and the levels of abstrac-
tion theories with the timed observations theory. In Proceedings of the 9th Interna-
tional Conference on Agents and Artificial Intelligence (ICAART 2017), February
2017.

[LLB+08] Marc Le Goc, François-Marie Lessaffre, Michel Barles, Claude Thirion, and Norbert
Dolenc. Method for controlling a complex dynamic process. European Patent EP
1 069 486 B2 (Filing Date: 06/30/2000), October 2008.

[LT98] Marc Le Goc and Claude Thirion. The sachem experience on artificial neural net-
works application. In ECSC Workshop on the Applications Artificial Neural Network
Systems in the Steel Industry, January 1998.

[LTT98] Marc Le Goc, Claude Thouzet, and Claude Thirion. The sachem experience on
artificial neural networks application. In Fourth International Conference on Neural
Networks and their Applications (Neurap’98), pages 315–321, May 1998.

[Mél12] B. Mélès. Pratique mathématique et lectures de hegel, de jean cavaillès à william
lawvere. Philosophia Scientiae, pages 153–182, 2012.

[Mer83] J. Merker. De la théorie des catégories à l’usage des modèles en science. Merker’s
Lecturer Notes, 1983.

[ML71] S. Mac Lane. Categories for the Working Mathematician. Springer Science, 1971.

[New81] Alan Newell. The knowledge level. AI Magazine, 2(2):1–20, 1981.

[NK98] I. Nonaka and N. Konno. The concept of ”ba”: Building a fundation for knowledge
creation. California Management Review, 40(3):40–54, 1998.

[Non91] I. Nonaka. The knowledge-creating company. 1991.

[Non94] I. Nonaka. Combining knowledge-based method and possibility theory for assessing
dam performance. 1994.

158 BIBLIOGRAPHY

[PGAP12] L. Pomponio, M. Le Goc, A. Anfosso, and E. Pascual. Levels of Abstraction for
Behavior Modeling in the GerHome Project. International Journal of E-Health and
Medical Communications, 3(3):12–28, 2012.

[PLG14] L. Pomponio and M. Le Goc. Reducing the gap between experts’ knowledge
and data: The tom4d methodology. Data & Knowledge Engineering, DOI
10.1016/j.datak.2014.07.006, July 2014.

[PLPA11] L. Pomponio, M. Le Goc, E. Pascual, and Alain Anfosso. Discovering Models of
Human’s Behavior from Sensor’s Data. In Workshop Proceedings of the 7th Inter-
national Conference on Intelligent Environments, Nottingham, UK. 25-26th of July
2011, volume 10 of Ambient Intelligence and Smart Environments, pages 17–28.
IOS Press, 2011.

[Pol66] M. Polanyi. The tacit dimensione. 1966.

[Pom12] L. Pomponio. Definition of a Human-Machine Learning Process from Timed Ob-
servations: Application to the Modelling of Human Behaviour for the Detection of
Abnormal Behaviour of Old People at Home. PhD thesis, Aix-Marseille University,
Marseille (France), June 2012.

[PVP10] Marc Le Goc Pamela Viale, Nabil Benayadi and Jacques Pinaton. Discovery of
large scale manufacturing process models from timed data. In Proceeding of the 5th
International Conference on Software and Data Technologies (ICSoft 2010), 2010.

[SAA+00] G. Schreiber, H. Akkermans, A. Anjewierden, R. de Hoog, N. Shadbolt, W. Van
de Velde, and B. Wielinga. Knowledge Engineering and Management: The Com-
monKADS Methodology. MIT Press, 2000.

[SBF98] R Studer, VR Benjamins, and D Fensel. Knowledge engineering: Principles and
methods. 1998.

[Sha84] C. Shannon. A mathematical theory of communication. The Bell System Technical
Journal, 27:379–423, 623–656, July, October 1984.

[Vau08] A. Vautier. Fouille de Données Sans Information a Priori sur la Structure de la
Connaissance. PhD thesis, Université de Rennes, 2008.

[VLGBR16] F. Vilar, M. Le Goc, P. Bouche, and P. Rolland. Discovering internal fraud models
in a stream of banking transactions. ICAART, 2016.

[ZGF06a] C. Zanni, M. Le Goc, and C. Frydman. A conceptual framework for the analysis,
classification and choice of knowledge-based diagnosis systems. KES - International
Journal of Knowlegde-Based and Intelligent Engineering Systems, 10(2):113-138,
2006.

[ZGF06b] C. Zanni, M. Le Goc, and C. Frydman. A conceptual framework for the analysis,
classification and choice of knowledge-based diagnosis systems. KES - International
Journal of Knowlegde-Based and Intelligent Engineering Systems, Kluwer Academic
Publishers, 10(2):113–138, 2006.

Appendices

159

CHAPTER A

Unary Observers

A.1 Introduction

A unary observer, denoted Θ(∆,Ψ) where ∆ = {δi} ⊆ N is a set of constants δi and Ψ = {ψi} ⊆
R is a set of thresholds ψi, is a program made to write a timed observation O(tk) each time the
value of a particular function x(t) enters an interval [ψi,+∞[at the time tk.

When recorded in a database, a timed observation O(tk) is represented by a couple (δi, tk)

mapping a constant δi with a timestamp tk:

O(tk) ≡ (δi, tk) (A.1)

In a general way, the constant δi is a string but, in this framework, it is set to an integer, δi ∈ N.

A.2 Theoretical Unary Observer

The theoretical unary observer Θ({δ}, {ψ}) implements the Spatial Discretization Principle of a
time function x(t) (see 3.5):

∀tk−1 ∈ R, tk ∈ R, x(tk−1) < ψ ∧ x(tk) ≥ ψ ⇒ write((δ, tk)) (A.2)

The theoretical unary observer Θ({δ}, {ψ}) aims at writing a time observation O(tk) ≡ (δ, tk)

each time the value x(tk) of the function x(t) enters the interval [ψ,+∞[.
The interval [ψ,+∞[is named the value range and constant δ is considered as the name of

the interval [ψ,+∞[.
According to the TOT, any unary observer has to verify the following properties:

• absence of memory: decision to write a given occurrence of a time observation O(tk) ≡
(δi, tk) at tk only depends on the entrance of the value x(tk) in the range [ψ,+∞[. As a
consequence, this decision doesn’t depend on any occurrence of O(tj), tj < tk written in
the past;

• constants’ independence: the choice of a constant δi ∈ ∆ must only depend on the range
[ψi,+∞[mapping the constant δi. This choice doesn’t depend on the other constants
δj ∈ ∆, j 6= i;

• no simultaneous observations: ∀ti, tj ∈ Γ, ti 6= tj .

161

162 BIBLIOGRAPHY

The theoretical unary observer Θ({δ}, {ψ}) is the Time Observation Theory’s sampling device
and extends Dirac’s periodical sampling device (see chapter ??). It produces a sequence of timed
observations ω(tk) = {O(t1), O(t2), ..., O(tk)} and generates a set of timestaps Γ = {t1, t2..., tk}
called a stochastic clock.

Let us consider the example of the function x(t) seen on figure A.1 representing the evolution
over time of a horse’s odd during a race.

Figure A.1: Horse odd evolution over time

Data are recorded from time 20 : 35 : 25 until 21 : 07 : 25 every 10 seconds. Figure A.1
represents then a set of 193 couples (time, odd).

Let us consider the unary observer Θ+({δ+}, {ψ}) implementing the following equation:

∀tk−1 ∈ R, tk ∈ R, x(tk−1) < ψ ∧ x(tk) ≥ ψ ⇒ write((δ+, tk)) (A.3)

Writing the constant δ+ at time tk indicates an upward crossing of the threshold ψ by the
function x(t). This means that the function x(t) enters the interval I+ ≡ [ψ,+∞[. The writing
of the constant δ+ is then related to the interval I+ ≡ [ψ,+∞[:

δ+ ↔ I+ ≡ [ψ,+∞[(A.4)

Let us now set the threshold ψ to the real value 1.90, ψ = 1.90. The unary observer
Θ+({δ+}, {ψ}), applied on the function x(t) represented on figure A.1, produces then a sequence
of timed observations ω+(t+5) = {O(t+1), O(t+2), O(t+3), O(t+4), O(t+5)} and a stochastic clock Γ+ =

{t+1 , t
+
2 , t

+
3 , t

+
4 , t

+
5 }, as seen on figure A.2, where:

• O(t+1) ≡ (δ+, t+1) and t+1 = 20 : 44 : 35;

• O(t+2) ≡ (δ+, t+2) and t+2 = 20 : 44 : 55;

• O(t+3) ≡ (δ+, t+3) and t+3 = 20 : 52 : 25;

A.2. THEORETICAL UNARY OBSERVER 163

• O(t+4) ≡ (δ+, t+4) and t+4 = 20 : 55 : 15;

• O(t+5) ≡ (δ+, t+5) and t+5 = 21 : 07 : 15.

Figure A.2: Sequence of timed observations and stochastic clock produced by Θ+({δ+}, {ψ}) where
ψ = 1.90

The symmetrical unary observer of Θ+({δ+}, {ψ}) is a program denoted Θ−({δ−}, {ψ})
implementing the following equation:

∀tk−1 ∈ R, tk ∈ R, x(tk−1) ≥ ψ ∧ x(tk) < ψ ⇒ write((δ−, tk)) (A.5)

Writing the constant δ− at time tk indicates a downward crossing of the threshold ψ by the
function x(t). This means that the function x(t) enters the interval I− ≡]−∞, ψ[. The writing
of the constant δ− is then related to the interval I− ≡]−∞, ψ[:

δ− ↔ I− ≡]−∞, ψ[(A.6)

The unary observer Θ−({δ−}, {ψ}), applied on the function x(t) represented on figure A.1,
produces then a sequence of timed observations ω−(t−6) = {O(t−1), O(t−2), O(t−3), O(t−4), O(t−5), O(t−6)}
and a stochastic clock Γ− = {t−1 , t

−
2 , t
−
3 , t
−
4 , t
−
5 }, as seen on figure A.3, where:

• O(t−1) ≡ (δ−, t−1) and t−1 = 20 : 36 : 05;

• O(t−2) ≡ (δ−, t−2) and t−2 = 20 : 44 : 45;

• O(t−3) ≡ (δ−, t−3) and t−3 = 20 : 51 : 35;

164 BIBLIOGRAPHY

• O(t−4) ≡ (δ−, t−4) and t−4 = 20 : 53 : 15;

• O(t−5) ≡ (δ−, t−5) and t−5 = 20 : 56 : 05;

• O(t−6) ≡ (δ−, t−6) and t−6 = 21 : 07 : 25.

Figure A.3: Sequence of timed observations and stochastic clock produced by Θ−({δ−}, {ψ}) where
ψ = 1.90

The unary observer Θ−({δ−}, {ψ}) is the symmetrical unary observer of Θ+({δ+}, {ψ}).
Table A.1 sums up the interpretation made from timed observations generated by both the-

oretical unary observers:

Timed Observation Interpretation
(δ−, t−1) At t−1 = 20 : 36 : 05, x(t) enters I− ≡]−∞, ψ[

(δ+, t+1) At t+1 = 20 : 44 : 35, x(t) enters I+ ≡ [ψ,+∞[

(δ−, t−2) At t−2 = 20 : 44 : 45, x(t) enters I− ≡]−∞, ψ[

(δ+, t+2) At t+2 = 20 : 44 : 55, x(t) enters I+ ≡ [ψ,+∞[

(δ−, t−3) At t−3 = 20 : 51 : 35, x(t) enters I− ≡]−∞, ψ[

(δ+, t+3) At t+3 = 20 : 52 : 25, x(t) enters I+ ≡ [ψ,+∞[

(δ−, t−4) At t−4 = 20 : 53 : 15, x(t) enters I− ≡]−∞, ψ[

(δ+, t+4) At t+4 = 20 : 55 : 15, x(t) enters I+ ≡ [ψ,+∞[

(δ−, t−5) At t−5 = 20 : 56 : 05, x(t) enters I− ≡]−∞, ψ[

(δ+, t+5) At t+5 = 21 : 07 : 15, x(t) enters I+ ≡ [ψ,+∞[

(δ−, t−6) At t−6 = 21 : 07 : 25, x(t) enters I− ≡]−∞, ψ[

Table A.1: Interpretation made from timed observations generated by both theoretical unary
observers

A.3. CONCRETE UNARY OBSERVER 165

The theoretical unary observer Θ({δ−, δ+}, {ψ}) is then the superposition of two symmetrical
unary observers, Θ−({δ−}, {ψ}) and Θ+({δ+}, {ψ}), respectively implementing the following
equations: {

∀tk−1 ∈ R, tk ∈ R, x(tk−1) ≥ ψ ∧ x(tk) < ψ ⇒ write((δ−, tk))

∀tk−1 ∈ R, tk ∈ R, x(tk−1) < ψ ∧ x(tk) ≥ ψ ⇒ write((δ+, tk))
(A.7)

The theoretical unary observer Θ({δ−, δ+}, {ψ}) builds two disjoint sets of R, I− ≡]−∞, ψ[

and I+ ≡ [ψ,+∞[: {
I−
⋃
I+ = R

I−
⋂
I+ = ∅

(A.8)

linking each constant δ− and δ+ to respectively I− and I+:{
δ− ↔ I− ≡]−∞, ψ[

δ+ ↔ I+ ≡ [ψ,+∞[
(A.9)

The theoretical unary observer Θ({δ−, δ+}, {ψ}) generates a sequence of timed observations
ω(tk) and a stochastic clock Γ such as:{

ω(tk) = {ω−(t−k), ω+(t+k)}, tk = max(t−k , t
+
k)

Γ = {Γ−,Γ+}
(A.10)

A.3 Concrete Unary Observer

The decision to cross a threshold is only taken from a unique value x(tk). The theoretical unary
observer Θ({δ}, {ψ}) is not suitable for noisy signals. In a pratical way, this decision must be
taken from a set of values w(tk) = {x(tk−(n−1)), x(tk−(n−2)), ..., x(tk)}, called observation window,
containing the last n known values of the function x(t).

A realistic criteria of decision is built on the following general principal:

• a threshold ψ is crossed by a function x(t) when the majority of the values x(ti) contained
in the observation window w(tk) are superior to the threshold ψ.

Let us introduce a criteria of decision c(w(tk)) based on a measure µ(w(tk)) made on the
observation window w(tk) and a decision threshold denoted ψd such as:

µ(w(tk)) ≥ ψd ⇒ c(w(tk)) = true (A.11)

The measure µ(w(tk)) can be as complex as needed but must be computed for each new value
x(tk) so the following property has to be respected:

• x(tk) enters the range of values [ψ,+∞[if and only if x(tk−1) was outside that range at
the previous timestamp tk−1.

For instance, a measure µ(w(tk)) can compute the percentage of values of x(tk) which are
superior to the threshold ψ:

166 BIBLIOGRAPHY

µ(w(tk)) =
Card(wd(tk))

Card(w(tk))
(A.12)

where wd(tk) = {x(ti), tk−(n−1) ≤ ti ≤ tk)}, called the decision window, is the set of values x(ti)

superior to the threshold ψ:

∀x(ti) ∈ w(tk), x(ti) ≥ ψ ⇒ x(ti) ∈ wd(tk) (A.13)

A concrete unary observer is a program Θ+({δ+}, {ψ}, ψd, n) implementing the following
equations:

{
∀x(ti) ∈ w(tk), x(ti) ≥ ψ ⇒ x(ti) ∈ w+

d (tk)

∀tk−1, tk ∈ R,
Card(w+

d (tk−1))

Card(w+(tk−1))
< ψd ∧

Card(w+
d (tk))

Card(w+(tk))
≥ ψd ⇒ write((δ+, tk))

(A.14)

Let us consider the function x(t) introduced on figure A.1. Let us set the decision threshold
to 80%, ψd = 0.8, and the size n of the observation window to 30, n = 30.

Figure A.4: Sequence of timed observations and stochastic clock produced by a concrete unary observer
Θ+({δ+}, {ψ}, ψd, n) where ψ = 1.90, ψd = 0.8 and n = 30

The concrete unary observer Θ+({δ+}, {ψ}, ψd, n), applied on the function x(t), produces
then a sequence of only one timed observation ω(t+1) = {O(t+1)} and a stochastic clock Γ+ = {t+1 },
as seen on figure A.4, where:

• O(t+1) ≡ (δ+, t+1) and t+1 = 20 : 48 : 35.

According to such a concrete unary observer, the function x(t) enters the interval I+ ≡ [ψ,+∞[

A.3. CONCRETE UNARY OBSERVER 167

at time t+1 = 20 : 48 : 35.

The symmetrical unary observer of Θ+({δ+}, {ψ}, ψd, n) is a program denoted Θ−({δ−}, {ψ}, ψd, n)

implementing the following equations:

{
∀x(ti) ∈ w(tk), x(ti) < ψ ⇒ x(ti) ∈ w−d (tk)

∀tk−1, tk ∈ R,
Card(w−d (tk−1))

Card(w(tk−1)) < ψd ∧
Card(w−d (tk))

Card(w(tk)) ≥ ψd ⇒ write((δ−, tk))
(A.15)

The symmetrical concrete unary observer Θ−({δ−}, {ψ}, ψd, n), applied on the function x(t),
produces then a sequence of only one timed observation ω(t−1) = {O(t−1)} and a stochastic clock
Γ− = {t−1 }, as seen on figure A.5, where:

• O(t−1) ≡ (δ−, t−1) and t−1 = 20 : 57 : 55.

According this symmetrical concrete unary observer, the function x(t) enters the interval I− ≡
[−∞, ψ[at time t−1 = 20 : 57 : 55.

Figure A.5: Sequence of timed observations and stochastic clock produced by the symmetrical concrete
unary observer Θ−({δ−}, {ψ}, ψd, n) where ψ = 1.90, ψd = 0.8 and n = 30

Table A.2 sums up the interpretation made from timed observations generated by both con-
crete unary observers:

The concrete unary observer Θ({δ−, δ+}, {ψ}, ψd, n) is then the superposition of two sym-
metrical concrete unary observers, Θ−({δ−}, {ψ}, ψd, n) and Θ+({δ+}, {ψ}, ψd, n), respectively
implementing the following equations:

168 BIBLIOGRAPHY

Timed Observation Interpretation
(δ+, t+1) At t+1 = 20 : 48 : 35, x(t) enters I+ ≡ [ψ,+∞[

(δ−, t−2) At t−2 = 20 : 57 : 55, x(t) enters I− ≡]−∞, ψ[

Table A.2: Interpretation made from timed observations generated by both concrete unary ob-
servers

∀x(ti) ∈ w(tk), x(ti) < ψ ⇒ x(ti) ∈ w−d (tk)

∀tk−1, tk ∈ R,
Card(w−d (tk−1))

Card(w(tk−1)) < ψd ∧
Card(w−d (tk))

Card(w(tk)) ≥ ψd ⇒ write((δ−, tk))

∀x(ti) ∈ w(tk), x(ti) ≥ ψ ⇒ x(ti) ∈ w+
d (tk)

∀tk−1, tk ∈ R,
Card(w+

d (tk−1))

Card(w+(tk−1))
< ψd ∧

Card(w+
d (tk))

Card(w+(tk))
≥ ψd ⇒ write((δ+, tk))

(A.16)

The concrete unary observer Θ({δ−, δ+}, {ψ}, ψd, n) builds two disjoint sets of R, I− ≡
]−∞, ψ[and I+ ≡ [ψ,+∞[: {

I−
⋃
I+ = R

I−
⋂
I+ = ∅

(A.17)

linking each constant δ− and δ+ to respectively I− and I+:{
δ− ↔ I− ≡]−∞, ψ[

δ+ ↔ I+ ≡ [ψ,+∞[
(A.18)

The concrete unary observer Θ({δ−, δ+}, {ψ}, ψd, n) generates a sequence of timed observa-
tions ω(tk) and a stochastic clock Γ such as:{

ω(tk) = {ω−(t−k), ω+(t+k)}, tk = max(t−k , t
+
k)

Γ = {Γ−,Γ+}
(A.19)

A more general definition of a concrete unary observer is given here, splitting the set R into
m+ 1 disjoint sets.

A concrete unary observer is a program Θ(∆,Ψ, ψd, n) where:

• Ψ = {ψ1, ..., ψm} ⊆ R is a set of m thresholds;

• ∆ = {δ0, ..., δm} ⊆ N is a set of m+ 1 constants;

• ψd ∈ R is a decision threshold ;

• n is the size of the observation window w(tk).

Each constant δi links a range of values defined by an interval Ii such as:

• δ0 ↔ I1 ≡]−∞, ψ1[;

• δ1 ↔ I2 ≡ [ψ1, ψ2[;

• ...;

• δi ↔ Ii ≡ [ψi, ψi+1[;

A.4. PIECEWISE FUNCTIONS 169

• ...;

• δm ↔ Im+1 ≡ [ψm,+∞[.

Such a concrete unary observer applied on function x(t) produces:

• a superposition Ω(tk) = {ωi(tk)} ofm sequences of timed observations ωi(tk) = {Oi(t1), Oi(t2), ..., Oi(tk)};

• a set Γ = {Γi} of m stochastic clocks Γi = {ti1, ti2, ..., tik}.

Each timestamp tij means that the function x(t) enters the interval Ii = [ψi, ψi+1[at time t = tij .
This sampling device can be used on any dynamic process X(t) = {xi(t)}.

A.4 Piecewise Functions

This section deals with the spatial segmentation of piecewise functions.

∀k ∈ Z, ∀ak ∈ N∗, ∀tk ∈ R,
x : R → N∗

t 7→
∑+∞

k=−∞ ak.H(t− tk)
(A.20)

The function H(t) is the Heaviside step function:

H(t− tk) =

{
0 if t < tk

1 if t ≥ tk
(A.21)

The derivative H ′(t) of the Heaviside function is the Dirac distribution δ({0}):

H
′
(t) = δ({0}) (A.22)

A.4.1 Observing a Piecewise Function

Let us consider the spatial discretization equation A.2 designed for stepwise functions:

∀tk−1, tk ∈ R, x(tk−1) 6= x(tk)⇒ write(O(tk)) where O(tk) ≡ (x(tk), tk) (A.23)

As x(t) =
∑+∞

k=−∞ ak.H(t − tk), a timed observation is only written when x(tk−1) 6= x(tk)

i.e. when the value of x(t) changes:

x(tk) = ak.H(tk − tk) = ak (A.24)

And:

O(tk) ≡ (x(tk), tk) ≡ (ak, tk) (A.25)

A theoretical unary observer observing a piecewise function x(t) =
∑+∞

k=−∞ ak.H(t − tk) is
a program denoted Θ(N, {0}), set with the set of constants contained in N and a 0 threshold,
implementing the following equation:

∀tk−1, tk ∈ R, x(tk−1) 6= x(tk)⇒ write(O(tk)) where O(tk) ≡ (ak, tk) (A.26)

170 BIBLIOGRAPHY

Such an observer generates a sequence of timed observations:

ω(tk) = {(a1, t1), ..., (ai, ti), ..., (ak, tk)} (A.27)

and a stochastic clock:

Γ = {t1, ..., ti, ..., tk} (A.28)

The Dirac distribution defined by its action on any test function ϕ as:

〈δ, ϕ〉 =

∫ +∞

−∞
δ(t)ϕ(t)dt = ϕ(0) (A.29)

The Dirac delta function is the neutral element of the convolution product applied on any
function x(t):

∀tk ∈ R, (x ∗ δ)(tk) =

∫ +∞

−∞
x(t).δ(tk − t) dt = x(tk) (A.30)

Let us apply equation A.30 to the Heaviside function x(t) = ak.H(t− tk):

∀tk ∈ R, (x ∗ δ)(tk) =

∫ +∞

−∞
x(t).δ(tk − t) dt = x(tk) = ak.H(0) = ak (A.31)

Let us consider the stochastic clock Γ (see equation A.28) generated by the unary observer
Θ(N, {0}). Let us now consider the Dirac distribution δ(Γ) whose support is the stochastic clock
Γ. Applying the convolution product between the piecewise function x(t) =

∑+∞
k=−∞ ak.H(t−tk)

and δ(Γ) generates then the sequence of values {a0, a1, ..., ak}. The sequence of timed ob-
servations ω(tk) = {(a1, t1), ..., (ai, ti), ..., (ak, tk)} generated by the unary observer Θ(N, {0})
on a piecewise function x(t) =

∑+∞
k=−∞ ak.H(t − tk) is isomorphic to the sequence of values

{a0, a1, ..., ak} generated by the convolution product x(tk) = x(t) ∗ δ(Γ) where:

x(t) =
+∞∑

k=−∞
ak.H(t− tk) (A.32)

Any sequence ω(tk) = {(a1, t1), ..., (ai, ti), ..., (ak, tk)} can be then interpreted as the result
of the convolution of a piecewise function x(t) =

∑+∞
k=−∞ ak.H(t − tk) with a Dirac comb δ(Γ)

whose support is the stochastic clock Γ.

A.4.2 Observing the Derivative of a Piecewise Function

Let us now consider the following equation:

∀tk−1, tk ∈ R, x(tk−1) 6= x(tk)⇒ write(O(tk)) where O(tk) ≡ (x(tk)− x(tk−1), tk) (A.33)

As x(t) =
∑+∞

k=−∞ ak.H(t − tk), a timed observation is only written when x(tk−1) 6= x(tk)

i.e. when the value of x(t) changes:

x(tk)− x(tk−1) = ak.H(tk − tk)− ak−1.H(tk−1 − tk−1) = ak − ak−1 (A.34)

A.4. PIECEWISE FUNCTIONS 171

And:

O(tk) ≡ (x(tk), tk) ≡ (ak − ak−1, tk) (A.35)

A theoretical unary observer observing the derivative of a piecewise function x(t) =
∑+∞

k=−∞ ak.H(t−
tk) is a program denoted Θ

′
(N, {0}), set with the set of constants contained in N and a 0 thresh-

old, implementing the following equation:

∀tk−1, tk ∈ R, x(tk−1) 6= x(tk)⇒ write(O(tk)) where O(tk) ≡ (ak − ak−1, tk) (A.36)

Such an observer generates a sequence of timed observations:

ω
′
(tk) = {(a1 − a0, t1), ..., (ai − ai−1, ti), ..., (ak − ak−1, tk)} (A.37)

and a stochastic clock:

Γ
′

= {t1, ..., ti, ..., tk} (A.38)

Let us consider the stochastic clock Γ
′ (see equation A.38) generated by the unary observer

Θ
′
(N, {0}). Let us now consider the Dirac distribution δ(Γ

′
) whose support is the stochastic

clock Γ
′ . Let us consider the piecewise function d(t) =

∑+∞
k=−∞(ak − ak−1).H(t− tk). Applying

the convolution product between the piecewise function d(t) =
∑+∞

k=−∞(ak−ak−1).H(t− tk) and
δ(Γ

′
) generates then the sequence of values {a1 − a0, ..., ai − ai−1, ..., ak − ak−1}. The sequence

of timed observations ω(tk) = {(a1 − a0, t1), ..., (ai − ai−1, ti), ..., (ak − ak−1, tk)} generated by
the unary observer Θ

′
(N, {0}) on a piecewise function d(t) =

∑+∞
k=−∞(ak − ak−1).H(t − tk)

is isomorphic to the sequence of values {a1 − a0, ..., ai − ai−1, ..., ak − ak−1} generated by the
convolution product d(tk) = d(t) ∗ δ(Γ′) where:

d(t) =

+∞∑
k=−∞

(ak − ak−1).H(t− tk) (A.39)

The value dk =
ak−ak−1

tk−tk−1
is the linear coefficient of the line whose equation is:

∀t ∈ [tk−1; tk[, xk(t) = dk.t+
ak−1.tk − ak.tk−1

tk − tk−1
(A.40)

This equation can be rewritten:

∀t ∈ [tk−1; tk[, xk(t) = dk.t+ αk where αk ≡
ak−1.tk − ak.tk−1

tk − tk−1
(A.41)

Such a line passes from the point x(tk−1) to x(tk) belonging to the function x(t) =
∑+∞

k=−∞ ak.H(t−
tk) (see figure A.6). In other words, the unary observer Θ

′
(N, {0}), applied on the piecewise

function x(t) =
∑+∞

k=−∞ ak.H(t − tk), generates a sequence of timed observations ω′(tk) =

{(a1 − a0, t1), ..., (ai − ai−1, ti), ..., (ak − ak−1, tk)} which, given the value a0, is necessary and
sufficient to describe the function x(t) =

∑+∞
k=−∞ ak.H(t − tk) under the form of a sequence of

lines xk(t) = dk.t+ αk, t ∈ [tk−1; tk[linking the points x(tk).
Since ak = x(tk) and ak−1 = x(tk−1), the linear coefficient dk of the line xk(t) is:

172 BIBLIOGRAPHY

Figure A.6: Derivative of a piece wise function

dk =
x(tk)− x(tk−1)

tk − tk−1
(A.42)

If the duration tk − tk−1 is small enough, the linear coefficient dk tends to the derivative
x
′
(tk) of the function x(t) at the time tk:

lim
tk−tk−1→0

dk = lim
tk−tk−1→0

x(tk)− x(tk−1)

tk − tk−1
= x

′
(tk) (A.43)

This property allows then to interprete timed observations O(tk) ≡ (ak − ak−1, tk) as a
measure of the derivative of x′(tk) of a piecewise function x(t) =

∑+∞
k=−∞ ak.H(t− tk).

Any sequence ω′(tk) = {(a1 − a0, t1), ..., (ai − ai−1, ti), ..., (ak − ak−1, tk)} can be then inter-
preted as the result of the convolution product x′(tk) = x

′
(t) ∗ δ(Γ′) where x′(t) =

∑+∞
k=−∞(ak−

ak−1).H(t− tk) is the derivative of the piecewise function x(t) =
∑+∞

k=−∞ ak.H(t− tk).

A.4.3 Piecewise Function Evolution

The Tetrahedron of States formalized by Rosenberg and Karnopp [REFFF] describes the relations
between four generalized continuous variables from Newtonian Physics (see figure A.7):

• the effort e;

• the flow f ;

• the impulse p;

• the displacement q.

Let us consider the unary observer Θ(N, {0}), implementing equation A.26, applied on a
piecewise function x(t) =

∑+∞
k=−∞ ak.H(t − tk). Such a unary observer generates a stochastic

A.4. PIECEWISE FUNCTIONS 173

generalized
effort

generalized
displacement

generalized
impulse

generalized flow

g. Capacity

g. Resistance

g. Inductance

q e

f p

q = C . e

e = R . f

p = I . f

e=dp
dt

dq
dt

=f

Figure A.7: Tetrahedron of states

clock Γ = {tk, tk ∈ R} and a sequence of timed observations ω(tk) = {O(tk), tk ∈ Γ} where
O(tk) ≡ (ak, tk).

Let us consider the observation window w(ti) = {{x(ti−(n−1)), x(ti−(n−2)), ..., x(ti)}}, ti ≥ tk,
containing the n last known values of x(t). On this observation window, the observer Θ(N, {0})
generates, at the time ti, a sequence of timed observations ω(i) = {O(tk−(m−1)), ..., O(tk)} ⊆
ω(tk) containing the m most recent observations of ω(tk).

In the Tetrahedron of States framework, the flow λ(i) of a sequence of timed observations
ω(tk) at time ti, ti ≥ tk is the ratio between the number of timed observations in ω(i) and the
number of values contained in the observation window w(ti):

λ(i) =

{
Card(ω(i))
Card(w(ti))

if Card(w(ti)) 6= 0

0 if Card(w(ti)) = 0
(A.44)

The flow λ(i) is then a [0; 1]-valued function that can be interpreted as a percentage. Let us
consider the concrete unary observer Θλ(∆λ,Ψλ, nλ), where ∆λ = {0, 1, 2} and Ψλ = {ψ1, ψ2}
implementing equations A.14 and A.15, applied on λ(i). Each constant of ∆λ links a range of
values defined by an interval Ii such as:

• 0↔ I1 ≡]−∞, ψ1[;

• 1↔ I2 ≡ [ψ1, ψ2[;

• 2↔ I3 ≡ [ψ2,+∞[.

Such a unary observer generates a stochastic clock Γλ = {ti, ti ∈ R} and a sequence of timed
observations of the form:

ωλ(ti) = {Oλ(ti) ≡ (δλ, ti), δλ ∈ ∆λ, ti ∈ Γλ} (A.45)

The thresholds ψ1 and ψ2 must correctly be built so the following interpretations can be
made:

• a timed observation of the form Oλ(ti) ≡ (0, tk) means that the number of timed observa-
tions in ω(tk) is weak ;

• a timed observation of the form Oλ(ti) ≡ (1, tk) means that the number of timed observa-
tions in ω(tk) is normal ;

174 BIBLIOGRAPHY

• a timed observation of the form Oλ(ti) ≡ (2, tk) means that the number of timed observa-
tions in ω(tk) is high.

On figure A.8 are represented the flow λ(i) computed from the function x(t) seen on figure A.1
and the sequence of timed observations generated by the concrete unary observer Θλ(∆λ,Ψλ, nλ)

applied on that flow λ(i) whose parameters are set to ψ1 = 0.20, ψ2 = 0.50 and nλ = 30.

Figure A.8: Sequence of timed observations ωλ(ti) generated by a concrete unary observer applied of
the flow λ(i) computed from the function x(t)

Table A.5 sums up the interpretation made from timed observations generated by such a
unary observer Θλ(∆λ,Ψλ, nλ):

Timed Observation Interpretation
(1, t1) At t1 = 20 : 45 : 15, the number of timed observations in ω(tk) is normal
(2, t2) At t2 = 20 : 47 : 55, the number of timed observations in ω(tk) is high
(1, t3) At t3 = 20 : 49 : 55, the number of timed observations in ω(tk) is normal
(2, t4) At t4 = 20 : 51 : 05, the number of timed observations in ω(tk) is high
(1, t5) At t5 = 20 : 56 : 45, the number of timed observations in ω(tk) is normal
(2, t6) At t6 = 21 : 00 : 45, the number of timed observations in ω(tk) is high

Table A.3: Interpretation made from timed observations generated by concrete unary observers
Θλ(∆λ,Ψλ, nλ)

A.4. PIECEWISE FUNCTIONS 175

A.4.3.1 Effort of a Sequence of Timed Observations

Let us consider the unary observer Θ
′
(N, {0}), implementing equation A.36, applied on a piece-

wise function x(t) =
∑+∞

k=−∞ ak.H(t − tk). Such a unary observer generates a stochastic
clock Γ = {tk, tk ∈ R} and a sequence of timed observations ω(tk) = {O(tk), tk ∈ Γ} where
O(tk) ≡ (ak − ak−1, tk).

Let us consider the observation window w(ti) = {{x(ti−(n−1)), x(ti−(n−2)), ..., x(ti)}}, ti ≥ tk,
containing the n last known values of x(t). On this observation window, the observer Θ

′
(N, {0})

generates, at the time ti, a sequence of timed observations ω(i) = {O(tk−(m−1)), ..., O(tk)} ⊆
ω(tk) containing the m most recent observations of ω(tk). By construction, ω(i) defines a se-
quence of values {ak−(m−1) − ak−m, ..., ak − ak−1} such as:

m−1∑
i=0

(ak − ak−i) = ak − ak−m (A.46)

In the Tetrahedron of States framework, the effort µ(i) of a sequence of timed observations
ω(tk) generated by a unary observer observing the derivative of a piecewise function during the
observation window w(ti), ti ≥ tk is:

µ(i) =

{
Card(ω(i)) · |ak−m|ak−ak−m if ak − ak−m 6= 0 and ak−m 6= 0

Card(ω(i)) · 1
ak−ak−m if ak − ak−m 6= 0

(A.47)

The effort µ(i) is then aR-valued function. If µ(i) > 0, this can be interpreted as a percentage
of an upward evolution of the function x(t) relatively to the reference value x(tk−m) = ak−m. If
µ(i) < 0, this can be interpreted as a percentage of a downward evolution of the function x(t)

relatively to the reference value x(tk−m) = ak−m.
Let us consider the concrete unary observer Θµ(∆µ,Ψµ, nµ), where ∆µ = {−2,−1, 0, 1, 2}

and Ψµ) = {ψ−2, ψ−1, ψ1, ψ2} implementing equations A.14 and A.15, applied on µ(i). Each
constant of ∆µ links a range of values defined by an interval Ii such as:

• −2↔ I−2 ≡]−∞, ψ−2[;

• −1↔ I−1 ≡ [ψ−2, ψ−1[;

• 0↔ I0 ≡ [ψ−1, ψ1[;

• 1↔ I2 ≡ [ψ1, ψ2[;

• 2↔ I3 ≡ [ψ2,+∞[.

Such a unary observer generates a stochastic clock Γµ = {ti, ti ∈ R} and a sequence of timed
observations of the form:

ωµ(ti) = {Oµ(ti) ≡ (δµ, ti), δµ ∈ ∆µ, ti ∈ Γµ} (A.48)

The thresholds ψi ∈ Ψµ must correctly be built so the following interpretations can be made:

• a timed observation of the form Oµ(tk) ≡ (−2, tk) means a strong downward effort ;

• a timed observation of the form Oµ(tk) ≡ (−1, tk) means a downward effort ;

176 BIBLIOGRAPHY

• a timed observation of the form Oµ(tk) ≡ (0, tk) means a stable effort ;

• a timed observation of the form Oµ(tk) ≡ (1, tk) means an upward effort ;

• a timed observation of the form Oµ(tk) ≡ (2, tk) means a strong upward effort.

On figure A.9 are represented the effort µ(i) computed from the function x(t) seen on
figure A.1 and the sequence of timed observations generated by the concrete unary observer
Θµ(∆µ,Ψµ, nµ) applied on that effort µ(i) whose parameters are set to ψ−2 = −0.60, ψ−1 =

−0.20, ψ1 = 0.20, ψ2 = 0.60 and nµ = 30.

Figure A.9: Sequence of timed observations ωµ(ti) generated by a concrete unary observer applied of
the effort µ(i) computed from the function x(t)

A.4.3.2 Power of a Sequence of Timed Observations

Let us consider the unary observer Θ
′
(N, {0}), implementing equation A.36, applied on a piece-

wise function x(t) =
∑+∞

k=−∞ ak.H(t − tk). Such a unary observer generates a stochastic
clock Γ = {tk, tk ∈ R} and a sequence of timed observations ω(tk) = {O(tk), tk ∈ Γ} where
O(tk) ≡ (ak − ak−1, tk).

Let us consider the observation window w(ti) = {{x(ti−(n−1)), x(ti−(n−2)), ..., x(ti)}}, ti ≥ tk,
containing the n last known values of x(t). On this observation window, the observer Θ

′
(N, {0})

A.4. PIECEWISE FUNCTIONS 177

generates, at the time ti, a sequence of timed observations ω(i) = {O(tk−(m−1)), ..., O(tk)} ⊆
ω(tk) containing the m most recent observations of ω(tk). By construction, ω(i) defines a se-
quence of values {ak−(m−1) − ak−m, ..., ak − ak−1} such as:

m−1∑
i=0

(ak − ak−i) = ak − ak−m (A.49)

The power ν(i) of a sequence of timed observations ω(tk) is the product of the flow λ(i) and
the effort µ(i):

ν(i) = λ(i)× µ(i) (A.50)

λ

µ 0 1 2
-2 0 -3 -4
-1 0 -1 -2
0 0 0 0
1 0 1 2
2 0 3 4

Table A.4: Building of constants

Timed Observation Interpretation
(1, t1) At t1 = 20 : 45 : 15, the number of timed observations in ω(tk) is normal
(2, t2) At t2 = 20 : 47 : 55, the number of timed observations in ω(tk) is high
(1, t3) At t3 = 20 : 49 : 55, the number of timed observations in ω(tk) is normal
(2, t4) At t4 = 20 : 51 : 05, the number of timed observations in ω(tk) is high
(1, t5) At t5 = 20 : 56 : 45, the number of timed observations in ω(tk) is normal
(2, t6) At t6 = 21 : 00 : 45, the number of timed observations in ω(tk) is high

Table A.5: Timed Observations From Flow Interpretation

The effort ν(i) is then a R-valued function. Let us consider the concrete unary observer
Θν(∆ν ,Ψν , ψd, n), where ∆ν = {−4,−3,−2,−1, 0, 1, 2, 3, 4} and Ψν) = {ψ−4, ψ−3, ψ−2, ψ−1, ψ1, ψ2, ψ3, ψ4}
implementing equations A.14 and A.15, applied on ν(i). Each constant of ∆ν links a range of
values defined by an interval Ii such as:

• −4↔ I−4 ≡]−∞, ψ−4[;

• −3↔ I−3 ≡ [ψ−4, ψ−3[;

• −2↔ I−2 ≡ [ψ−3, ψ−2[;

• −1↔ I−1 ≡ [ψ−2, ψ−1[;

• 0↔ I0 ≡ [ψ−1, ψ1[;

• 1↔ I2 ≡ [ψ1, ψ2[;

• 2↔ I2 ≡ [ψ2, ψ3[;

• 3↔ I2 ≡ [ψ3, ψ4[;

178 BIBLIOGRAPHY

• 4↔ I3 ≡ [ψ4,+∞[.

Such a unary observer generates a stochastic clock Γν = {ti, ti ∈ R} and a sequence of timed
observations of the form:

ων(ti) = {Oν(ti) ≡ (δν , ti), δν ∈ ∆ν , ti ∈ Γν} (A.51)

The thresholds ψi ∈ Ψν must correctly be built so the following interpretations can be made:

• a timed observation of the form Oν(tk) ≡ (−4, tk) means a very strongly negative power ;

• a timed observation of the form Oν(tk) ≡ (−3, tk) means a strongly negative power ;

• a timed observation of the form Oν(tk) ≡ (−2, tk) means a negative power ;

• a timed observation of the form Oν(tk) ≡ (−1, tk) means a weakly negative power ;

• a timed observation of the form Oν(tk) ≡ (0, tk) means a weak power ;

• a timed observation of the form Oν(tk) ≡ (1, tk) means a weakly positive power ;

• a timed observation of the form Oν(tk) ≡ (2, tk) means a positive power ;

• a timed observation of the form Oν(tk) ≡ (3, tk) means a strongly positive power ;

• a timed observation of the form Oν(tk) ≡ (4, tk) means a very strongly positive power.

This leads to get informations about the evolution of the function x(t). The power ν(i) =

λ(i)× µ(i) and λ(i) ≥ 0, so: {
ν(i) > 0⇔ µ(i) > 0

ν(i) < 0⇔ µ(i) < 0
(A.52)

If µ(i) > 0 that can be interpreted as a percentage of an upward evolution of the function
x(t), during the observation window w(tk), relatively to the reference value x(tk−m) = ak−m. If
µ(i) < 0 that can be interpreted as a percentage of a downward evolution of the function x(t),
during the observation window w(tk), relatively to the reference value x(tk−m) = ak−m.

So, during the observation window w(tk):

• a timed observation of the form Oν(tk) ≡ (−4, tk) means the function x(t) is very strongly
decreasing ;

• a timed observation of the form Oν(tk) ≡ (−3, tk) means the function x(t) is strongly
decreasing ;

• a timed observation of the form Oν(tk) ≡ (−2, tk) means the function x(t) is decreasing ;

• a timed observation of the form Oν(tk) ≡ (−1, tk) means the function x(t) is weakly de-
creasing ;

• a timed observation of the form Oν(tk) ≡ (0, tk) means the function x(t) is flat ;

A.4. PIECEWISE FUNCTIONS 179

• a timed observation of the form Oν(tk) ≡ (1, tk) means the function x(t) is weakly increas-
ing ;

• a timed observation of the form Oν(tk) ≡ (2, tk) means the function x(t) is increasing ;

• a timed observation of the form Oν(tk) ≡ (3, tk) means the function x(t) is strongly in-
creasing ;

• a timed observation of the form Oν(tk) ≡ (4, tk) means the function x(t) is very strongly
increasing.

On figure A.10 are represented the power ν(i) and the sequence of timed observations gen-
erated by the concrete unary observer Θν(∆ν ,Ψν , nν) applied on that power ν(i) whose param-
eters are set to ψ−4 = −0.30, ψ−3 = −0.12, ψ−2 = −0.10, ψ−1 = −0.04, ψ1 = 0.04, ψ2 = 0.10,
ψ3 = 0.12, ψ4 = 0.30 and nν = 30.

Figure A.10: Sequence of timed observations ων(ti) generated by a concrete unary observer applied of
the power ν(i) computed from the function x(t)

180 BIBLIOGRAPHY

CHAPTER B

Operationalization of the Blending and the

Levels of Abstraction Theories with the Timed

Observations Theory

B.1 INTRODUCTION

With the always increasing amount of data collected over things connected on information net-
works, the need for data and knowledge analysis became a crucial stake for most of the industrial
and service activities, including the research activity itself. The main difficulty with data and
knowledge analysis resides in the introduction, in a controlled way, of semantics in the syntactic
patterns provided by human analysts with the eventual help of Statistic Learning or Data Mining
algorithms. There is then a crucial need for models able to guide a rationale interpretation of
data providing from humans or machines.

To this aim, [FT98] proposed a theory of Conceptual Integration Networks, also called the
Blending Theory. This theory defines a common conceptual operation, the blending of conceptual
spaces, to provide a meaning and a way to compress the representations that are useful for
knowledge memorization and manipulation. Blending of different conceptual spaces plays a
fundamental role in the construction of meaning in everyday life, in the arts and sciences, and
especially in the social and behavioral sciences [FT03]. The essence of the conceptual blending
operation is to establish a new conceptual space through the matching between the contain
of different conceptual spaces. Fauconnier and Turner suggest that the capacity for complex
conceptual blending is the crucial capacity needed for thought and language [FT03].

Another but complementary point of view is proposed in [Flo08, Flo10] to address the problem
of defining the nature of natural, human or artificial agents with the notion of Level of Abstraction.
The Levels of Abstraction Theory aims to clarify implicit assumptions and to allow the resolution
of possible conceptual confusions with the comparisons between different point of view about the
same phenomenon (concrete or abstract). Similarly to the Blending Theory, it provides a detailed
and controlled way of comparing analyses and models [Flo08] with the introduction of multiple
levels of abstraction in conceptual analysis. It constitutes then a crucial and powerful tool to
address the analysis and the modeling of the phenomenon under consideration. Floridi argued
that for discrete systems, whose observables take on only finitely-many values, the method is
indispensable [Flo08].

These two theories share common goals but develop different ways to achieve them, and both
lack of mathematical foundations. The aim of this paper is to propose an adequate mathematical

181

182 BIBLIOGRAPHY

framework that provides for the first time, up to our knowledge, a strong formal foundation to
these theories. This mathematical framework is build on the Timed Observations Theory (TOT,
[LeG06]), which constitutes the basis of a new abstraction approach called the Timed Observation
Method for Abstraction (Tom4A). Clearly, our long term goal is to develop software tools able
to discover and to model knowledge representations from sets of timed data so that the human
interpretation is intuitive, immediate and independent of the learning and the modeling tools.

To make the mathematical framework as simple and intuitive as possible, the main concepts
are illustrated with a running example of three speakers discussing about a vehicle (cf. Section
B.2), the original text coming from the web site of the Society for the Philosophy of Informa-
tion (http://www.socphilinfo.org/node/150). Section B.3 provides the principles and the formal
modeling tools of the TOT that will be used all along this paper. Section B.4 describes the
building of the conceptual spaces of the three speakers. Section B.5 introduces the blending pro-
cess to build the common model used by the speakers to understand together. Section B.6 define
the notion of generic conceptual space. This section ends the introduction of the basic modeling
elements of the Blenbing Theory. Section B.7 introduces the basis of the Levels of Abstraction
Theory that will be used to add an inference structure to the blended and the generic conceptual
spaces and to organize them with both a disjoint and a nested gradients of abstraction. This
section shows also that the formalized notion of gradients of abstraction constitute a powerful
tool to capture and to represent the meaning in a coherent and formal way. Finally, section
B.8 proposes a short synthesis of Tom4A approach, and provide some insights about our future
works.

B.2 RUNNING EXAMPLE

In this section, only the factual elements of the running example are given in verbatim, its analysis
according to the Levels of Abstraction Theory being available in http://www.socphilinfo.org/node/150:

Suppose we join Alice, Bob, and Carol earlier on at the party. They are in the middle of
a conversation. We do not know the subject of their conversation, but we are able to hear this
much:

• Alice observes that its (whatever "it" is) old engine consumed too much, that it has a stable
market value but that its spare parts are expensive.

• Bob observes that its engine is not the original one, that its body has been recently re-painted
but that all leather parts are very worn;

• Carol observes that it has an anti-theft device installed, is kept garaged when not in use,
and has had only a single owner;

The point to notice in this conversation is the fact the three speakers observe properties about
an unknown, for us, system. The three speakers exchanges then observations about the system.
Since Aristotle, we know that this type of discourse can be resumed with a set of apophantic
formulas of the form Subject1 -Copula-Subject2. Each observation is then a proposition, that is
to says a relation between two subjects, the nature of the relation being defined with a verb
(the copula) linking the two subjects. For example, Alice’s observation it has a stable market

B.3. MODELING WITH THE TOT 183

value is a proposition that can be represented with the binary predicate is linking the subject
MarketV alue and the other subject stable: is(MarketV alue, stable). So, the conversation can
be re-written to make clear the different observations of each speakers:

1. Alice: its engine is old.

2. Alice: its engine consumed too much.

3. Alice: it has a stable market value.

4. Alice: its spare parts are expensive.

5. Bob: its engine is not the original one.

6. Bob: its body has been recently re-painted.

7. Bob: all leather parts are very worn.

8. Carol: its anti-theft device is installed.

9. Carol: it is kept garaged when not in use.

10. Carol: it has had only a single owner.

The conversation is then an exchange of 10 propositions where each but the 10th can be easily
formalized with a binary predicate. Because of the use of the when connector, the observation
9 links two propositions: is(it, not_in_use) and is_kept(it, garaged). Yet, numerous of these
observations use verbs conjugated to the past, meaning that the observations have a time refer-
ence. Temporal versions of the first order Predicate Logic would then be used to formalize such
observations but the interpretation of the resulting formulas is accessible for only specialists of
these logics.

To keep an intuitive interpretation of the formulas, Tom4A uses the modeling principles of
the Timed Observations Theory that are introduced in the next section. These principles will be
applied (i) to build the conceptual spaces of the three speakers, (ii) to define of the corresponding
blended and generic spaces and (iii) to model the blended space with a Gradient of Abstraction
(GoA) according to [Flo08]).

B.3 MODELING WITH THE TOT

The Timed Observations Theory (TOT) provides a mathematical framework to model dynamic
processes from timed data. The TOT is currently the mathematical basis of the TOM4L (Timed
Observation Mining For Learning) Knowledge Discovering from Databases process [LBP15,
LA12], and the TOM4D (Timed Observation Modeling for Diagnosis) Knowledge Engineer-
ing methodology [PLG14]. The Tom4A method aims at introducing levels of abstraction and
generic spaces [LGG04] in TOM4L and Tom4D according to the notion of conceptual equivalence
[ZGF06b].

The aim of the TOT is to model an observed process defined as a couple (X(t), Θ(X,∆))
where X(t) is an arbitrarily constituted set X(t) = {x1(t), ..., xnX (t)} of nX timed functions

184 BIBLIOGRAPHY

xi(t) of continuous time t (the dynamic process), X = {x1, x2, ..., xnX} is the set of the nX
variable names xi corresponding to each time functions xi(t) and Θ(X,∆) is an observation
program implemented in a human or a computer, the set ∆ = {δj} being a set of constant
values. A dynamic process X(t) is said to be observed by a program Θ(X,∆) when this latter
aims at writing timed observations describing the modifications over time of the functions xi(t)
of X(t):

Definition B.1 Timed Observation
Let Γ = {tk}tk∈< be a set of arbitrary timestamps tk at which Θ(X,∆) observes a time function
xi(t) ∈ X(t) and θ(xθ, δθ, tθ) be a predicate implicitly determined by Θ(X,∆);

A timed observation (δj , tk) ∈ ∆× Γ made on xi(t) is the assignation of values xi, δj and tk
to the predicate θ(xθ, δθ, tθ) such that θ(xi, δj , tk).

For example, Alice’s observation it has a stable market value is represented with the timed
observation (stable, tk), tk being the (unknown) timestamps of the instant where Alice pronounces
this sentence during the conversation. So, Alice play the role of the observation program Θ(X,∆)

and the assigned ternary predicate is(MarketV alue, Stable, tk), corresponding to θ(xi, δj , tk),
provides a meaning to the timed observation (stable, tk). The explicit link between a variable xi
(MarketV alue) and a constant δj (stable) is made with the notion of observation class:

Definition B.2 Observation Class
Let X = {xi}i=1...nnX

be the set of variable names corresponding to X(t) and ∆ = {δj} a set of
constant values an observation program Θ(X,∆) can use.

An observation class Ok = {..., (xi, δj), ...} for Θ(X,∆) is a subset of X ×∆.

Any association establishing a mapping ∆ 7→ X for each δj of ∆ can be made. The simplest
way, and the most used, to define observation classes is the use of singletons Oj = {(xi, δj)}
where the pair (xi, δj) is the unique element the set Oj . For example, the observation class
OAs = {(MarketV alue, stable)} has been implicitly used by Alice to reason about the system
(i.e. it). It is then obvious that doing so, all but the observation 9 (it is kept garaged when not
in use) are occurrences of a particular observation class, the observations 9 linking together two
occurrences of two different observation classes:

1. Alice, its engine is old :
OA4 (t1) ≡ (old , t1), OA4 = {xA4 , old}.

2. Alice, its engine consumed too much:
OA6 (t2) ≡ (too_much, t2), OA6 = {xA6 , too_much}.

3. Alice, it has a stable market value:
OA2 (t3) ≡ (stable, t3), OA2 = {xA2 , stable}.

4. Alice, its spare parts are expensive:
OA8 (t4) ≡ (expensive, t4), OA8 = {xA8 , expensive}.

5. Bob, its engine is not the original one:
OB1 (t5) ≡ (original , t5), OB1 = {xB1 , original}.

B.3. MODELING WITH THE TOT 185

6. Bob, its body has been recently re-painted :
OB3 (t6) ≡ (recently , t6), OB3 = {xB3 , recently}.

7. Bob, all leather parts are very worn:
OB5 (t7) ≡ (very_worn, t7), OB5 = {xB5 , very_worn}.

8. Carol, its anti-theft device is installed :
OC1 (t8) ≡ (installed , t8), OC1 = {xC1 , installed}.

9. Carol, it is kept garaged when not in use:
OC3 (t10) ≡ (garaged , t10), OC3 = {xC3 , garaged},
OC2 (t11) ≡ (not_in_use, t11), OC2 = {xC2 ,not_in_use}.

10. Carol, it has had only a single owner :
OC5 (t12) ≡ (single, t12), OC5 = {xC5 , single}.

Carol’s observation number 9 defines two timed observations, OC2 (t11) ≡ (not_in_use, t11)

and OC3 (t10) ≡ (garaged , t12), corresponding to two observation classes OC2 = {xC2 ,not_in_use}
and OC3 = {xC3 , garaged}. One of the interests of the timestamps tk of a timed observation is to
provide a temporal reference in a flow of observation. Carol’s meaning of the term when being
unclear, the timestamps allows to provide a meaning to it: the when is can be interpreted as
a reference to the past. In other words, the observation 9 is interpreted as: when it is not in
use, it is kept garaged): the status of the usage of it must be defined before the assertion of the
location. The TOT defines the notion of timed binary relation to represent a sequential relation
between two observations classes Oi and Oj :

Definition B.3 Temporal Binary Relation
A temporal binary relation rij(Oi, Oj , [τ−ij , τ

+
ij]), τ−ij ∈ <, τ

+
ij ∈ <, is an oriented relation between

two observation classes Oi and Oj that is timed constrained with the [τ−ij , τ
+
ij] interval.

This definition leads to define Carol’s observation number 9 with the timed binary relation
rC23(OC2 , O

C
3 , [0, τ

+
23]), τ−23 = 0 meaning that the end of the usage of it can coincide with the

beginning of the put in the garage (i.e. may be t10 = t11). This example suffers to provide
an intuitive comprehension of Tom4D’s operational definition of knowledge (cf. [PLG14] for a
justification of this definition):

Definition B.4 Any relation logically consistent with a binary temporal relation of the form
rij(Ci, Cj , [τ

−
ij , τ

+
ij]) is a piece of knowledge.

A model being an organized set of knowledge representations, the knowledge under consider-
ation is a set of binary relations between time functions xi(t), constants δi and stochastic clocks
Γi (cf. Figure B.1).

The notion of dynamic function play a pivot role in the Tom4D modeling methodology.
Figure B.2 shows a graphical representation of the dynamic function xi2(t) = f(xi1(t)). The
timed functions xi1(t) and xi2(t) are linked to a particular component ci, itself being a part of
the container of all the components, i.e. the system S. The dynamic function xi2(t) = f(xi1(t))

186 BIBLIOGRAPHY

Figure B.1: Basic Concepts of TOM4D models

Figure B.2: Tom4D’s Representation of a Dynamic Function

is defined over the Cartesian product ∆xi1×∆xi2 of the definition domain of the timed functions
xi1(t) and xi2(t) respectively and implements a set of decision rule of the form:

∀δ1j ∈ ∆xi1 ,∃δ2j ∈ ∆xi2 ,

xi1(tk) = δ1j
f

=⇒ xi2(tk) = δ2j . (B.1)

Figure B.3: Finite State Machine Model of a Tom4D Function

Such a set of decision rule specifies the Finite State Machine (FSM) of figure B.3 constituting
the behavioral model of the f dynamic function with ∆xi1 = {δ11, δ11} and ∆xi2 = {δ21, δ21}.
According to Tom4D, a rectangle represents a discernible state sij labeled with a proposition
about the value of one or more functions at a particular timestamps, xi2(t1) = δ21 for s21 for
example. An arrow represents a transition between two discernible states. Such a transition is
conditioned with an occurrence of a particular observation class, oxi1 ≡ (δ11, t1) for example.
This means that the dynamic function f implements the ternary predicate equals = (xi, δj , tk)

of definition B.1. In other words, the semantics of the ternary predicate θ(xθ, δθ, tθ) of definition
B.1 is given by the following two simple decision rules:

r1 : ∀t ≥ t1, xi1(t1) = δ11 =⇒ xi2(t) = δ21

r2 : ∀t ≥ t2, xi1(t2) = δ12 =⇒ xi2(t) = δ22 (B.2)

B.4. SPEAKERS’ CONCEPTUAL SPACE 187

Clearly, with boolean sets, such a FSM is not necessary, these two basic decision rules are
sufficient. But generally speaking, as figure B.2 shows, a Tom4D dynamic function x2(tk) =

f(x1(tk)) implements a decision model Mf implementing a set of decision rules of the following
general form: rj : ∀t ≥ t1, c(Mf , xi1(t1)) = δ1j =⇒ d(Mf , xi2(t)) = δ2j .

This formalism is necessary and sufficient for providing a formal meaning to the 11 observa-
tions of the speakers, and for building a semantic model of their conversation. The next section
shows that the three speakers make a very frequent usage of simple functions that implement a
two-states’ FSM of the form of figure B.3.

B.4 SPEAKERS’ CONCEPTUAL SPACE

According to [FT98], mental spaces are small conceptual packets constructed as we think and
talk, for purposes of local understanding and action. They are very partial assemblies containing
elements, and structured by frames and cognitive models. They are interconnected, and can be
modified as thought and discourse unfold.

Figure B.4: Observation Number 3 (Alice)

To apply this notion, let us consider again Alice’s observation it has a stable market value.
According to the Tom4D methodology, this observation can be formalized with a dynamic func-
tion xA1 (t) = fA2 (xA2 (t)) (cf. figure B.4) where xA1 (t) is the time function representing the Market
Value evolution over time, and xA2 (t) is the time function representing Alice’s assessments about
the Market Value. The variable xA1 denotes then Alice’s Market Value concept. At the partic-
ular instant where she is speaking, Alice’s evaluation of the value of xA2 (t) equals stable. By
construction, the definition domain of the variable xA2 is then at least a boolean set ∆xA2

= {
stable, not_stable }, the constant not_stable meaning anything but stable. This justifies the two
states FSM implemented in the fA2 assessment function.

The definition domain of the variable xA1 is unknown. Nevertheless, if we interpret the
concept of the Market Value with a usual dictionary, we can deduce that the dimension of xA1 is
an amount of money in a particular currency. This means that the definition domain of xA1 is the
set N of the natural numbers representing a number of cents in the implicit currency: xA1 ∈ N .
In other words, Alice’s assessment function fA2 is defined over the Cartesian product N ×∆xA2

.
Now, clearly, the values of the variable xA1 must be provided by a dynamic measurement function
xA1 (t) = fA1 (xAit(t)). Such a function is either implemented in Alice’s mind or, more surely,
Alice make an implicit reference to an external function aiming at providing the Market Value of
Alice’s system itA. This explains the relation, denoted with a dotted line, between the component
labeled cA1 and the variable xAit of figure B.4. This component representing the term its in Alice’s

188 BIBLIOGRAPHY

observation it has a stable market value, it formalizes Alice’s notion of the system about which
she talks. The component cA1 is then the container of all the components of the system. The
relations between the system and its components will then be represented with a dotted line.

Figure B.5: Alice’s Conceptual Space

Doing so for its four observations, it is simple to build a formal model of Alice’s conceptual
space as given in figure B.5. This figure shows that Alice’s observations concerned a system
cA1 is made of two components cA2 , its engine and cA3 , its spare parts. Two time functions are
linked with the component cA2 representing Alice’s notion of engine: xAengine1(t) which is the
input of the dynamic function fA3 that counts the age of cA2 , and xAengine1(t), the input of fA5 that
measure the consumption of cA2 . The component cA3 represents Alice’s notion of the set of spare
part of the system cA1 . The time function xAspare_parts_Set_Cost(t) = fA7 (xAspare_parts_Set(t)) is a
measurement function similar to fA1 , the dynamic functions fA4 , fA6 and fA6 being assessment
functions similar to fA2 . Obviously, these assessment functions use different decision models (the
decision rules haven’t been represented to simplify the figure B.5).

Figure B.6: Bob’s Conceptual Space

Figure B.6 shows Bob’s conceptual space that has been made with the same method. To
understand Bob’s observations, a conceptual space made with two assessment functions, xB3 (t) =

fB3 (xB2 (t)) and xB5 (t) = fB5 (xB4 (t)), must be build where xB2 (t) represents the current painting
timestamps of the system’s body and xB4 (t) the status of the leather parts. The function xB1 (t) =

fB1 (xBengine(t)) is a an assertion function allowing Bob to assert the original status of what Bob
names the engine cB2 . An assertion function can directly provide a fact (or a property) from a time
function, at the opposite of an assessment function which must operate on the values computed
with a measurement function as fB4 for fB5 . The dynamic function xB2 (t) = fB2 (xBpainting(t)) is

B.5. BLENDED CONCEPTUAL SPACE 189

a dating function that provides the timestamps of the most recent painting of the system body.
Finally, Bob’s notion of the system is the following set of components: CB = {cB1 , cB2 , cB3 , cB4 , cB5 },
cB5 being linked with cB3 .

Figure B.7: Carol’s Conceptual Space

Similarly, the same method leads to Carol’s conceptual space of figure B.7. The interpretation
of Carol’s observation number 9 (i.e. when it is not in use, it is kept garaged) leading to the timed
binary relation rC23(OC2 , O

C
3 , [0, τ

+
23]), it is represented with two successive assertion functions:

the first, xC2 (t) = fC2 (xCit(t)) asserts the status of the usage of the system cC1 , the second,
xC3 (t) = fC3 (xC2 (t)), asserts the location of CC1 according to the values of xC2 (t). The two others
observations 8 and 10 of Carol (i.e. its anti-theft device is installed and i.e. it has had only a single
owner respectively) are modeled with the assertion functions xC1 (t) = fC1 (xCanti-theft devise(t)) and
xC5 (t) = fC5 (xC4 (t)). The particularity of the observation 10 is that to assert that cC1 has had only
one owner, the function xC5 (t) = fC5 (xC4 (t)) needs the computing of the owner number. This is
then the role of the counting function xC4 (t) = fC4 (xCowners(t)).

The conceptual space of Alice, Bob and Carol are those built by each of these speakers to
produce their observations. The building of a Blended space is now required to to understands
together the 10 observations.

B.5 BLENDED CONCEPTUAL SPACE

Blending is the usual name of the conceptual integration operation aiming to project at least two
different conceptual spaces into a third one, the blended conceptual space: conceptual integration-
like framing or categorization-is a basic cognitive operation that operates uniformly at different
levels of abstraction and under superficially divergent contextual circumstances [FT98]. To cite
again Fauconnier and Turner, Projection is the backbone of analogy, categorization, and grammar
and they consider that it is an established and fundamental finding of cognitive science that
structure mapping and metaphorical projection play a central role in the construction of reasoning
and meaning. To build a blended conceptual space from the conceptual spaces of Alice, Bob
and Carol, we must make the following hypothesis: Alice, Bob and Carol understand together.
In other words, they speaks about the same system. It is to be noticed that nothing in the
conversation confirms this hypothesis. But we need it to build a blended and a generic conceptual
space.

With this hypothesis, Tom4A’s formalization make very simple the conceptual integration
operation because the 10 are independents. Figure B.8 shows the structure of the blended

190 BIBLIOGRAPHY

Figure B.8: Blended Conceptual Space

conceptual space. The exponents have been kept to clarify the links between the individual
conceptual space and the resulting blended space after the projections of Alice’s space firstly,
next Bob’s one and Carol’s space lastly:

• The system is now represented with a unique component : C1 ≡ CA1 ≡ CB1 ≡ CC1 .

• The components of C1 is the fusion of the Alice, Bob and Carol component sets :
C = {c1, cA2 , cC2 , cA3 , cB3 , cC3 , cB4 , cB5 }.

• The time function’s set is the fusion of the Alice, Bob and Carol time function’s sets :
X(t) = {xAits(t), xA1 (t), ..., xCanti-theft devise(t), x

C
1 }.

• The dynamic function’s set is also the fusion of the individual dynamic function’s sets :
F = {fA1 , fA2 , ..., fB4 , fB5 , fC1 }.

In figure B.8, the 10 observations of the conversation have been organized in three abstraction
levels. The lowest contains the more concrete observations of Alice, Bob and Carol: those
concerning the status of the system c1. The abstraction’s level of the middle concerns its usage
and contains Carol’s observations number 9 and 10 only. The highest abstraction level concerns
the cost usage of the system c1. Only Alice made observations at this level of abstraction.

B.6 GENERIC CONCEPTUAL SPACE

One of the interesting features of Fauconnier and Turner’s theory is the notion of generic concep-
tual space. This usual notion in the domain of Knowledge Engineering is of the main importance
to model a knowledge corpus (cf. the CommonKads methodology [SAA+00] or [PLG14] for

B.6. GENERIC CONCEPTUAL SPACE 191

a detailed illustration). Tom4D’s Knowledge Engineering methodology allows to build generic
conceptual spaces according to a notion of conceptual equivalence [ZGF06b] between different
knowledge roles. A knowledge role is an abstract label that indicates the role that the domain
knowledge to which the label is attached plays in an inference process [Bre94]. So, the basic idea
of the conceptual equivalence is that when two different concepts play the same role in a reasoning
process, they can be considered as conceptually equivalent.

Let us consider together Alice’s observation number 3 (it has a stable market value) and Bob’s
observation number 7 (all leather parts are very worn). Figures B.5 and B.6 shows that these
two observations uses two assessment functions, fA2 and fB5 , and two measurement functions,
fA1 and fB4 . It is obvious that, in Alice’s and Bob’s reasoning, the functions fA2 and fB5 plays the
same role: to assess something about the system. Similarly, the role of fA1 and fB4 is to measure
the level of some time function. It is then clear that the time functions xA2 (t) and xB3 (t), although
basically different, play the same role in Alice’s and Bob’s reasoning. The same analysis holds
for the others time functions. As a consequence, these two observations can be represented with
the same pattern made of type of function linking type of variable (cf. figure B.9). A set of
such patterns is called the functional network. It is build from the projection from a concrete
conceptual space, typically a blended space, to the space of the function’s types. To build the
figure B.9, let us define the type of functions used by our three speakers.

The type of an assessment function is called Discretization: this is the function’s type of
the dynamic functions fA2 , fA4 , fA6 , fA8 , fB3 , fB5 and fC5 . The Discretization function’s type
corresponds to the Quantization operation in the Discrete Event Systems community. It is
represented with a function of the form xD2 = fD(Ψ, xD1) where Ψ is a set Ψ = {ψi} thresholds
values ψi. The definition domain of fD is ∆xD1

× ∆xD2
where ∆xD1

is a cardinal set and ∆xD2

is an ordinal set or a set without any topology. The constants δx
D
2
i of ∆xD2

denotes ranges of
values (i.e. intervals) in ∆xD1

so that the number of elements in ∆xD2
is equals to the numbers

of thresholds values ψi in Ψ plus one. As a consequence, any function mapping a cardinal set to
an ordinal set or an a-topology set can be represented with a fD function type. In the running
example, the time functions xA2 (t), xA8 (t), xA6 (t), xC5 (t), xA4 (t), xB3 (t) and xB5 (t) are linked with
the variable’s type xD2 .

The type of a assertion function is a Classification function: this concerns the dynamic
functions fB1 , fC1 , fC2 and fC3 . A classification function implements a reasoning that uses a set
Rf of classification rules of the form (N denotes the set of natural numbers):

∀xC1 ∈ ∆xC1
, ∃n ∈ N, xC1 = δ

xC1
i =⇒ xC2 = n (B.3)

In this equation, n denotes a particular class so that xC2 = n means that the class corre-
sponding to the value of xC1 is the nth class. A classification function is then represented with a
function of the form xC2 = fC(Rf , x

C
1), its definition domain being ∆xC1

×N where ∆xC1
is any

type of set. Any function mapping a set to N can be represented with a fC function type. The
time functions xC2 (t), xC3 (t), xB1 (t) and xC1 (t) are then linked with the variable’s type xC2 .

The type of ameasurement function is aModeling function. It concerns the dynamic functions
fA1 , fA5 , fA7 and fB4 . It is represented with a function of the form xM2 = fM (Mf , x

M
1) whereMf is

a model providing the value of xM2 given those of xM1 . The definition domain of fM is ∆xM1
×∆xM2

where ∆xM1
and ∆xM2

are cardinal sets. Any function mapping two ordinal sets can be represented

192 BIBLIOGRAPHY

with a fM function type. The time functions xA1 (t), xA7 (t), xA5 (t) and xB4 (t) are then linked with
the variable’s type xM2 .

The type of a counting function is a Numbering function (fA3 and fC4). A numbering function
is a function of the form xN2 = fN (Pf , x

N
1) where Pf is a counting process (i.e. a Poisson

process or a discrete Markov counting model for examples). The definition domain of fN is
∆xN1

× ∆xN2
where ∆xN1

and ∆xN2
are two ordinal sets: any function mapping two ordinal sets

can be represented with a fN function type. The time functions xC4 (t) and xA3 (t) are then linked
with the variable’s type xN2 .

The last type of function is the dating functions and concerns only the fB2 dynamic function.
This type is called Time-Stamping function. It is represented with a function of the form xT2 =

fT (Tf , x
T
1) where Tf is a time stamping process providing the timestamps tk of the current value

of xT1). The definition domain of fT is ∆xT1
×∆xT2

where ∆xT1
can be any kind of set, ∆xT2

being
an ordinal set. So, any function mapping a set to an ordinal set can be represented with a fT
function type. Only the time function xB2 (t) is linked with the variable’s type xN2 .

Figure B.9: Generic Conceptual Space

Mapping the dynamic and the time functions of the blended space of figure B.8 with the
corresponding types leads to the functional network of figure B.9. The components have also
been associated with abstract components so that C1 is linked with the S component, CA3 is linked
with C3

D, C
C
3 is linked with C2

N , C
A
2 is linked with C3

C , C
1
C and C1

D, the pair (CB3 , C
B
5) is linked

with CN1 , CB4 with C1
D and finally, CC2 with C1

C . An abstract component specifies the properties
or the constraints that a concrete component must satisfy to be considered as an instance of
this abstract component. The reference to any concrete element in the blend being contained in
the projection from the blended to the generic conceptual space, the functional network is more
compact than the blend.

B.7. LEVELS OF ABSTRACTION 193

An important remark is that, when forgetting the projection, there is no way to come back
from the generic to the blended space. In other words, it is impossible to build Alice, Bob and
Carol observations with the only functional network of figure B.9: the blended space of figure
B.8 is a specific instantiation of the functional network of figure B.9. This remark is the basis of
the formalization of Floridi’s theory of gradients of levels of abstraction.

B.7 LEVELS OF ABSTRACTION

Fauconnier and Turner’s theory aims at studying the creation of specific structures that emerge
out of the blending operation. For this theory, the notion of abstraction is then an inherent
property of the objects them self (cf. the three levels of abstraction in figures B.8 and B.9).

Nevertheless, in [New81], Newell builds an ontological notion of abstraction levels, which is
characterized by the following properties: each abstraction level describes a system that trans-
forms a medium through its components which provide primitive treatments, and laws of com-
positions of these components which provide a structure to the system. As a consequence, the
working of the system is described with laws of behavior which establish how the system behavior
depends on the behavior of the components and their composition. Newell apply this notion to
describe an information system with four levels of abstraction: the physic level (electromagnetic
waves), the circuits level (transistors), the logic level (boolean algebra) and the symbol level
(program), from the most concrete (continue space) to the most abstract (purely discrete space).
Of this report, Newell proposes the existence of the Knowledge Level that it places above these
ones. The Knowledge Level is characterized by the following fact: there is no laws of composition
because behavior is governed by a Principle of Rationality. At the knowledge level, a system is
an agent whose components are goals, actions and a body (i.e. a knowledge corpus); and which
processes its input informations to determine the (output) actions to take in order to reach its
goals.

On an another hand, Floridi’s uses an epistemological point of view to develop its Method of
Levels of Abstraction in [Flo08, Flo10]. A level of abstraction (LoA) is a finite but non-empty
set of observables [Flo08, p. 10], and the word system refers to the object of study, a process in
science or engineering or a domain of discourse. The behaviour of a system, at a given LoA, is
defined to consist of a predicate whose free variables are observables at that LoA. The substitutions
of values for observables that make the predicate true are called the system behaviours. A Level
of Abstraction is then a particular organization of variable, observable, behavior and transition
rules between values. A moderated LoA is defined to consist of a LoA together with a behaviour
at that LoA, [Flo08, p. 11].

The Method of Levels of Abstraction organizes LoA in Gradient of Abstraction (GoA). A
GoA allows to vary the LoA to make observations at different granularity levels: the higher
the level of abstraction, the fewer but richer the information. The quantity of information in
a model varies with the LoA: a lower LoA, of greater resolution of finer granularity, produces a
model that contains more information than a model produced at a higher, or more abstract, LoA,
[Flo08, p. 18]. Foridi’s theory distinguishes two kinds of GoA: disjoint GoAs, where the LoA
are independent together, and nested GoAs where each LoA incrementally describes the same
phenomena.

194 BIBLIOGRAPHY

Tom4A defines three moderated LoA’s. The most concrete is called the Observation Level :
the blended space of figure B.8 constitutes the moderated LoA for the conversation of the run-
ning example of section B.2 at the observation level of abstraction. It formally describes the
observations of the speakers according to the TOT mathematical framework. It is made with
a set of binary relations linking concrete components, time functions and dynamic functions
constituting respectively the Structural Model, the Behavioral Model and the Functional Model
of the observed process (X(t), Θ(X,∆)) (cf. section B.3 and [PLG14] for a detailed example).

The intermediate level of abstraction is called the Computing Level : the functional network
of figure B.9 is the moderated LoA for the conversation at the computing level of abstraction.
It formally describes the types of computing that are required to create timed observations from
an observed process. In other words, the Computing Level contains the necessary and sufficient
corpus of knowledge to specifies the programs that could generate the timed observations of the
observation level. Again, it is made of binary relations linking types of components, variables
and functions, describing the logical approach to build timed observations at the Observation
Level.

The last level of abstraction, the highest according to Tom4A, is the Reasoning Level : it is
made with an inference structure describing the reasoning of an observer. It formally describes the
reasoning allowing the use of the type of functions of the computing level to achieve a particular
goal. It is made of binary relations linking knowledge roles and type of inferences, describing the
reasoning steps that are required to achieve a goal defined with a particular problem to solve.

Figure B.10: Alice’s Observation 3 at three LoA

To build a model at this level of abstraction, let us consider again Alice’s observation it has
a stable market value. The first point to notice is that Alice uses the term market value to build
its observation. This term has been represented with the time function xA2 (t) (cf. figure B.10),
which is a Discretization function represented with the variable’s type xD33. At the Knowledge
Level, the role of a discretization function is to transform a Quantitative Variable in a Qualitative
Variable. Such a transformation aims at defining the level of a quantitative variable regard to
thresholds (cf. section B.6). In the same spirit, the role of a modeling function f3

M is to provide a
quantitative evaluation of the Unobservable Variable xM31 which characterizes, at the Knowledge
Level, the phenomena of the evolution of the time function xAits(t). The role of System at the
Knowledge Level is then those of a transfer function, graphically represented a rectangle with
round corners, that provides values for each of its variables. Finally, according to Tom4A, the
complete meaning of Alice’s observation number 3 is given in figure B.10.

Doing the same for all the observations of the conversation leads to the figure B.11. In
this figure, the blended, the generic and the inference conceptual spaces have been organized

B.8. CONCLUSION 195

Figure B.11: Gradients of Abstraction of the Conversation

in two gradient of abstraction (GoA): a disjoint GoA which constitutes the lowest abstraction
level, the Observation Level, and contains the Blended Conceptual Space of figure B.8, and a
nested GoA made of the Observation Level, the Computing Level and the Reasoning Level. The
Generic Conceptual Level of figure B.9 is represented with the intermediate abstraction level, the
Computing Level. The effect of the conceptual equivalence appears clearly: even if they aim at
representing the same thing, the functional network of figure B.11 is much more compact than
the Generic Conceptual Level of figure B.9.

Up to our knowledge, the Reasoning Level has no counter part in the Blending Theory. The
fundamental interest of this LoA appears in figure B.11: it allows to identify the common aim of
the speakers to explicit some properties of a (still unknown) system in order to state its qualities
and defects.

B.8 CONCLUSION

This paper proposes a formal framework, the Tom4A method (Timed Observations Method for
Abstraction), that provides for the first time, up to our knowledge, a strong mathematical foun-
dation to both the Blending theory [FT98] and the Method of Abstraction theory of [Flo08]. This
mathematical framework is build on the Timed Observations Theory (TOT). Tom4A completes
the Tom4D Knowledge Engineering methodology (Timed Observations Methodology for Diagno-
sis, [PLG14]) and the Tom4L Knowledge Discovery in Databases process (Timed Observations
Mining for Learning, [LBP15, LA12]), also based on the TOT. The basic concepts of Tom4A
are progressively introduced with a running example, a conversation between three speakers,

196 BIBLIOGRAPHY

whose original text comes from the web site of the Society for the Philosophy of Information
(http://www.socphilinfo.org/node/150). This example provides for the first time, still up to our
knowledge, the first conceptual models of a conversation under the formal form of two gradients
of abstraction, defining the meaning of this conversation.

Our long term goal is to develop software tools able to discover and to model knowledge
representations from sets of timed data so that the human interpretation is intuitive, immediate
and independent of the learning and the modeling tools. The next step of this work is then to
propose a new formalization of the analogical reasoning based on the combination of the TOT
and the Category Theory [ML71].

Résumé

Ce document concerne le développement d’un cadre mathématique spécifiant une technologie capable de
prendre en charge quelques unes des problématiques relevant du domaine des Grands Flux de Données
(Big Data Flows). Nous proposons de combiner le point de vue ontologique de Newell et celui épisté-
mologique de Floridi d’abstraction pour construire des outils de transformation de modèles au moyen d’un
ensemble adéquats de foncteurs au sens de la théorie des Catégories de Samuel Eilenberg et Saunders Mac
Lane. La méthode de résolution de problème proposée est basée sur un raisonnement d’abstraction temps
réel qui produit, en ligne, une réduction d’un grand nombre de données sémantiquement pauvres en une
donnée unique équivalente mais sémantiquement plus riche. Le prix à payer pour un tel enrichissement
sémantique de l’information est la perte d’information syntaxique (i.e. le phénoméne d’oubli).

Nos contributions sont les suivantes: (i) la démonstration que le concept d’Observateur Unaire de la
Théorie des Observations Datées (TOT) de Le Goc joue le même rôle qu’un échantillonneur de Dirac, (ii)
la construction de la catégorie TOT (Z), adéquate à la formulation du processus d’abstraction proposé et
(iii) la conception de la méthode de résolution de probléme TOM4A (Timed Observations Methodology
for Abstraction) dont une application concrète est présentée visant à découvrir et modéliser le problème
complexe de la fraude interne dans le domaine bancaire.

En synthèse, la catégorie TOT i(Z) à un niveau d’abstraction arbitraire Li, i 6= 0, engendre une struc-
ture algébrique particulière ainsi qu’un espace observable particulier aux données observées et permet la
modélisation de ces données via un modèle de chronique abstraitMi spécifique à ce niveau d’abstraction.
Ce document démontre les équivalences suivantes: Représentation↔ Abstraction↔ Somme dans la caté-
gorie TOT i(Z) et Interprétation ↔ Réification ↔ Produit dans la catégorie TOT i(Z).

Mots clés : Abstraction, Réification, Morphisme, Théorie des Catégories, Processus Dynamiques,
Ingénierie des Connaissances.

Abstract

This document concerns the development of a theoretical mathematical framework to provide a technology
able to manage some of the problematics of the Big Data Flows domain. We propose to combine Newell’s
ontological and Floridi’s epistemological point of views of abstraction to build tools that transform models
by the mean of an adequate set of functors according to Samuel Eilenberg and Saunders Mac Lane’s
Category Theory. The proposed Problem Solving Method relies on a real time abstraction reasoning
process to resume, on line, a lot of semantically poor data into an equivalent but richer one. The price
to pay for such an information semantic enrichment is the loss of syntactic data (i.e. the oversight
phenomenon).

Our contributions are (i) to prove that Le Goc’s Timed Observations Theory (TOT) concept of
Unary Observer plays the same role as Dirac’s sampler, (ii) the construction of the TOT (Z) Category
that is adequate to formulate the proposed abstraction based PSM and (iii) the design of TOM4A (Timed
Observations Methodology for Abstraction), a specific recursive abstraction-reification based PSM whose
a concrete application has been provided for detecting and modeling the complex problem of internal
frauds in the banking industry.

Finally, a TOT i(Z) Category at an arbitrary Level of Abstraction (LoA) Li, i 6= 0, induces particular
algebraic structure Si and observable space T i to the observed data and model them with a specific
abstract chronicle modelMi at this LoA. This document demonstrates then the following equivalences:
Representation ↔ Abstraction process ↔ Sum of objects in the TOT i(Z) Category and Interpretation
↔ Reification process ↔ Product of objects in the TOT i(Z) Category.

Keywords: Abstraction, Reification, Morphism, Category Theory, Dynamic Process, Knowledge Engi-

neering.

LIS, Laboratoire d’Informatique et Systèmes, UMR CNRS 7020
Falculté de Saint Jérôme, Avenue Escadrille Normandie Niemen

13197 Marseille Cedex 20

	Acknowledgements
	Introduction
	General Problematic
	Contributions
	Framework of My Contribution
	Running Example
	Document Structure
	Conclusion

	Preliminaries
	Introduction: The Knowledge Level of Newell
	Floridi's Method of Level of Abstraction
	Merker's Introduction to the Category Theory
	Sum and Product
	Sum
	Product

	Functors
	Conclusion

	Introduction to the Timed Observation Theory
	Introduction
	Mathematical Framework of the TOT
	Timed Observation
	Examples of Sets of Constants and Assignations
	Observation Function

	Canonical and Safe Program
	Spatial Discretization Principle
	Semantic of a Timed Observation
	Observation Class
	Superposition Theorem
	Temporal Binary Relation
	Abstract Chronicle Model
	Modeling with the TOT
	Model according to the TOT
	The TOT Modeling Principles
	Conclusion: about Abstraction Level

	Composition of Observers
	Introduction
	Neutral Observation, Observation of a Timestamp, Observation of a Constant
	Deduction of an Assignation from Two Assignations
	Addition of Two Timed Observations
	Composition of Observers
	Abstract Unary Observer
	Abstract Binary Observer
	Conclusion

	Process of Abstraction in the TOT Framework
	Introduction
	Modelisation of a Superposition of Sequences of Timed Observations
	Superposition of Two Sequences
	Superposition of m, m > 2, Sequences

	Algebraic Structure of the Observed Process
	Observable Space of the Observed Process
	Abstract Chronicle Model of the Observed Process
	Behaviour Model of the Observed Process
	Abstraction Process
	Conclusion

	The TOT Sampler
	Introduction
	Dirac's Sampler
	Unary Observer
	Algebraic Structure in the Dirac's Sampler Framework
	Algebraic Structure in the Unary Observer Framework
	Homomorphism between Algebraic Structures (R, +) and (R, +ij)
	Conclusion

	The TOT Category
	Introduction
	Characteristic Elements of the TOT Category
	The Categories of the TOT
	Modeling Functors
	Level of Abstraction of a TOT(m) Category
	Abstraction Functors

	Syntactic Arithmetization
	Sum and Product in the TOT Category
	Sum in the TOT Category
	Product in the TOT Category

	Conclusion

	The TOM4A Methodology
	Introduction
	Problem Solving Method
	TOM4A, an AR-PSM based on TOT(Z) Category
	Internal Fraud Detection in the Banking Industry
	Observation Step
	Problem of the Observed Process
	Knowledge Model of the Observed Problem

	Representation Step
	Representation of a transaction
	Syntactic Model of the Observed Problem at the First LoA
	Syntactic Model of the Observed Problem at the Second LoA
	Syntactic Model of the Observed Problem at the Third LoA
	Gradient of Abstraction of the Observed Problem

	Interpretation Step
	Reification Process
	Knowledge Model of the Solution

	TOM4FFS Algorithm
	Conclusion

	Conclusion
	Synthesis
	Contributions
	Perspectives

	Bibliography
	Appendix Unary Observers
	Introduction
	Theoretical Unary Observer
	Concrete Unary Observer
	Piecewise Functions
	Observing a Piecewise Function
	Observing the Derivative of a Piecewise Function
	Piecewise Function Evolution
	Effort of a Sequence of Timed Observations
	Power of a Sequence of Timed Observations

	Appendix Operationalization of the Blending and the Levels of Abstraction Theories with the Timed Observations Theory
	Introduction
	Running Example
	Modeling with the TOT
	Speakers' Conceptual Space
	Blended Conceptual Space
	Generic Conceptual Space
	Levels of Abstraction
	Conclusion

