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Résumé

Dans cette thèse, j’adresse le sujet fascinant et attirant du transport de charge élec-
trique et de chaleur dans les systèmes Hall quantiques, qui sont parmi les exemples
les plus célèbres des phases topologiques de la matière, en présence de potentiels
électriques dépendantes du temps. L’intérêt de la communautè de physique de la
matière condensée vers les systèmes topologiques a considérablement augmenté ces
dernières années. Par exemple, il vaut la peine de se rappeler le prix Nobel pour la
physique 2016 attribué aux Professeurs Thouless, Kosterlitz et Haldane pour leur
contribution à l’étude des états topologiques de la matière. Ces états sont phases
exotiques de matière, dont les propriétés sont décrites en termes des quantités qui ne
dépendent pas des détails d’un système et qui sont très robuste contre des défauts
et des perturbations.

En outre, l’intérêt pour les systèmes topologiquement protégés ne se limite pas à
la physique de la matière condensée seulement, mais s’étend également à le domaine
de l’informatique quantique: au fait, une nouvelle branche de cette discipline est
apparue récemment, connu sous le nom de informatique quantique topologique, qui
vise à tirer profit des propriétés émergents des systèmes topologiques pour coder et
manipuler l’information quantique de façon plus robustes que avec des autres sys-
tèmes. Le premier et certainement un des exemples les plus célébres est l’effet Hall
quantique, que l’on a découvert presque il y a quarante ans et attire toujours beau-
coup d’attention du point de vue théorique et expérimental. Ce phénomène physique
remarquable se produit dans des systèmes électroniques bidimensionnels dans la lim-
ite de forts champs magnétiques perpendiculaires. Après avoir imposé un courant
le long d’une direction de l’échantillon, on mesure une tension dans la direction
transversale qui aux tournants a provoqué une résistance transversale, linéairement
proportionnelle au champ magnétique. Le comportement de la résistance transver-
sale, généralement définie résistance de Hall, était conforme à la théorie classique
du transport électronique diffusif de Drude et a permis d’examiner la nature de
transporteurs de charge dans des métaux. Presque cent ans plus tard, cette sorte de
mesure de Hall a été faite avec des électrons limités une région spatiale dans deux
dimensions, connu comme des gaz électroniques bidimensionnels, qui se forme, par
exemple, à l’interface de deux semi-conducteurs. En particulière, les expériences ont
révélé que, dans des systèmes Hall quantiques, la résistance de Hall manifeste une
quantification en termes de la unité minimale de résistance RK = h/e2, ainsi mon-
trant des plateaux bien définis en fonction du champ magnétique, en forte contraste
avec le comportement linéaire prévu selon la théorie classique.

La constant de proportionnalité est un numéro entier avec une exactitude plus
grande qu’une partie par milliard. De façon intéressante, cette résistance n’est pas
affecté par les propriétés spécifiques du système, puisqu’il dépend exclusivement de
deux constants fondamentaux, la constante de Planck h et la charge électronique e.
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La quantité RK = h/e2 est appelée résistance de Von Klitzing et, en raison de la
précision extraordinaire de cette sorte de mesures, il est maintenant utilisé comme
l’unité standard de résistance. Dans ce sens, on doit considérer la valeur de n un
nombre entier par définition. Ce phénomène, connu comme l’effet Hall quantique
entier, peut être compris d’une façon satisfaisante en recourant à une description
quantique. Le résultat principal de ce traitement quantique-mécanique est que les
niveaux d’énergie d’un électron placé dans un champ magnétique sont discrets et
également espacés par un écart qui augmente linéairement avec le champ magné-
tique. Ces niveaux sont appelés niveaux de Landau, depuis le physicien russe L.
Landau qui les a premièrement découverts. Le nombre de niveaux de Landau oc-
cupés est appelé facteur de remplissage. Une particularité des systèmes Hall quan-
tique entiers est l’apparition des états de bord métalliques unidimensionnels sur les
frontières du système. Le long de ce bord les particules se propagent avec une direc-
tion bien définie. Pour comprendre pourquoi, considérez une image semi-classique
d’électrons contraints dans une région finie du plan. En présence d’un fort champ
magnétique perpendiculaire la trajectoire est circulaire, avec un rayon qui diminue
avec l’augmentation du champ magnétique. Pour des champs magnétiques suffisam-
ment hauts, les particules décrivent des très petites orbites circulaires dont le rayon
est beaucoup plus petit que les dimensions linéaires du système et aucune conduc-
tion ne peut avoir lieu. Aux bords, les électrons frappent le mur avant l’achèvement
d’un cycle complet et, en conséquence des collisions multiples avec la frontière, ils
se déplacent le long du bord décrivant des orbites sautantes. En effet, tant que nous
restons loin des bords, pour chaque valeur possible du niveau de Fermi la bande
occupée la plus haute est toujours séparée de la bande vide la plus basse par l’écart
d’énergie. Cependant, la situation est trés différente prés du bord du système. Ici le
spectre est changé en ce qui concerne les niveaux de Landau, en raison du fait que la
fonction d’onde doit disparaître au bord. En conséquence, le niveau de Fermi croise
toujours le spectre d’énergie tant sur le côté droite que sur le côté gauche d’une barre
Hall quantique, provoquant des états de bord métalliques. Il est clair que chaque
niveau de Landau remplis induit un état sur chaque bord, signifiant qui existe une
correspondance biunique entre des niveaux de Landau remplis et des états de bord.
Quand le facteur de remplissage est égal à n, un nombre total de n états de bord
émerge. Ainsi, la résistance totale d’un bar Hall quantique est R = nh/e2.
Un rôle clé dans la physique de l’effet Hall quantique est joué par le désordre, qui a
souvent un effet dramatique sur des propriétés de transport. Le résultat important
est que cette image intuitive d’états de bord n’est pas significativement changée par
le désordre. Au contraire, le désordre est même utile dans ce cas, comme il aide la
localisation des états loin des bords en correspondance des plateaux de résistance
de Hall, tandis que les états de bord restent étendus et portent un courant même en
présence de désordre dans le système.
La robustesse d’états de bord des systémes Hall quantiques peut être comprise en re-
gardant la résistance de Hall d’une autre perspective. Observons que la résistance de
Hall est directement liée au facteur de remplissage, qui est une propriété globale du
bar de Hall, signifiant qu’il n’est pas possible de le décrire en termes d’un paramètre
d’ordre local. Ce point, ensemble avec le fait qu’aucune symétrie n’est cassée pen-
dant la transition entre les plateaux différents, aidé dans la compréhension même si
les phases du effet Hall quantique décrites par des facteurs de remplissage différents
ne pouvaient pas être classifiées en termes de la théorie de Landau-Ginzburg de
transitions de phase. États de la matière qui sont caractérisés par des paramètres
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globaux et qui sont au-delà du paradigme de Landau-Ginzburg sont appelés des
états topologiques: l’effet Hall quantique entier était juste le premier exemple de
beaucoup de systèmes topologiques qui ont été successivement découverts.
Le concept de topologie est emprunté aux mathématiques, oú toutes les structures
avec un certain nombre de trous sont appelées topologiquement équivalentes et
définissent des certaines classes topologiques: une figure géométrique peut être trans-
formée en objet topologiquement distinct seulement par une transformation brusque
qui modifie son nombre de trous. Par analogie, les plateaux différents, séparés par
un écart et associés aux valeurs différentes de la résistance de Hall, peuvent être
interprétés comme des phases quantiques topologiquement différentes. Une transi-
tion entre les classes topologiques, appelées la transition de phase topologique, est
possible seulement après la fermeture de cet écart. C’est exactement ce qui arrive
quand la résistance de Hall saute d’un plateau à l’autre.

L’interprétation topologique des états des systèmes Hall quantique fournit aussi
un autre point de vue sur les canaux de bord précédemment discutés. Quand deux
phases topologiques distinctes sont réunie, à leur interface une transition de phase
topologique doit arriver: l’écart doit fermer. En particulier ceci arrive à l’interface
entre une phase de Hall quantique et le vide: ceci explique l’existence d’états sur
la frontière d’une barre de Hall quantique d’un point de vue topologique. De plus,
le nombre de ces états de bord est déterminé par le facteur de remplissage. Cela
signifie que la structure et la robustesse des états de bord sont profondément liées
aux propriétés de la phase Hall quantique correspondante.

En 1982 D. C. Tsui, H. L. Stormer et des collègues ont rapporté un comportement
inhabituel de la résistance de Hall. Pour un échantillon avec la mobilité plus haute et
soumis à un champ magnétique plus intense que ceux utilisés par von Klitzing, ils ont
observé l’apparition d’un plateau à un facteur de remplissage fractionnaire. Plus tard
les plateaux ont été mesurés en correspondance à beaucoup d’autres valeurs frac-
tionnaires de remplissage de niveau de Landau : cette phénoménologie particulière,
que l’on ne peut pas expliquer en termes de l’image physique donnée pour l’effet Hall
quantique entier, a été appelée l’effet Hall quantique fractionnaire. Contrairement
au cas entier, l’explication physique d’effet de Hall quantique fractionnaire ne peut
pas négliger la corrélation entre les électrons. Une première interprétation théorique
de ces résultats expérimentaux a été publiée par Laughlin en 1983. Il s’est rendu
compte que l’ingrédient manquant dans l’interprétation théorique d’effets Hall quan-
tiques était les interactions entre électrons et que l’effet Hall quantique fractionnaire
doit provenir d’un état quantique fortement corrélé. Comptant sur les propriétés
analytiques de la fonction d’onde d’un électron dans le plus bas niveau de Landau
et surtout sur une intuition physique brillante, il a mis au point une fonction d’onde
variationnelle pour décrire la formation de un nouveau type de liquide quantique
pour un sous-ensemble spécifique de facteurs de remplissage fractionnaires, nommé
"l’ordre de Laughlin". Une compréhension qualitative pour la stabilité d’états au
facteur de remplissage fractionnaire peut être dessinée recourant à une image simple
d’électrons interagissant. Dans niveaux de Landau partiellement remplis, il y a une
liberté énorme de remplir la barre de Hall d’électrons. En présence de répulsion
entre des électrons, notre liberté de les distribuer est réduite. Commençons à nous
concentrer sur le cas idéal d’un champ magnétique infini. La longueur magnétique
est zéro et les états sont localisés : les électrons ont donc la tendance à cristalliser
en minimisant leur énergie d’interaction. Un état unique est formé, appelé le cristal
de Wigner, qui est radicalement distinct de la phase Hall fractionnaire. Quand le
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champ magnétique est baissé aux valeurs finies, les fonctions d’onde électroniques
superposent et ils ne peuvent pas former désormais une structure cristalline. Pour
certains facteurs de remplissage, ils forment un liquide quantique fortement corrélé,
qui peut être décrit en termes d’une fonction d’onde unique à plusieurs corps. Une
des conséquences de grande portée qui ont été présentées par l’idée de Laughlin est
la prédiction que les excitations élémentaires de systèmes de Hall quantiques frac-
tionnaires sont quasi-particules avec charge et statistique fractionnaire. Dans trois
dimensions, les particules quantiques identiques peuvent être distinguées dans deux
classes principales selon la statistique de change de leur fonction d’onde à plusieurs
corps: bosons et fermions. Dans le premier cas, la fonction d’onde est inchangée par
l’échange de deux particules; dans le deuxième, la fonction d’onde choisit simple-
ment un signe moins. En deux dimensions, une troisième classe de particules existe,
qui ne sont ni bosons, ni fermions, et qui sont appelé anyons. Quand deux anyons
sont échangés la fonction d’onde à plusieurs corps des systèmes est multipliée par un
numéro complexe de module un, avec une phase qui peut acquérir tout valeurs. En
considérant toute la fonction d’onde à plusieurs corps possible dans deux dimensions,
on peut distinguer entre deux classes séparées. Quand l’ordre d’échanges n’affecte
pas la phase acquise par ces fonctions d’onde à plusieurs corps, nous traitons anyons
abelian. Au contraire, si l’état final obtenu après plusieurs échanges dépend de cet
ordre, anyons est appelé non-abelian. La statistique fractionnaire de quasi-particules
de Laughlin et des quasi-trous est dictée par le facteur de remplissage spécifique de
la correspondant état. Les états appartenant à l’ordre de Laughlin sont tout anyons
abelian. Remarquablement, des états de bord unidimensionnels surgissent aussi dans
l’effet de Hall quantique fractionnaire et leurs excitations héritent la charge et les
propriétés statistiques du système. Un grand effort théorique a été fait pour décrire
l’effet de Hall quantique fractionnaire en termes de théories efficaces des champs
basées sur la théorie de champ de jauge topologique de Chern-Simon abelian. Ces
théories efficaces contiennent les propriétés particulières des états, comme le facteur
de remplissage, la charge et la statistique des excitations. Ce rapport profond en-
tre la physique de matière condensée et des théories quantiques topologiques des
champs représente une occasion unique de valider des concepts exotiques typique-
ment présentés dans la physique d’haute énergie au moyen des expériences effectuées
dans des conditions qu’on peut obtenir facilement dans les laboratoires. En limitant
ces théories sur la frontière, présentée par la taille finie de l’échantillon, on a une de-
scription efficace pour les états de bord du système. Les excitations héritent la charge
et les propriétés statistiques de celui dans la plupart. Pour le facteur se remplissage
que nous considérerons les états de bord sont décrits en termes de champs bosonic,
conformément à la théorie de Tomonaga-Luttinger pour des électrons interagissant
dans une dimension. Dans ce modèle, il est possible de calculer les propriétés de
transport à travers le formalisme des fonctions de Green hors de l’équilibre en ten-
ant compte de la présence des interactions électroniques. Pour décrire le système
en l’absence d’interactions j’utiliserai le formalisme de la matrice de diffusion sta-
tionnaire ou dépendant du temps, que peut constituer une technique polyvalente
pour l’étude des propriétés de transport. La longueur de cohérence assurée par la
protection topologique garantit d’avoir accès à la nature ondulatoire des électrons.
Cette enquête peut être poussée à sa limite fondamentale en explorant le transport
quantique au niveau d’électrons individuels. Cette idée incarne le coeur d’un nou-
veau domaine de la recherche, connu comme la l’optique quantique électronique.
Ce champ naissant vise à manipuler des électrons un à un dans des conducteurs
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balistiques, cohérents. De cette façon il est possible de reproduire des expériences
quantiques-optiques et des configurations dans des dispositifs de matière conden-
sée, utilisant des fermions (des électrons dans des systèmes mesoscopic) au lieu des
bosons (des photons dans des guides d’ondes et des cavités optiques). Á cette fin un
effort énorme a été fait vers la réalisation des source à d’électrons individuels, qui
représentent clairement un bloc de construction crucial pour réaliser chaque expéri-
ence quantique-optique avec des systèmes électroniques. La première proposition
pour extraire un électron individuel de la mer de Fermi remplie a été théoriquement
discutée par Buttiker et des collaborateurs: le condensateur mesoscopic. Il consiste
de un point quantique connecté à un gaz électronique bidimensionnel par un con-
tact quantique, où le contrôle périodique des niveaux d’énergie mène à l’injection
alternée d’un électron et un trou dans le système pendant chaque période. Un pro-
tocole polyvalent pour émettre d’une façon contrôlable des électrons individuels le
long des canaux des conducteurs quantiques peut être mis en oeuvre en recourant
au principe apparemment simple d’appliquer un potentiel dépendant de temps à un
conducteur quantique. Les électrons peuvent être émis dans un système mesoscopic
aussi en employant un potentiel indépendant du temps. Néanmoins, ce potentiel ne
peut pas être utilisé comme une source réglable des électrons individuels. Dans ce
sens, on doit déclencher l’émetteur d’électrons individuels avec une tension dépen-
dante du temps pour réaliser la manipulation contrôlable d’électrons exigés pour des
buts expérimentaux. Le défi principal, dans ce cas, a consisté en ce qu’une tension
dépendant du temps exciterait généralement des paires d’électron-trou neutres in-
désirables, gâtant ainsi à son coeur l’idée d’une source d’électrons individuels. Le
tournant pour surmonter cette question était la prédiction théorique par Levitov
et ses collaborateurs qu’un train périodique d’impulsions Lorentzian, portant un
nombre entier de particules par période, peut injecter des excitations électroniques
minimales exemptes des paires d’électron-trou supplémentaire, en ensuite nommé
levitons. Pour leurs propriétés fascinantes, levitons a été proposé comme qubits pi-
lotant et comme une source d’intrication quantique avec des applications attirantes
pour le traitement d’informations quantique. De plus, les protocoles de tomogra-
phie quantiques capables de reconstruire leurs fonctions d’onde ont été proposés et
réalisés expérimentalement. Tandis que la mise en oeuvre de sources d’électrons
individuels n’a pas été une tâche insignifiante, les analogues en matière condensés
des les composants expérimentaux de l’optique quantique peuvent être trouvés d’une
façon plus naturelle. Comme discuté, les guides d’ondes pour des photons peuvent
être remplacés par les états de bord balistiques de systèmes de Hall quantiques. De
plus, le rôle de séparateur de rayon électronique, qui devrait imiter le miroir semi-
argenté d’optique conventionnelle, peut être joué par un contact de point quantique,
où les électrons sont reflétés ou transmis avec une probabilité contrôlable. Un accom-
plissement fondamental de l’électronique optique quantique a été la mise en oeuvre
de l’interférométre Hong-Ou-Mandel, où les électrons empiètent de l’autre côté d’un
QPC avec un retard réglable. En exécutant cette sorte d’expérimente, il est possible
de rassembler des informations sur les formes des paquets d’onde électroniques em-
piétant et mesurer leur caractère non distinguable. Par exemple, quand deux états
électroniques indiscernables et cohérents entrent en collision simultanément au QPC
le bruit de charge disparaître, montrant ainsi le "dip" de Pauli. Ce dip peut être
interprétée en termes d’effets d’anti-bunching liés á la statistique Fermi d’électrons.
L’interféromètre Hong-Ou-Mandel peut ainsi être employé pour tester si la deco-
herence et le déphasage, induit par des interactions électroniques-électroniques, ré-
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duisent le caractère non distinguable d’électrons entrants en collision. Malgré des
analogies évidentes et des ressemblances avec l’optique quantique photonique tradi-
tionnelle, l’optique quantique électronique apporte deux nouvelles caractéristiques
qui sont á la base des caractéristiques d’une systèmes électroniques. Premièrement,
les états de photon individuel sont d’habitude créés sur un vide quantique vrai
(c’est-á-dire l’état avec zéro particules), tandis que des états d’électron individuel
sont toujours produits au-dessus d’un état complètement différent avec sa propre
dynamique, la mer de Fermi remplie. Néanmoins, un analogue fermionique de la
théorie de cohérence optique de Roy J. Glauber peut être développé. Même ce qui
est plus important, des systèmes de matière condensée peut être lourdement affecté
par des interactions et l’état d’un système fermionique peut montrer des corrélations.

Par exemple, l’effet Hall quantique fractionnaire est un exemple paradigmatique
des conséquences dramatiques des interactions entre électrons. Dans un travail ré-
cent on a montré que les conditions pour des excitations électroniques minimales ne
sont pas affectées dans l’effet Hall quantique fractionnaire. Ici la notion de leviton a
été étendue aux systèmes interagissant de la séquence de Laughlin et il a été démon-
tré que des impulsions Lorentzian portant charge entière représentent le potentiel
le plus propre malgré les porteurs fondamentaux étant des quasi-particules avec la
charge et la statistique fractionnaire.

Ce fait prouve que les levitons sont robustes même à la présence d’interaction
entre électrons. En regardant ce résultat d’une autre perspective, cela signifie que
nous n’avons pas toujours identifié de caractéristique qui marque une différence
saisissante dans les propriétés de levitons entre la phases non interagissant ou les
phases fortement corrélées. Une des parties originales de cette thèse s’est concen-
trée sur le problème lié à l’effet de fortes interactions sur la propagation en temps
de paquets d’onde des levitons dans l’effet Hall quantique fractionnaire. En effet,
en raison de leur nature solitonique, les levitons sont des particules assez indépen-
dantes. De la même façon de solitons, plusieurs levitons différent sont libre de se
propager le long des états de bord électroniques unidimensionnels et peuvent être
superposé de façon contrôlable, formant ainsi des états à plusieurs corps appelés le
multi-levitons. Néanmoins, des configurations auto-organisés et corrélés de solitons
ont été récemment rapportées dans le domaine optique. Une question fascinante est
si un phénomène semblable peut être observé aussi pour levitons dans des états de
bord de l’effet Hall quantique entier. Il est bien connu que, dans un système élec-
tronique unidimensionnel, l’interaction entre électrons affecte considérablement les
propriétés de particules, induisant, par exemple, l’arrangement d’électrons dans une
configuration régulière et statique dans l’espace. Ce phénomène est connu comme
la cristallisation à et son homologue de taille fini est nommé la molécule de Wigner.
De tels états fortement corrélés se manifestent comme un arrangement régulier de
la densité électronique qui oscille autour des positions fixes pour minimiser l’énergie
d’électrons. En particulier un système contenant des électrons exposera, en présence
d’une forte interaction, un modèle oscillant avec exactement N maxima. De plus,
quand la force d’interaction est augmentée, l’amplitude d’oscillation est améliorée
aussi. Dans des états de bord d’effet Hall quantique fractionnaire, la connexion entre
le temps et l’espace donné par la chiralité ouvre la voie à la réalisation possible de
la version en temps réel de cette cristallisation induite par interaction en appliquant
des impulsions de tension dépendant de temps directement aux canaux de bord. De
toute façon, la densité électronique pourrait exposer des oscillations même dans le
cas non-interagissant, par exemple, en raison des effets de taille finis (un phénomène
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connu comme les oscillations de Friedel). Pour identifier la formation d’une config-
uration d’une molécule de Wigner, il est ainsi nécessaire d’examiner directement les
corrélations électroniques, en se concentrant sur le corrélateur densité-densité. Un
comportement oscillant dans un tel correlator est considéré une preuve catégorique
pour la formation d’une molécule de Wigner. Néanmoins, les observations expéri-
mentales de la cristallisation de Wigner sont tout à fait difficiles, puisqu’ils exigent
pour explorer un arrangement statique d’électrons sans le perturber. Une image de
la structure réelle-spatiale d’une molécule de Wigner a été réalisée seulement dans
une expérience récente. Pour réaliser cette observation, une sonde faite par un nan-
otube carbonique a été employée. La taille microscopique de cette sonde et le grand
contrôle expérimental de cela a permis d’obtenir un balayage imperceptiblement in-
vasif d’une molécule de Wigner. De toute façon, le corrélateur densité-densité ne
pouvait pas être évaluée. Nous proposons des états appartenant à la séquence de
Laughlin, où un seul mode existe sur chaque bord, comme un banc d’essai pour
observer la cristallisation des multi-levitons dans des systèmes de matière conden-
sés. Ici, la densité de charge reflétée par un contact de point quantique montre
une structure pointue en conséquence du réarrangement induit par interaction dans
le domaine de temps, dans le contraste ouvert avec le profil sans traits distinctifs
observé dans le cas d’entier. Pour confirmer le caractère corrélé de l’état de cristal,
nous démontrons que ces caractéristiques produisent des minima inattendues dans le
corrélateur courant-courant (qui est proportionnel à le corrélateur densité-densité)
dans un interféromètre Hong-Ou-Mandel, qui sont observable avec la technologie
contemporaine. Remarquablement, la densité de paquet d’onde des multi-levitons
avant le tunnelling au QPC ne montre pas de différence qualitative entre le cas entier
et le cas fractionnaire. On attend cependant que le tunnelling non-linéaire, typique
de la phase fractionnaire interagissant, influence la propagation de levitons après
la dispersion au QPC. En effet, en raison du contexte fortement corrélé, le multi-
levitons que passent par le QPC sont réarrangés dans une configuration oscillant avec
un certain nombre de maxima égale exactement au nombre de particules composant
l’état, indépendamment de chaque autre paramètre. L’amplitude des oscillations
augmente avec la diminution du facteur se remplissant (c’est-à-dire pour des cor-
rélations plus fortes). Dans l’analogie avec d’autres phases fortement corrélées dans
la matière condensée, nous interprétons cette structure comme une cristallisation de
l’état de multi-levitons. Cependant, par contraste avec la cristallisation de Wigner,
l’arrangement induit par interaction ne montre pas un profil statique, mais plutôt
l’apparition d’une structure régulière dans le temps et non seulement dans l’espace.
En raison de la nature de levitons, ce processus présente une analogie fascinante
avec la formation de cristal de solitons optiques en présence d’un environnement
non-linéaire, bien que dans un contexte complètement différent.

Une observation directe de la densité oscillante exigerait une mesure en temps
réel du courant avec une résolution temporelle extrêmement haute. De plus, cette
observation seule ne serait pas la preuve conclusive du processus de cristallisation.
Pour indubitablement relier les oscillations de la densité à la cristallisation de levi-
tons, on doit examiner le corrélateur densité-densité ou courant-courant. La nature
très spéciale du cristal de multi-levitons, qui n’est pas limité à une région spatiale
finie, mais se déplace plutôt rigidement le long des bords, nous laisse prévoir un test
expérimental basé sur les corrélations de deux états cristallisés. Nous proposons
d’exécuter une mesure, beaucoup plus faisable, du bruit à fréquence zéro dans une
configuration expérimentale Hong-Ou-Mandel. Dans cette configuration, deux trains
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identiques de levitons entre en collision au QPC retardé par un décalage de temps
réglable. On attend à ce qu’un processus de cristallisation véritable se manifeste
comme des oscillations dans le bruit analysé comme une fonction du retard. Comme
note à côté, nous observons que les mesures de corrélateur intensité-intensité sont
de façons analogues exécutées pour explorer la cristallisation de solitons dans le
domaine optique.

Nous remarquons d’abord que l’interférence complètement destructive entre les
deux signaux arrive toujours au retard zéro, que le système interagisse ou non. Cela
montre que les interactions entre électrons dans les états de Laughlin n’incitent pas
d’effets de decoherence. Pour l’état composé par un levition individuel, le corrélateur
densitè-densitè expose le même comportement pour facteurs de remplissage entiers
et fractionnaires. Ceci est lié au fait que le tunneling de un seul leviton produit
un signal simple sans structure de sommet/vallée interne. Pour l’état de multi-
levitons, le réarrangement de levitons produit des caractéristiques particulières qui
distinguent entre la phase non interagissant et la phase fortement corrélée. Ces car-
actéristiques identifient les effets de la phase fractionnaire fortement corrélée sur les
excitations des levitons, dans la frappe du contraste avec la phase non corrélée. Ici
nous soutenons que le réarrangement de levitons doit être lié au processus non autre-
fois rapporté de cristallisation de multi-levitons dans des états de bord fractionnaire.
Donc, l’apparence de maximums locaux et de minimums dans le corrélateur courant-
courant aux facteurs de remplissage fractionnaires prouve l’existence d’un cristal des
levitons dans le domaine de temps induit par des interactions. En augmentant le
ratio entre la largeur des impulsions et la période, l’amplitude maximale-à-vallée
d’oscillations est améliorée pour des facteurs de remplissage fractionnaires, tandis
que pour le cas d’entier la situation est qualitativement inchangée. L’inconvénient
principal est que certaines des oscillations qui sont clairement visibles pour des im-
pulsions plus aiguÃ«s sont maintenant perdues, puisque les impulsions appartenant
aux périodes voisines commencent à se chevaucher significativement. Finalement, il
vaut la peine de noter que le même comportement du ratio peut être observé pour
tous les facteurs de remplissage dans l’ordre Laughlin. Une telle universalité nous
dit que les interactions dans des états fractionnaire de Laughlin sont toujours assez
fortes pour inciter une cristallisation complète.

Un deuxième sujet majeur que j’ai examiné dans cette thèse est relaté aux pro-
priétés de transport de chaleur de levitons dans la séquence de Laughlin de l’effet
de Hall quantique. L’intérêt dans des systèmes de Hall quantiques a été princi-
palement consacré à ses propriétés électriques de transport, en raison des nombreux
phénomènes physiques fascinants liés à ses états de bord chiral et des excitations
fractionnaire. Néanmoins, la charge n’est pas le seul degré de liberté intéressant
qui pourrait être examiné dans le transport quantique. Dans le passé, on a surtout
considéré des flux de chaleur dans des petits conducteurs quantiques comme un effet
nuisible dans des expériences. En effet, le contrôle expérimental de flux de chaleur
dans des dispositifs mesoscopic a représenté un grand défi du point de vue technique,
qui a été surmonté seulement ces dernières années. En effet, quelques expériences
révolutionnaires récentes ont stimulé l’enquête aussi dans la direction du transport
de chaleur au nanoscale. Des nouveaux défis fascinants posés en prolongeant des
concepts comme la récolte d’énergie, la chaleur conduite et le transport d’énergie,
l’échange d’énergie dans des systèmes ouverts et des théorèmes de dissipation de
fluctuation au royaume quantique ont abouti à un grand progrès du champ de ther-
modynamique quantique. Dans ce contexte, l’enquête du transporte de chaleur dans
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le régime balistique, où les électrons se propagent dans de canaux avec une transmis-
sion parfaite, est fondamental pour avoir accès à la limite quantique de phénomènes
thermiques. Bien sûr, un rôle prédominant est joué par les états de bord de systèmes
de Hall quantiques: le transport cohérent et la manipulation de flux de chaleur ont
été rapportés dans des systèmes de Hall quantiques. De façon intrigante, la quantifi-
cation de conductance de chaleur a été observée dans les systèmes Hall quantiques
entiers et fractionnaires. De cette façon, des informations suffisantes et de valeur
sur ces états particuliers de matière, complémentaire aux résultats bien établis as-
sociés au transport de charge, sont maintenant disponibles avec des implications
intéressantes aussi pour le calcul quantique. Comme déjà discuté, l’optique quan-
tique électronique a dû correctement réviser des expériences d’optique quantiques
se concentrant sur les propriétés de transport de charge d’excitations électroniques
individuels. Néanmoins, une nouvelle perspective sur l’optique quantique électron-
ique a été aussi déclenchée par l’intérêt naissant pour les propriétés de transport
de chaleur d’excitations électroniques individuels. L’étude des fluctuations est un
outil extrêmement puissant pour examiner la réponse de canaux de bord de l’effet
Hall quantiques aux sources des électrons individuels. En plus des fluctuations de
courant de chaleur, aussi corrélateur entre la courant de charge et de chaleur a attiré
beaucoup d’attention en raison de leur relation avec les propriétés thermoélectriques
d’un système. Une question naturelle surgit immédiatement quand on considère la
dynamique de chaleur dans l’électronique optique quantique: quel genre d’énergie de
tension provoque des états d’excitation minimaux pour le transport de chaleur dans
des conducteurs mesoscopic. À cette fin, nous étudions la conduction de chaleur
le long des états de bord topologiquement protégés de l’effet Hall quantique. Nous
analysons les fluctuations de courant de chaleur aussi bien que les corrélations de
chaleur et charge mixte quand les types différents d’impulsions de tension péri-
odiques sont envoyés au conducteur et divisés d’un QPC. Commençant du régime
dc de tension, où des relations simples entre des bruits et des courants peuvent être
tirées dans l’esprit de la formule célébré de Schottky, nous présentons les signaux
d’excès pour des fluctuations de chaleur et mixtes, qui mesurent essentiellement la
différence entre les bruits de fréquence zéro et leurs signaux de référence respectifs
dans la configuration avec un potentiel indépendant de temps. La disparition des
signaux d’excès du bruit mixte et de chaleur est ainsi utilisée pour garnir de sig-
naler l’occurrence d’un état d’excitation minimal pour le transport de chaleur dans
le régime de Hall quantique. Avec cet outil puissant nous manifestons que les états
minimaux pour le transport de chaleur peuvent être réalisés seulement quand le po-
tentiel de tension prend la forme d’impulsions Lorentzian portant un entier multiple
de la charge électronique, c’est-à-dire quand levitons est injecté dans les états de bord
de Hall quantiques. Nous étudions ce problème tant dans le régime entier que dans
le régime fractionnaire. Nos résultats montrent une robustesse saisissante contre
des interactions, puisque les levitons représente toujours des états d’excitation mini-
maux malgré la physique très non-linéaire arrivant au QPC en raison des excitations
collectives particulières des états fractionnaire de Laughlin. Ayant reconnu les levi-
tons comme le bloc de construction fondamental pour le transport de chaleur, nous
nous tournons alors vers une deuxième question centrale, qui traite la robustesse
comme des états d’excitation minimaux des multiples impulsions Lorentzian qui se
superposent. En effet, Levitov et des collaborateurs ont démontré que N levitons
voyageant par un conducteur quantique avec la transmission basse représente N
tentatives indépendantes de passer la barrière, avec le bruit total non affecté par la
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superposition. Ce n’est plus garanti quand nous cherchons les quantités qui, comme
le courant et le bruit de chaleur, ont une dépendance non-linéaire au potentiel.
De plus, d’autres non-linéarités surgissent comme une conséquence naturelle de la
physique de l’effet Hall quantique fractionnaire, qui provoque des lois de pouvoir
avec des exposent non entiers. Nous montrons que, tandis que les courants et les
bruits sont sensibles au nombre réel de particules envoyées au QPC, les signaux
d’excès disparaissent toujours pour la superposition arbitraire d’un nombre entier
de levitons. On conclut alors que les levitons montrent une stabilité remarquable
même en ce qui concerne des propriétés de transport de chaleur, combinées avec la
robustesse également surprenante dans le liquide Hall fortement corrélé. Ceci fournit
une nouvelle preuve de l’unicité de l’état de levitons dans le régime Hall quantique.
Enfin, nous abordons le problème du bruit de chaleur produit par levitons injecté
dans un interféromètre Hong-Ou-Mandel dans le régime Hall quantique fraction-
naire. Nous démontrons que le bruit dans cette expérience de collision ne peut pas
être reproduit dans une configuration avec un seul potentiel, par contraste avec ce
qui a observé dans le casse de bruit de charge. Néanmoins, la collision simultanée de
deux levitons identiques mène toujours à une suppression totale même pour le bruit
de chaleur dans un interféromètre Hong-Ou-Mandel à tous les facteurs de remplis-
sage, malgré la présence d’excitations de quasiparticule anyonic émergentes dans le
régime fractionnaire. De façon intéressante, les corrélations fortes caractérisant la
phase fractionnaire sont responsables d’une configuration oscillant remarquable du
bruit de chaleur, qui est complètement absent dans le cas d’entier, en accorde avec
la cristallisation de charge de multi-levitons.
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Introduction

In recent years, a great interest has been addressed in the condensed matter com-
munity towards new phases of matter, whose properties are described in terms of
quantities that do not depend on the details of a system. These new phases and
their novel properties have been termed topological, a concept borrowed from the
language of mathematics [1–4].

The first and certainly one of the most famous examples is the quantum Hall
effect [5–8], which was discovered almost forty years ago and still attracts a lot of
attention from the theoretical and experimental point of view. These remarkable
physical phenomenon occurs in two-dimensional electron systems in the presence of
strong perpendicular magnetic fields. In quantum Hall systems, the transverse resis-
tance, which is commonly defined Hall resistance, manifests an intriguing pattern in
terms of well-defined plateaus as the magnetic field is varied. This phenomenology
is in striking contrast with the linear behaviour predicted by classical theory.
The earliest experimental evidence of the quantization of Hall resistance has been
carried out by K. von Klitzing that, in 1980, observed the appearance of plateaus
in the Hall resistance at integer values [9, 10]. This phenomenon, known as the
integer quantum Hall effect, can be understood in a satisfying way by resorting to a
single-particle quantum mechanical description. This explanation is fundamentally
based on the discretization of energy spectrum for an electron in a magnetic field.
These discrete energy levels are called Landau levels and the so-called filling factor
ν indicates how many of them are occupied.
The hallmark of quantum Hall systems is the emergence of an one-dimensional metal-
lic edge states on the boundaries of the system. Along these edge states particles
propagate with a definite direction, i.e. chirally. As a result, they are topologically
protected against backscattering and transport occurs in the ballistic regime.

The long coherence length (> µm) ensured by topological protection guarantees
to access the wave-like nature of electrons, thus allowing the observation of uncon-
ventional and fascinating quantum phenomena. Intriguingly, this investigation can
be pushed to its fundamental limit by exploiting quantum transport at the single-
electron level [11–16]. This compelling idea embodies the core purpose of a new field
of research, known as electron quantum optics [17]. The main purpose of electron
quantum optics is to reproduce conventional optics experiments using single-electron
[18–20]. The wave-guides where photons propagate in the vacuum are replaced by
quantum Hall edge states in the condensed matter realm. Single-electron sources
can be realized based on the prediction formulated by Levitov and co-workers that
a periodic train of quantized Lorentzian-shaped pulses, carrying an integer num-
ber of particles per period, is able to inject minimal single-electron excitations,
then termed levitons [21–23]. In order to realize quantum optics experiments using
fermionic degree of freedom, the last required component is an electronic analogue of
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the half-silvered mirror of conventional optics: its role can be played by a quantum
point contact [24–27] generated by two negative tunable voltages, where electrons
are reflected or transmitted. By combining these elements with the single-electron
sources previously described, interferometric setup, originally conceived for optics
experiments, can be implemented also in the condensed matter realm and quantum
transport properties at the single-electron can be investigated [15, 16, 28–31].

Despite evident analogies and similarities with traditional photonic quantum op-
tics, electron quantum optics brings into play two new features that are inherently
characteristic of electronic systems. Firstly, single-photon states are usually created
on a real quantum mechanical vacuum (i.e. zero-particle state), while single-electron
states are always generated on top of a completely different ground state with its
own dynamics, namely the filled Fermi sea. Nevertheless, a fermionic analogue of
Roy J. Glauber’s theory of optical coherence [32] can be developed circumventing
this complication, and theoretical predictions are in excellent agreement with exper-
iments [17, 33]. Even more importantly, solid state systems can be heavily affected
by interactions, and the ground state of a fermionic system can show correlations
[34–36].

The fractional quantum Hall effect is a paradigmatic example of the dramatic
consequences of electron-electron interactions [37]. In this case, plateaus of the Hall
resistance appear at fractional values of the filling factor ν. The first measure-
ments of this fractional Hall resistance have been reported by D. C. Tsui and H.
L. Stormer in 1982 [38]. Contrarily to the integer case, the physical explanation
of fractional quantum Hall effect cannot neglect the correlation between electrons.
With a great physical intuition, R. Laughlin introduced the first interpretation of
strongly-correlated quantum Hall phases with fractional filling factors ν = 1

2n+1 ,
with n ∈ N. These phases form the so-called Laughlin sequence and their ground
state can be described by means of a variational many-body wave-function. One of
the most far-reaching consequences that have been introduced by Laughlin’s idea
is the prediction that elementary excitations of fractional quantum Hall systems
are quasi-particle with fractional charge and statistics [39–45]. Remarkably, one-
dimensional conducting edge states arise also in the fractional quantum Hall effect
and their excitations inherit the charge and statistical properties of the one in the
bulk [46–48].

In this thesis, we investigate the transport properties of levitons propagating
along the edge states of a quantum Hall systems in the Laughlin sequence, thus
taking into account the effect of Coulomb interaction. In one-dimensional systems,
electron-electron interaction has dramatic effects on the transport properties of levi-
tons [34, 49]. In particular, we will investigate the time-dependent dynamics of levi-
tons, namely single-electron excitations travelling along quantum Hall edge states,
and we will show how this is modified by the presence of strong correlations. More-
over, since some recent groundbreaking experiments has spurred the interest also
in the direction of thermal transport at the nanoscale [50–53], we analyze also heat
properties of levitons, thus considering electron quantum optics from a new perspec-
tive.

This thesis is divided in four Chapters.
In Chapter 1 we will introduce the phenomenology of the integer and the frac-
tional quantum Hall effect, by focusing on filling factors in the Laughlin sequence.
The emergence of edge states in the integer regime is shown and their topological
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protection from backscattering is discussed. An effective field theory for the bulk
of the Laughlin sequence is derived following the seminal work of X. G. Wen. The
restriction to the boundary of these models will lead to effective field theories for
the edge states in terms of bosonic fields. By means of the bosonization technique
we will give the operatorial description for the gapless excitations along the edge.
Chapter 2 is devoted to the introduction of the main concepts of electron quan-
tum optics. The role of minimal excitations in the integer quantum Hall regime
is established for levitons, by presenting the theoretical argument of Levitov and
experimental evidence. Then, the electronic coherence theory, conceived in analogy
with Glauber’s coherence theory for photons, is presented and the form of leviton’s
wave-packets is derived. Finally, I present two main examples of single-electron
interferometry with levitons, namely the Hanbury-Brown-Twiss and the Hong-Ou-
Mandel interferometers, which are two crucial experimental setups of ordinary quan-
tum optics.
In Chapter 3, the charge transport properties of levitons for fractional filling fac-
tors of the Laughlin sequence are taken into account. Firstly, we recall that levitons
are minimal excitation states even in the presence of the strong correlation of frac-
tional quantum Hall phases. Then, we demonstrate the crystallization of levitons in
a quantum point contact geometry. Finally, we show that experimental evidence for
the crystallization of levitons can be obtained in an Hong-Ou-Mandel setup where
identical states of leviton collide at the quantum point contact.
In Chapter 4, we investigate also the heat transport properties in electron quan-
tum optics setup with levitons. Levitons are shown to be minimal excitation states
also for heat transport. This property is robust even with respect to an arbitrary
overlap between them. The Hong-Ou-Mandel setup is also investigated from the
point of view of heat transport, showing additional signatures of the crystallization
of levitons.
Chapter 3 and Chapter 4 contain the original parts of this work. Indeed, this
thesis is based on the following paper co-authored by myself:

• L. Vannucci, F. Ronetti, J. Rech, D. Ferraro, T. Jonckheere, T. Martin, M.
Sassetti, "Minimal excitation states for heat transport in driven quantum Hall
systems", Phys. Rev. B 95, 245415 (2017) [54] (Chapter 4)

• F. Ronetti, L. Vannucci, D. Ferraro, T. Jonckheere, J. Rech, T. Martin, M.
Sassetti, "Crystallization of levitons in the fractional quantum Hall regime",
Phys. Rev. B 98, 075401 (2018) [55] (Chapter 3)

• D. Ferraro, F. Ronetti, L. Vannucci, M. Acciai, J. Rech, T. Jonckheere, T.
Martin, M. Sassetti, "Hong-Ou-Mandel characterization of multiply charged
levitons", invited paper on EPJ [56] (Chapter 3)

• F. Ronetti, L. Vannucci, D. Ferraro, J. Rech, T. Jonckheere, T. Martin, M.
Sassetti, "Hong-Ou-Mandel heat interferometer in the fractional quantum Hall
regime", in preparation (2017) (Chapter 4)

Other publications not included in this thesis are:

• L. Vannucci, F. Ronetti, G. Dolcetto, M. Carrega, M. Sassetti, "Interference
induced thermoelectric switching and heat rectification in quantum Hall junc-
tions", Phys. Rev. B 92, 075446 (2015) [57]
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• F. Ronetti, L. Vannucci, G. Dolcetto, M. Carrega, M. Sassetti, "Spin-thermoelectric
transport induced by interactions and spin-flip processes in two dimensional
topological insulators", Phys. Rev. B 93, 165414 (2016) [58]

• F. Ronetti, M. Carrega, D. Ferraro, J. Rech, T. Jonckheere, T. Martin, M. Sas-
setti, "Polarized heat current generated by quantum pumping in two-dimensional
topological insulators", Phys. Rev. B 95, 115412 (2017) [59]

• L. Vannucci, F. Ronetti, D. Ferraro, J. Rech, T. Jonckheere, T. Martin, M.
Sassetti, "Photoassisted shot noise spectroscopy at fractional filling factor", J.
Phys.: Conf. Ser. 969, 012143 (2018) [60]

• D. Ferraro, F. Ronetti, J. Rech, T. Jonckheere, M. Sassetti, T. Martin "En-
hancing photon squeezing one Leviton at a time", Phys. Rev. B 97, 155135
(2018) [61]
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Chapter 1

Quantum Hall effect

In this Chapter, we introduce the main ideas and the theory behind the rich and
fruitful discovery of the quantum Hall effect. In the first part, the phenomenology
of the integer quantum Hall effect is presented. This peculiar physical phenomenon
can be explained in terms of a non-interacting quantum mechanical treatment of
an electron in a magnetic field. Then, we take into account the fractional quantum
Hall effect, which can be explained only by taking into account electron-electron
interactions [62]. For this reason, its theoretical description cannot be carried on in
a non-interacting framework, but requires an effective field theory approach. For a
specific set of fractional quantum Hall phases, known as Laughlin sequence, we will
introduce in the last part of this Chapter a field theoretic description of edge states
originally conceived by X. G. Wen [47].

1.1 Integer quantum Hall effect

The physics of a thin metallic plate subjected to a perpendicular magnetic field has
been known for a long time, since the discovery by E. Hall in 1879 of the Classical
Hall effect. After having imposed a current along one direction of the sample, he
measured a voltage in the transverse direction which in turns gave rise to a trans-
verse resistance, linearly proportional to the magnetic field. The behavior of the
so called Hall resistance RH was in accordance with the classical Drude theory of
diffusive electron transport and allowed to investigate the nature of charge carriers
in metals [5].
Around one hundred years later, this kind of Hall measurements were performed with
electrons confined to a spatial region in two dimensions, known as two-dimensional
electron gases (2DEG), which form, for instance, at the interface of two semiconduc-
tors. In 1980, K. Von Klitzing observed an anomalous behavior of the Hall resistance
in a 2DEG put in a strong magnetic field B and at very low temperatures [9]. In
particular, the experiments revealed that the proportionality to B was replaced by
a quantization in terms of plateaus in which the Hall resistance remained constant
over a certain range of the magnetic field (see Fig. 1.1). The transition between two
plateaus is rather quick, but on each of them the resistance is extremely flat and
assumes the values

RH = ρxy = h

e2
1
n

n ∈ Z. (1.1)

The value n has been measured to be an integer number with an accuracy greater
than one part over 109. Interestingly, this resistance is completely unaffected by
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Figure 1.1: Von Klitzing’s measurements of longitudinal resistivity ρxx and Hall
resistivity ρxy as a function of the magnetic field for the states of the integer quantum
Hall effect. The Hall resistance shows well defined plateaus, which correspond to
integer fraction of h

e2 with an greater than one part over 109. Taken from Ref. [9]

the specific properties of a sample, since it depends exclusively on two fundamen-
tal constants, i.e. the Planck constant h and the electron charge e. The quantity
RK = h

e2 is called the quantum of resistance (or Von Klitzing resistance) and, due
to the extraordinary precision of this kind of measurements, it is now used as the
standard unit of resistances [10]. In this sense, the value of n has to be considered
an integer number by definition.
Since this result violates the classical picture provided by the Drude model, it re-
quired a quantum mechanical framework in order to be fully understood. For this
reason, the phenomenology so far described is termed the Integer Quantum Hall
(IQH) effect. In the following, we will present a quantum mechanical treatment of
electrons subjected to a perpendicular magnetic field in two dimensions in order to
elucidate some fundamental properties of the IQH effect that will be crucial in the
remainder of this thesis.

1.1.1 Electrons in a magnetic field

The physics of IQH effect can be understood by considering the properties of a
two-dimensional electronic system in the presence of a magnetic field B. Moreover,
one can come to a satisfactory explanation of this phenomenon even neglecting
interactions among electron. In this single-particle picture, the only way that one
particle knows about the presence of others is through the Pauli exclusion principle.
Starting from the hamiltonian for a single electron

H0 = p2

2m, (1.2)

one can introduce the effect of a magnetic field B using the substitution (e > 0)[63]

p→ P = p + eA(r), (1.3)
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where A is the vector potential related to B by

B = ∇×A. (1.4)

As a result, the hamiltonian of an electron subjected to a magnetic field is

H = P 2

2m = (p + eA(r))2

2m . (1.5)

We decided to consider the motion of electrons in free space, thus neglecting the
presence of a crystalline environment of the background material (in the case of von
Klitzing experiment, a semiconductor). It seems, at first sight, to be a very crude
assumption. Nevertheless, it safely works as long as the lattice spacing is very small
in comparison to the magnetic length [6]

lB =
√

~
eB

. (1.6)

It should be noted that this is indeed the case for any realistic value of magnetic
field: for a lattice spacing of tenths of nanometer, the effect of a crystalline potential
become relevant only for magnetic fields B & 45 T.
The introduction of a vector potential bears the relevant consequence that the hamil-
tonian assumes a dependence on the spatial coordinates. For this reason, the differ-
ent component of operator P do not commute with each other, in contrast with the
usual momentum operator p. By exploiting the canonical commutation relations
[xk, pj ] = i~δk,j , one can prove that

[Px, Py] = −i~eB. (1.7)

The calculation of this commutator returns a gauge-invariant quantity, since it is
expressed directly in terms of the magnetic field. Interestingly, this result can be
exploited to derive the spectrum of the hamiltonian in Eq. (1.5) without setting a
specific form for A. This derivation requires to express Eq. (1.5) in terms of the
following operators [63, 64]

a = lB√
2~

(Px + iPy) , a† = lB√
2~

(Px − iPy) , (1.8)

which satisfy, due to Eq. (1.7), the commutator
[
a, a†

]
= 1. The hamiltonian in Eq.

(1.5) then becomes
H = ~ωB

(
a†a+ 1

2

)
, (1.9)

where ωB = Be
mc is the cyclotron frequency. The above hamiltonian describes a

quantum harmonic oscillator with frequency ωB, whose spectrum is given by [63,
64]

En = ~ωB
(
n+ 1

2

)
, n ∈ N. (1.10)

The energy levels of an electron placed in a magnetic field are discretized and equally
spaced by a gap which increases linearly with the magnetic field. These levels are
called Landau levels, because they were firstly discovered by the Russian physicist
L. Landau. Let us observe that the energy spectrum in Eq. (1.10) is labeled by a
single quantum number. Nevertheless, since we consider a two-dimensional space,
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we expect that two quantum numbers occur to fully characterize the system. As
consequence, it can be easily understood that Landau levels in Eq. (1.10) are de-
generate and that the wave-functions associated to these energy eigenvalues depend
on an additional quantum number.
Since the wave-functions are gauge-dependent, we have to choose a specific form for
the vector potential. An useful choice is the Landau gauge, where

A(r) = B(−y, 0, 0). (1.11)

With this form of the vector potential, the hamiltonian in Eq. (1.5) does not depend
on x. For this reason, the motion along x̂ can be described in terms of plane waves,
leading to an expression for the full wave-function of the form

ψn,k(x, y) = eikxfn,k(y), (1.12)

where k is a quantum number related to the transational invariance along x̂. This
latter expression leads to the hamiltonian

H = (k − eBy)2

2m +
p2
y

2m =
p2
y

2m + 1
2ωB (y − y0(k))2 , (1.13)

where y0(k) = kl2B. This hamiltonian describes a one-dimensional harmonic oscilla-
tor, whose eigenfunctions read

fn,k(y) = e
− (y−y0(k)2)2

4l2
B Hn(y − y0(k)2), (1.14)

where Hn(x) are the Hermite polynomials [64]. These eigenfunctions manifestly
depend on two quantum numbers and are centered in y0(k).
The degeneracy of Landau levels can be easily computed for a finite size system with
periodic boundaries along x̂, where the quantum number k assumes discrete values.
If we consider a rectangular sample with size Lx and Ly, the quantization condition
for the values of k is

k = 2π
Lx
m m ∈ N (1.15)

and the center of the harmonic oscillators has to satisfy the relation

0 < y0(k) < Ly. (1.16)

By combining these two conditions, the following restrictions are imposed on m

0 < m <
LxLy
2πl2B

, (1.17)

such that the maximum number of degenerate state is equal, for each Landau level,
to

Ndeg = LxLy
2πl2B

= φ

φ0
, (1.18)

where φ = LxLyB is the total flux in the quantum Hall bar and φ0 = h
e is the

universal quantum of flux. In a system containing a total number of N electrons,
the Landau levels are filled starting from the lowest one. In this sense, it is useful
to introduce the filling factor of Landau levels as

ν = N

Ndeg
= hne

eB
, (1.19)

where ne = N
LxLy

is the electronic density in the sample.
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1.1.2 Edge states

In order to understand the degeneracy of Landau levels, we mentioned the finiteness
of the sample in our discussion. The presence of a confinement has a crucial effect
on the properties of Landau levels, which can be clarified by a more quantitative
treatment. For these reasons, we model the confinement of electrons to a finite region
by introducing explicitly in the hamiltonian a potential Vconf (y), which vanishes into
the bulk but is finite on the boundaries. We consider a smoothly varying potential
with respect to the magnetic length, meaning that lB|∂yVconf (y)| � ~ωB. This
choice implies that, while along the x̂ direction the system is still transationally
invariant, along the ŷ direction we expect that the confinement introduce a spatial
dependence in the energy levels, in particular at the edges of the bar.
By recalling that the wave-functions without the confining potential are localized
around y0 = kl2B, the confining potential can be adiabatically approximated as

Vconf (y) = Vconf (y0(k)) +O (|∂yVconf (y)|) . (1.20)

In the presence of confinement, the hamiltonian in Eq. (1.13), can thus be written
as

H =
p2
y

2m + 1
2ωB (y − y0(k))2 + Vconf (y0(k)). (1.21)

The eigenvalues of this hamiltonian are simply given by the Landau levels in Eq.
(1.10) shifted by the presence of the confinement

En(k) = ~ωB(n+ 1
2) + Vconf (y0(k)), (1.22)

thus acquiring a dependence on k. By considering that the center of eigenstates
y0 (see Eq. (1.14)) depends on the quantum number k, it is clear that the shift of
Landau levels, given by Vconf , has significant consequences also in the real space
(see Fig. 1.2). Since the confining potential is null inside the bulk of the system,
eigenstates centered away from the edges are left unaffected. Nevertheless, the
energy levels of states close to the ends of the bar in the ŷ direction (y = −Ly

2 and
y = Ly

2 ) are bent by the confining potential according to Eq. (1.22).
This bending of Landau levels has crucial consequence of the transport properties of
a quantum Hall bar (see Fig. 1.2). When the Fermi energy lies between two Landau
levels, transport of electrons is suppressed in the bulk since there exist an energetic
cost ~ωB to pay in order to reach the first unoccupied energy levels. Nevertheless,
close to the edges, the Fermi level crosses the energy spectrum on both side of the
sample (close to y = −Ly

2 and y = Ly
2 ). This means that gapless and conducting

states arise at the edges of quantum Hall bar due to the magnetic field and the
confining potential [65]. Moreover, since the Fermi level crosses the spectrum in a
specific value of the axis ŷ these states are considered one-dimensional (propagating
only along x̂). It is clear from Fig. 1.2 that any filled Landau levels would induce one
gapless state on each edge, meaning that there exists a one-to-one correspondence
between filled Landau levels and edge states. In the case that Fermi energy EF lies
between the first and the second Landau levels, i.e the filling factor is ν = 1, a single
edge channel emerges on the boundary (see upper panels of Fig. 1.2). By increasing
the value of EF , the filling factor switches to ν = 2 and a second edge mode appears
(see lower panels of Fig. 1.2). The properties of the bulk, in this case the filling
factor of Landau levels, determine the behavior at the boundaries: this is a major
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Figure 1.2: Energy levels in the presence of a confining potential Vconf (y). In the
bulk, Landau levels are unperturbed, while the confining potential modify the band
profile close to the boundary. Gapless edge modes appear when the Fermi energy
EF is tuned between two Landau levels. For example, when Fermi energy EF lies
between the first and the second Landau levels, a single edge channel emerges on
the boundary (upper panel). By increasing the value of EF , a second edge mode
appears (lower panel).
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example of a general phenomenon known as bulk-boundary correspondence.
The velocity of the excitations propagating in these edge states is given by

vn(y0(k)) = 1
~
∂En(y0(k))

∂k
= 1

~
∂En(y0(k))

∂y0

∂y0(k)
∂k

= l2B
~
∂En(y0(k))

∂y0
. (1.23)

As can deduced from Fig. 1.2,

vn(y0(k)) = −vn(−y0(k)). (1.24)

The velocities of excitations is different from zero only at the edges, where they
are restricted to move in a definite direction. Particle that can propagate only in a
single direction are called chiral. Due to Eq. (1.24), particles have opposite chirality
on the two sides of the sample 1 and electrons are called left-movers or right-movers
according whether the sign of their velocity is negative or positive.

1.1.3 Conductance of edge states

Since the bulk is gapped, the quantized value of the Hall resistance can be attributed
exclusively to the presence of conducting states along the boundaries of the system.
Let us consider a two-terminal quantum Hall bar, as depicted in Fig. 1.3. While the
temperature θ if uniform along the sample, the chemical potentials in the left and
right reservoirs assume two different values, respectively, µL and µR, thus generating
an electrical bias given by

eV = µR − µL. (1.25)

According to the chirality of edge states, backscattering is forbidden and electron
with opposite chirality never mix up. Therefore, when right-moving (+) and left-
moving (−) electrons start propagating along the bar, they are still equilibrated to
the Fermi distribution of left and right reservoir, given by

f±(E) = 1

1 + e
E−µL/R
kBθ

. (1.26)

The current flowing in response to the electrical bias can be obtained by summing
over all the occupied states, labeled by n,

I = −e
Lx

∑
n

∑
k>0

v(k)f+(En(k)) +
∑
n

∑
k<0

v(k)f−(En(k))

 , (1.27)

where the contributions of right-movers and left-movers have been separated. It is
convenient to replace the sums over k with an integral, thus obtaining

I = −e
Lx

Lx
2π~

∑
n

[∫ +∞

0
dk
∂En(k)
∂k

f+(En(k)) +
∫ 0

−∞
dk
∂En(k)
∂k

f−(En(k))
]

=

= −e
h

∑
n

[∫ +∞

En(0)
dEf+(E)−

∫ +∞

En(0)
dEf−(E)

]
, (1.28)

1This is also a consequence of the fundamental property that current should vanish in the absence
of an electric field.
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Figure 1.3: The edge states of a quantum Hall bar in a two-terminal geometry. The
chemical potentials of the two reservoirs are, respectively, µL and µR. Due to the
chirality of edge states, electrons flowing along the channels are still equilibrated to
the Fermi distribution of reservoirs.

where we used that En(±∞) = +∞. In the limit of zero temperature the Fermi
distributions in Eq. (1.26) become

f±(E) = Θ(µL,R − E), (1.29)

where Θ(x) is the Heaviside step function. In this limit, the expression for the
current is

I = − e
h

∑
n

∫ µL

µR

dE = −ν e
h

(µL − µR) = (1.30)

= ν
e2

h
V, (1.31)

when ν Landau levels are filled. Therefore, the Hall conductance is

GH = ν
e2

h
. (1.32)

By recalling that the resistance is simply the inverse of conductance, we find that
the presence of chiral edge states is consistent with the observed quantized values
of the Hall resistance.
It is interesting to compare the result of Eq. (1.32) with the conductance of quantum
wires at zero temperature derived within the Landauer approach [66, 67]

G = e2

h

∑
n

Tn(EF ), (1.33)

where the sum involve all one-dimensional channel in the wire and Tn(EF ) is the
transmission probability of n-th channel evaluated at the Fermi energy. In terms of
Landauer formula for conductance, one can argue that each chiral edge state can be
interpreted as a perfectly transmitting one-dimensional channel. The ideal trans-
mission of quantum Hall edge states is again a consequence of their chirality: even
in the presence of a scattering impurity, right-movers and left-movers cannot change
their direction of motion because they are enforced by chirality to maintain the sign
of their velocity.
Surprisingly, it turns out that disorder even plays an helpful role for the stability
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of edge states [65, 68]. Indeed, a reduction of transmission could be induced by a
tunneling from one edge to the other, as long as the width of the sample (Ly) is
much greater than the magnetic length (lB): nevertheless, impurities and disorder
localize states belonging to the bulk in correspondence of plateaus of GH and leaves
unaffected the conductance of edge states [65, 69]. In this way, transfer of electrons
in the transverse direction of the sample is forbidden.
The robustness of quantum Hall edge states can be understood by looking at the Hall
conductance from another perspective [70, 71]. Let us observe that quantum Hall
conductance in Eq. (1.32) is a directly related to the filling factor ν, which is a global
property of the Hall bar, meaning that it is not possible to describe GH in terms of
a local order parameter. This point, together with the fact that no symmetry is bro-
ken during the transition between different plateaus, helped in understanding soon
that the IQH phases described by different filling factors ν could not be classified in
terms of the Landau-Ginzburg theory of phase transitions. States of matter, which
are characterized by global parameters and that lie beyond the Landau-Ginzburg
paradigm are called topological states: integer quantum Hall systems were just the
first example of many topological systems that were successively discovered.
The concept of topology is borrowed from mathematics, where all the structure
with a certain number of holes are called topologically equivalent and define certain
topological classes: a geometrical figure can be transformed in a topologically dis-
tinct object only by an abrupt transformation that modifies its number of holes. By
analogy, the different plateaus, separated by a gap ~ωB and associated to different
values of the Hall conductance, can be interpreted as topologically different quantum
phases. A transition between topological classes, called topological phase transition,
is possible only after the closing of this gap. This is exactly what happens when
Hall conductance jumps from one plateau to the other.
The topological interpretation of integer quantum Hall states provide also another
point of view on the gapless edge channels previously discussed. When two distinct
topological phase are put together, at their interface a topological phase transition
must occur, namely the gap must close. In particular, this happens at the interface
between a quantum Hall phase and the vacuum: this explains the existence of gap-
less states on the boundary of a quantum Hall bar from a topological point of view.
Moreover, the number of these edge states is determined by the filling factor of the
bulk. This means that, according to Eq. (1.32), the structure and the robustness of
the edge states are deeply rooted in the bulk property of the corresponding quantum
Hall phase.

1.2 The fractional quantum Hall effect

In the previous Section, the main theoretical arguments describing the quantization
of quantum Hall resistance at multiple integer values of h

e2 were presented. Neverthe-
less, in 1982 D. C. Tsui, H. L. Stormer and coworkers reported an unusual behavior
of the Hall resistance [38]. For a sample with higher mobility and subjected to a
more intense magnetic field than those used by von Klitzing, they observed the ap-
pearance of a plateau at a fractional filling factor ν = 1

3 . Later on plateaus were
measured in correspondence to many other fractional values of Landau level filling:
this peculiar phenomenology, which cannot be explained in terms of the physical
picture given for the IQH effect, has been called fractional quantum Hall (FQH)
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Figure 1.4: Fractional quantum Hall effect states. (Left panel) First observation of
a plateau at ν = 1

3 in the Hall resistivity ρxy. Taken from [38]. (Right panel) Many
others plateaus in the Hall resistance in correspondence of fractional values of filling
factors. Taken from [68]

effect.
A theoretical explanation of the FQH effect is by far harder than for the IQH effect.
Nevertheless, a subset of fractional filling factors received an insightful interpreta-
tion due to R. Laughlin in 1983, who won the Nobel Prize in 1998 together with
D. C. Tsui and H. L. Stormer for this theoretical contribution [68, 72, 73]. This
subsequence was named Laughlin sequence and contains all the filling factors of the
form

ν = 1
2n+ 1 , n ∈ N, (1.34)

which includes ν = 1
3 , the first observed FQH state. In the rest of this thesis, we

will mainly focus on the Laughlin sequence in relation to FQH effect.

1.2.1 The Laughlin sequence

The theoretical framework that successfully explained the IQH effect has been en-
tirely presented in terms of a single-particle picture. The great physical intuition of
Laughlin was that the main element which gives rise to the FQH phenomenology is
the Coulomb repulsion between electrons and that one should abandon the physical
picture in terms of independent electrons used for the IQH effect [5].
A system of N interacting electrons in a magnetic field can be described by the
following hamiltonian 2

H =
N∑
i=1

(
pi + e

cA(ri)
)2

2m +
N∑
i 6=k

e2

ε|ri − rk|
, (1.35)

2We neglect the role of lattice potential and disorder, which turn out to be marginal in the
description of FQH effect.
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where ε is the dielectric constant of the material where the FQH state is realized. To
deal with this additional contribution, one might think to proceed with a standard
perturbative analysis. For a state like ν = 1

3 , the degeneracy of the ground state
would be Ndeg = 3N . All the possible combination to fill the lowest Landau levels
with N electrons are given by (

3N
N

)
= (3N)!
N !(2N)! , (1.36)

which for macroscopic N reaches really high values. In a degenerate perturbation
theory, one should diagonalize a macroscopically large matrix, which is a task out
of reach even for numerical algorithms.
Nevertheless, a qualitative understanding for the stability of states at fractional
filling factor can be drawn resorting to a simple picture of interacting electrons.
In partially filled Landau levels, there is a huge freedom to fill the Hall bar with
electrons. In the presence of repulsion between electrons, our freedom to distribute
them is reduced. Let us start focusing on the ideal case of an infinite magnetic
field. The magnetic length goes to zero and states are localized: electrons behave
like point charge and tend to crystallize by minimizing their interaction energy. A
unique ground state is formed, called Wigner crystal [49], which is radically distinct
from the FQH phase 3. When the magnetic field is lowered to finite values, wave-
functions of electron overlap and they cannot form anymore a crystalline structure.
For some magic filling factors, they form a strongly correlated quantum liquid, which
can be described in terms of an unique many-body wave-function.
The form of the ground state wave-function of Laughlin sequence states can be
guessed based on generical considerations such as the symmetry of the problem and
the Fermi statistics of electrons. The ansatz of Laughlin for the wave-function of
the ground states is the following [62]

Ψ2n+1 =M
N∏
i<j

(zi − zj)me−
∑N

k=1 |zk|
2
, (1.37)

whereM is a normalization factor and z = x + iy is a complex spatial coordinate.
This many-body wave-function is built from angular momentum eigenstates φm(z) ∼
zme−|z|

2 , in accordance with rotational invariance of Coulomb interaction. Moreover,
it satisfies transational invariance with respect to the origin.
The Laughlin wave-function thus obtained has not been derived mathematically
diagonalizing an hamiltonian. Actually, it is a variational wave-function that satisfy
the symmetry and the constraints of the problem. The variational parameter is
given by the integer number m, which is the only elements in Eq. (1.37) not already
fixed. This variational wave-function efficiently approximates the ground state of a
Laughlin state with filling factor ν when the value of m is chosen such that

m = 2n+ 1, n ∈ N, (1.38)

which means that m = 1
ν . Indeed, by numerical simulations, it has been demon-

strated that Laughlin wave-function overlaps at the 99% with the true ground states
of the hamiltonian in Eq. (1.13). For such specific value of m, Laughlin wave-
function satisfies Pauli exclusion principle: indeed, when two coordinates zi and zj

3It can be obtained more realistically for sample with a very low density [74].
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are exchanged, the many-body wave-function acquires a minus sign, in accordance
with Fermi statistics.
The presence of zeros with order 2n+1 enforce a separation between electrons, which
induces a strong correlation in the system ground state. This correlation increases
for higher values of n, meaning that a lower filling factor corresponds to a stronger
Coulomb interaction among electrons.
Before concluding this part, it is instructive to point out a relation between the or-
der of zeros in the Laughlin wave-functions at filling factor ν and the corresponding
degeneracy. The highest order zero in zi in Eq. (1.37) has order (2n + 1)(N − 1),
which in the thermodynamic limit gives

(N − 1)(2n+ 1) ' N(2n+ 1) = Ndeg. (1.39)

1.2.2 Laughlin’s quasi-holes and quasi-particles

Starting from the Laughlin ansatz for the ground state, it is possible now to discuss
the excitations of the system. There are two possibilities for adding charged exci-
tations to the system. One way is to change directly the electron density. Another
possibility is to vary the magnetic field, thus increasing or reducing the degeneracy,
while keeping constant the filling factor ν.
As we have seen, the degeneracy Ndeg is intimately related to the number of zeros
in the Laughlin wave-function Therefore, we consider the following ansatz for an
excited state with an additional zero in w of order N

Ψ+
w =

N∏
i=1

(zi − w)Ψ2n+1. (1.40)

The introduction of an additional flux would lower the filling factor ν by a tiny
amount. In order to keep ν fixed, one has to add some charge to compensate the
extra magnetic flux quantum. The total charge when the degeneracy if modified by
an unity is

Q = eN ′ = eν(Ndeg + 1) = eN + νe, (1.41)

which implies that the charge added due to the addition of a magnetic flux is given
by

∆Q = e(N ′ −N) = νe. (1.42)

This is a rather surprising result: the excitation of the Laughlin ground state must
carry a fractional charge

e∗ = νe = e

2n+ 1 . (1.43)

This fractionally charge excitation is called a quasi-hole
Similarly, it is possible to obtain an excited state also by removing an unit of flux.
In this case, one would excite a quasi-particle with charge −e∗. A good variational
wave-function for this type of excitation is

Ψ−w =
N∏
i=1

(2∂zi − w)Ψ2n+1. (1.44)

Another fascinating properties of quasi-particles and quasi-holes is their exchange
statistics, which is related more to the low dimensionality of the system rather than
to the peculiar properties of the FQH effect.
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Figure 1.5: Upper panel: exchange of identical particlesA andB in three dimensions.
The third direction z allows to shrink the path into a single point. Thus, this path
corresponds to the identity operator. Lower panels: Paths that enclosed particle B
is topologically inequivalent to paths not including particle B.

Let us first review the usual argument about exchange statistics in three dimension
[5].

Two identical particles A and B placed at the position rA and rB are described
by a wave-function ψ(rA, rB). When they are exchanged, all the probabilities must
have remained the same, meaning that |ψ(rA, rB)|2 = |ψ(rB, rA)|2. This implies
the final state must have picked up phase, at most, such that

ψ(rA, rB) = eiπαψ(rB, rA). (1.45)

When particles are exchanged again, one finds

ψ(rA, rB) = ei2παψ(rA, rB) (1.46)

and, since the particles are returned to their initial states, it is necessary that ei2πα =
1. This latter condition leaves open only two possibilities, namely α = 0 and α = 1,
which correspond respectively to bosons and fermions.
In a three-dimensional space, this argument works because, due to the presence of
the ẑ direction any winding path of A around B can always be shrunk into a single
point, without even passing by the position rB (see Fig. 1.5). As a consequence,
any winding process is equivalent to leave particle 1 in its original position.
In two dimensions, the winding path of A cannot be reduced to a single point without
touching particle B and, therefore, it is always distinct from the path that leaves
A in its initial position. For this reason a third class of particles exist, which are
neither bosons nor fermions, which obey the exchange statistics

ψ(rA, rB) = eiθψ(rB, rA), (1.47)

where statistical angle θ can assume any real value. Particles satisfying the above
relation are called anyons [5, 39] The statistics angle of Laughlin quasi-particles
and quasi-holes always assume rational values, dictated by the specific filling factor
of the corresponding FQH state. In Sec. 1.3, we will see a demonstration of the
fractional statistics of Laughlin quasi-particles and quasi-holes.
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Considering all the possible many-body wave-function in two dimensions, one can
distinguish between two separate classes. When the order of exchanges does not
affect the phase acquired by this many-body wave-functions, we are dealing with
abelian anyons. On the contrary, if the final state obtained after several exchanges
depends on this order, anyons are called non-abelian [39]. FQH states belonging to
Laughlin sequence are all abelian anyons [5, 6].

1.2.3 Fractional charge conductance

The fractional quantization of conductance can be understood in terms of the ex-
istence of fractionally charged excitation through a gedanken experiment invented
by Laughlin (see Fig. 1.6 and Ref. [62]). A Hall bar in the Laughlin sequence is
threaded by a time-dependent flux φ(t). According to Faraday’s law a voltage is
induced by the flux variation ∮

Γ
E · dr = −1

c

dφ

dt
. (1.48)

When the longitudinal conductance is zero, the electric field is given by

E = ρxyJ × ẑ. (1.49)

By plugging this into Eq. (1.48), one finds

ρxy
dq

dt
= −1

c

dφ

dt
, (1.50)

where dq
dt is the charge transfered in a unit of time along the radial axis.

Now, let us suppose that the flux is adiabatically changed from 0 to φ0. The char-
acteristic time τφ for this variation must satisfy τφ � ~

∆− . Integrating Eq. (1.50)
over time in an interval τφ, one finds

ρxye
∗ = h

e
, (1.51)

since the flux is incremented exactly of an unit and, according to our previous
discussion, the charge transfered in a radial direction is equal to −e∗. This means
that the Hall resistivity is quantized as

ρxy = h

νe2 . (1.52)

The interpretation of the fractional Hall conductance in terms of an edge state
description is a bit more difficult than for IQH states. Since the states of Laughlin
sequence lie within the first Landau, we expect that a single gapless channel arises on
each edge for this particular values of filling factor. Nevertheless, due to the strongly
correlated nature of FQH states a simple transport picture in terms of Fermi liquid
is not possible and we have to introduce an effective field theory to describe them.
This will be the purpose of next section.
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Figure 1.6: Laughlin gedanken experiment. The introduction of a magnetic flux φ(t)
creates time-dependent electric field and a radial current density J(t).

1.3 Edge states in the Laughlin sequence

As we have seen in the previous Section, the FQH effect is a peculiar phase of matter
whose description involves necessarily a many-body picture, in contrast with IQH
effect, which can be completely understood in terms of independent electrons. As a
result, the excitations of these states are not fermions, but exotic quasi-particles or
quasi-holes with a fractional charge and a fractional statistics. Due to these peculiar
characteristics of the FQH effect, its description in terms of a microscopic many-
body model is an highly non-trivial problem. A common and powerful method to
overcome this issue is to introduce low-energy effective field theories that capture
all the essential properties of FQH states and disregard the microscopic degrees of
freedom.
In this Section, we introduce a bulk effective field theory for Laughlin states that
is able to reproduce the phenomenology previously described [47]. Subsequently, by
restricting this effective field theory to the boundary, an edge state theory for the
Laughlin sequence can be derived, which is of great interest for the remainder of this
thesis. Interestingly, it turns out that FQH edge states allow for a description in
terms of one-dimensional chiral bosonic modes. Then, starting from these bosonic
modes, the bosonization identity, which we will introduce in the following, can be
employed to construct a field operator for Laughlin quasi-particles.

1.3.1 Effective field theory for Laughlin states

In the following part, we derive an effective field theory for FQH states in the Laugh-
lin sequence by following the seminal works by X. G. Wen [46, 47], who introduced
this low-energy description for the first time. Here, we adopt the usual convention of
field theory and we label with index 0 the temporal coordinates and with 1 and 2 the
two spatial coordinates. We resort to Greek letters for index of three-dimensional
vectors involving all the coordinates, while we employ Roman letters for indices of
vectors with purely spatial components.
Let us consider a two-dimensional systems, whose electrons are coupled to an exter-
nal electromagnetic field Aµ by the conserved current Jµ =

(
J0,J

)
, where J0 and

J are, respectively, the charge and current density of electrons. The Lagrangian
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density assumes the following form

LA = AµJ
µ, (1.53)

where the summation over repeated index is considered. The physical quantities
associated to this theory should behave in response to the external magnetic fields
as those of a fractional state at a fixed filling factor ν. In the latter case, any variation
in the magnetic field δB induces a variation in the charge density δne = δJ0

−e
ν
2π δB

in accordance with Eq. (1.19). Moreover, the presence of an electric field δEi
generates a current δJ i = σxyδEi in the transverse direction, where σxy = νe2

2π is the
Hall resistivity. This two conditions can be resumed in a single expression involving
the variation of current δJµ as

δJµ = −νe
2

2π ε
µρσ∂ρδAσ, (1.54)

where εµρσ is the anti-symmetric tensor in 2 + 1 dimensions. A field theory that
effectively describes a fractional quantum Hall states should produce a response to
an external electromagnetic field corresponding to Eq. (1.54). Here, it is worth
pointing out that the electromagnetic field Aµ does not include also the magnetic
field that induces the quantum Hall effect.
The simplest way to implement such a theory is to introduce an additional vector
field a, which is invariant under U(1) transformations

a′µ = aµ + ∂µg, (1.55)

with g = g(t, x, y) a generic function. A vector field that satisfies the transformation
rule in Eq. (1.55) is called an abelian field. The only conserved current in 2 + 1
dimensions that can be written in terms of a single abelian field and that satisfies
gauge-invariance is [75]

Jµ = − e

2πε
µρσ∂ρaσ. (1.56)

In this phenomenological approach, aµ can be viewed as an emergent field that
stands for the collective behavior of many underlying electrons evolving according
to an unspecified microscopic dynamics.
The following new term, including the abelian field a,

La = k

4πaµε
µρσ∂ρaσ (1.57)

is added to the Lagrangian of the system, which now reads

L = La + LA = k

4πaµε
µρσ∂ρaσ −

e

2πAµε
µρσ∂ρaσ, (1.58)

where k is a real parameter. From the field-theoretical point of view, it is instructive
to note that the new term La is an example of Chern-Simons Lagrangian [76]. They
are the only relevant term in the low-energy limit (long-distance and large-time
physics), which respect rotational symmetry and break time-reversal symmetry in
2 + 1 dimensions. The value of parameter k can be fixed by imposing that the
conserved current obtained from the Lagrangian in Eq. (1.58) assumes the form in
Eq. (1.54). At this purpose, one can consider the Euler-Lagrange equations

∂ρ
δL

δ∂ρaµ
− δL
δaµ

= 0, (1.59)
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which give the following result for the Lagrangian in Eq. (1.58)

1
2πε

µρσ∂ρaσ = e

2πkε
µρσ∂ρAσ. (1.60)

By considering the definition of conserved current in Eq. (1.56), one finds the
following relation

Jµ = e

2πkε
µρσ∂ρAσ. (1.61)

The form of current in Eq. (1.54), which is consistent with the phenomenology of a
FQH state at filling factor ν, is thus recovered if the parameter is fixed to k = 1

ν .
As a side comment, it is interesting to observe that the hamiltonian density obtained
from Eq. (1.58) vanishes identically, namely

H = δL
δ∂taµ

∂taµ − L = 0. (1.62)

This result is a consequence of the fact that Chern-Simons theory are a particular
example of a topological quantum field theory [5, 77].

1.3.2 Edge states

In general, Chern-Simons theory might include more than a single U(1) gauge field
or even SU(n) gauge field. The choice of a single emergent gauge field imposes
significant restriction on the phenomenology that can be described by this theory.
In this case, as we will show in the following, the effective field theory with a single
emergent field is a suitable description of a system with a single chiral mode at each
boundary, i.e. a FQH state belonging to the Laughlin sequence. Indeed, for other
filling factor, the structure of edge modes is more complicated and consists of several
channels which might also have different chirality. The choice of states belonging
to the Laughlin sequence with ν = 1

2n+1 simplifies drastically the structure at the
edge, where a single edge mode arises at the boundary.
Starting from the total Lagrangian in Eq. (1.58), it is useful to construct the action

S =
∫
d3xL =

∫
d3x

( 1
4πν aµε

µρσ∂ρaσ −
e

2πAµε
µρσ∂ρaσ

)
. (1.63)

Let us observe that under the gauge transformation{
a′µ = aµ + ∂µg,

A′µ = Aµ + ∂µf,
(1.64)

with f = f(t, x, y) a real function, the action S transforms as

S′ = S + ∆S. (1.65)

where the additional term is

∆S =
∫
d3x

( 1
4πν ∂µgε

µρσ∂ρaσ −
e

2π∂µfε
µρσ∂ρaσ

)
. (1.66)

In order to obtain a gauge-invariant action S, the contribution ∆S must vanish. In
a system without boundaries, all the integrals range from −∞ to +∞: since the
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Figure 1.7: When a Laughlin system is confined to the lower region of the xy plane,
a topologically protected edge state appears at the boundary between the quantum
Hall system and the vacuum. This edge state propagates towards right for magnetic
field pointing towards the positive semi-axis z.

integrand in ∆S contains only contributions including derivatives of the field a, the
assumption that field a vanishes at infinite in time and space coordinates is sufficient
to recover the gauge-invariance of the action S.
In the case of a finite system, the argument of gauge-invariance for the action S
based on a field vanishing at infinite cannot hold true anymore. Nevertheless, the
additional requirements to impose in order for the action S to be gauge-invariant
will make us discover some new interesting physics. Indeed, as we have already seen
for the IQH effect, the presence of a confinement is crucial for the emergence of
chiral states at the boundary of a quantum Hall bar.
For definiteness, let us assume our system is confined to the lower part of the xy

plane, as depicted in Fig. 1.7. In this case the integral over y in Eq. (1.66) is limited
to the region {−∞, 0}: the contribution ∆S becomes

∆S =
∫ +∞

−∞
dt

∫ +∞

−∞
dx

∫ 0

−∞
dy

( 1
4πν ∂µgε

µρσ∂ρaσ −
e

2π∂µfε
µρσ∂ρaσ

)
=

=
∫ +∞

−∞
dt

∫ +∞

−∞
dx

1
4πν [g (∂tax − ∂xat)]y=0 . (1.67)

As a result, a sufficient condition for the gauge-invariance of the action S in this
finite region is

[g (∂tax − ∂xat)]y=0 = 0. (1.68)

The simplest choice to satisfy this condition is to impose that the gauge transfor-
mation vanishes at the edge, such that g(t, x, 0) = 0. In this way, we do not have to
restrict the gauge fixing of field a in any sense.
A possible choice to fix the gauge is to impose that the time component of a vanishes
as

at = 0. (1.69)

The equation of motion associated to this component are

∂xay = ∂yax. (1.70)
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They are solved by introducing a new bosonic field ΦR(t, x, y), which are linked to
the emergent field a as

ax(t, x, y) = −
√
ν∂yΦR(t, x, y), ay(t, x, y) = −

√
ν∂xΦR(t, x, y). (1.71)

This new bosonic field can be employed to define a 1 + 1 boundary effective theory
that is able to describe chiral edge states belonging to the Laughlin sequence. In
order to find out the Lagrangian for this theory, we write the action S in terms of
ΦR as

S = 1
4π

∫ +∞

−∞
dt

∫ +∞

−∞
dx

∫ 0

−∞
dy (∂yΦR∂t∂xΦR − ∂xΦR∂t∂yΦR) , (1.72)

where we used the condition at = 0. The next step is to perform one integral, such
that the remaining action would describe a 1 + 1 system. Before doing that, we
integrate by parts over x

S = 1
4π

∫ +∞

−∞
dt

∫ +∞

−∞
dx

∫ 0

−∞
dy∂y∂tΦR∂xΦR, (1.73)

where we assumed that ΦR(t, x = ±∞, y) = 0. Now, the integral over y can be
easily performed, thus obtaining

S = 1
4π

∫ +∞

−∞
dt

∫ +∞

−∞
dx∂tΦR∂xΦR

∣∣∣
y=0

. (1.74)

This last equation allows us to define the following Lagrangian

LR = 1
4π∂tΦR∂xΦR

∣∣∣
y=0

, (1.75)

such that
S =

∫
d2xLR. (1.76)

Let us now observe that the field appearing in LR are confined to the edge of the
system, since they are evaluated for y = 0. Thus, we have found out a 1 + 1
dimensional effective field theory that describes the emergent chiral states at the
edge of FQH state in the Laughlin sequence. In this sense, it is useful to define the
following notation for bosonic field ΦR

ΦR(x, t) ≡ ΦR(t, x, 0), (1.77)

since they depend only on the coordinates x and t.
It is easy to demonstrate that the Lagrangian in Eq. (1.75) has a vanishing hamilto-
nian. This is a major problem for the description of edge states and for the derivation
of their transport properties. An useful way to introduce a dynamics in the descrip-
tion of the edge states is to add a free parameter to the theory. This can be done
by implementing a different gauge fixing condition with respect to (1.69), such as

at + vax = 0, (1.78)

where v is a real parameter, without any constraint on its specific value. In the
following, it will be clear that it represents the velocity of propagation along the FQH
chiral states. This velocity is not an universal parameter and the determination of
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its actual form is a non-trivial problem since it depends on the microscopic model
for the confining potential of the edge.
Let us notice that it is not necessary to calculate the action S in this new gauge,
since the condition in Eqs. (1.69) and (1.78) are related by the following change of
variables { x′ = x− vt

y′ = y
t′ = t

⇒
{ a′x = ax

a′y = ay
a′t = at + vax

. (1.79)

In this new coordinates, the action in Eq. (1.76) becomes

S = − 1
4π

∫
d2x∂xΦR (∂t + v∂x) ΦR, (1.80)

with a Lagrangian
LR = − 1

4π∂xΦR (∂t + v∂x) ΦR. (1.81)

As anticipated, the dynamics of chiral edge states in the Laughlin sequence can
be entirely described in terms of of a free bosonic mode propagating chirally in one
dimension with velocity v. Since we are mainly interested in the transport properties
of quantum Hall systems, it is useful to establish a connection between this bosonic
field and electron charge density ρR on the edge. The latter quantity can be obtained
by starting from the µ = 0 component of the 2 + 1-dimensional conserved current
in Eq. (1.56)

J0
−e

= 1
2π (∂xay − ∂yax) , (1.82)

and integrating it on along the width of the edge λ, which is assumed to be very
small along the ŷ axis [78]. One finds

ρR(x) = 1
2π

∫ 0

−λ
(∂xay − ∂yax) . (1.83)

The first contribution, in the limit λ→ 0, vanishes, since∫ 0

−λ
∂xay ∼ λ∂xay

∣∣∣
y=0
→ 0. (1.84)

On the contrary, the remaining term is non-zero and can be evaluated as∫ 0

−λ
∂yax = −ax

∣∣∣
y=−λ

=
√
ν∂xΦR(x, t), (1.85)

where we used that aµ is zero outside the bar (y ≥ 0). Thus, according to this
relation, electron density at the edge is proportional to the space derivative of the
bosonic field ΦR

ρR = − 1
2π
√
ν∂xΦR. (1.86)

The edge Lagrangian in Eq. (1.81) generates the following equation of motion for
the bosonic field ΦR

(∂t + v∂x) ΦR = 0. (1.87)

According to the relation in Eq. (1.86), one also finds the equation of motion for
electron density

∂tρR + v∂xρR = 0, (1.88)
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Figure 1.8: When a Laughlin system is confined to the upper region of the xy plane,
a topologically protected edge state appears at the boundary between the quantum
Hall system and the vacuum. This edge state propagates towards left for magnetic
field pointing towards the positive semi-axis z.

which is solved by a generic function of the form ρR(x, t) = f(x− vt). As a result,
the density ρR propagates rigidly towards right as a wave with a constant speed v.
The other alternative geometry, where the Hall fluid lies in the plane xy with y > 0,
can be treated with a similar analysis (see Fig. 1.8). The emergent field a can be
linked to a bosonic field ΦL, as we did in Eq. (1.71). The edge Lagrangian for this
bosonic field reads

LL = 1
4π∂xΦL (∂t − v∂x) ΦL, (1.89)

which describes a bosonic mode propagating in the left (L) direction, i.e. a regressive
mode. Notice that the same velocity v of right-moving has been chosen for symmetry
reasons. An edge density ρL can be similarly introduced as

ρL =
√
ν

2π ∂xΦL, (1.90)

which propagates rigidly towards left, due to the equation of motion (∂t−v∂x)ρL = 0.

1.3.3 Edge hamiltonian

At this point, it is useful to express the bosonic theory in terms of an edge hamilto-
nian. We can evaluate the hamiltonian density HR from Eq. (1.81), thus obtaining
the edge hamiltonian

HR =
∫ +∞

−∞
dxHR = v

4π

∫ +∞

−∞
dx (∂xΦR)2 . (1.91)

It is convenient to recast the electron density ρR in terms of its Fourier components.
By considering an edge with finite length L, the Fourier series for ρR is

ρR(x) = 1
L

+∞∑
k=−∞

ρR,ke
ikx, (1.92)
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where we introduced
ρR,k =

∫ L
2

−L2
dxρR(x)e−ikx. (1.93)

Assuming periodic boundary conditions, the momentum k is quantized as k = 2π
L n.

When expressed in term of this Fourier components, the edge hamiltonian be-
comes

HR = 2πv
νL

+∞∑
k=−∞

ρR,kρR,−k + πv

νL
N2
R, (1.94)

where we isolated the zero mode component of the density, that physically corre-
sponds to the number of electrons in the systems respect to an average equilibrium
value,

NR = ρR,0 =
∫ L

2

−L2
ρR(x). (1.95)

We define the variable πR,k conjugate to ρR,k by imposing the following canonical
commutation relation. [

ρR,k, πR,k′
]

= iδk,k′ . (1.96)
Through the hamiltonian in Eq. (1.94), it is immediate to show that the time
derivative of this conjugate variable is proportional to ρR,k as

π̇R,k = − ∂HR

∂ρR,k
= 2πv

νL
ρR,−k, (1.97)

when k 6= 0. Since the other Hamilton equation from Eq. (1.94) gives

ρR,k = −ikvρR,k, (1.98)

we find that for k 6= 0
πR,k = i

2π
νkL

ρR,−k. (1.99)

Given the direct proportionality between these two variables, the commutation re-
lation in Eq. (1.96) becomes

[
ρR,k, ρR,k′

]
= kνL

2π δk,−k′ if k, k′ 6= 0, (1.100)

[ρR,0, πR,0] = i. (1.101)

This pair of commutation relations is known as Kac-Moody algebra [79], which typi-
cally determines the structure of all one-dimensional theories of interacting electrons,
known as Tomonaga-Luttinger liquids [80–83].
Finally, we introduce this bosonic annihilation and creation operators for k > 0

bR,k =
√

2π
kνL

ρR,k, b†R,k =
√

2π
kνL

ρR,−k, (1.102)

which have to satisfy [
bR,k, b

†
R,k′

]
= δk,k′ . (1.103)

The edge hamiltonian can now be separated in a zero-mode contributions related to
the number of electrons in the system and in a contribution which is diagonal in the
bosonic operator bR,k

HR =
∑
k>0

vkb†R,kbR,k + πv

νL
N2
R. (1.104)
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Interestingly, we obtained for the bosonic part of the edge hamiltonian an exactly
linear dispersion relation ε(k) = vk.
The corresponding edge hamiltonian for left-moving modes is

HL = v

4π

∫ +∞

−∞
dx (∂xΦL(x))2 . (1.105)

The corresponding Kac-Moody algebra for the left-moving density components is

[
ρL,k, ρL,k′

]
= −kνL2π δk,−k′ , (1.106)

which has an opposite sign with respect to Eq. (1.100). By introducing left-moving
bosonic annihilation and creation operators

bL,k =
√

2π
kνL

ρL,−k, b†L,k =
√

2π
kνL

ρL,k, (1.107)

the edge hamiltonian for left-movers in Eq. (1.105) can be written in a form similar
to Eq. (1.104)

HL = v

4π

∫ +∞

−∞
dx (∂xΦL(x))2 =

∑
k>0

vkb†L,kbL,k + πv

νL
N2
L, (1.108)

where NL = ρL,0 =
∫ L

2
−L2

dxρL(x).
In conclusion, let us observe that the bosonic nature of collective excitations of
fermionic systems is a typical characteristic of one-dimensional interacting quantum
systems [34]. Indeed, this physical picture fits into the paradigm of the Tomonaga-
Luttinger liquid [35, 83], which is effectively and powerfully employed to tackle
low-energy physics of interacting fermions in one dimension. Through this theory, it
is possible to find an exact solution of the interacting problem, a remarkable feature
that has not analogies in higher dimensions. In particular, since the edge states of
a FQH fluid are chiral, the theory just described is known as chiral Luttinger liquid
theory [46].
In the following, we consider the limit L→∞: in this way, we can safely disregard
the zero mode terms ∼ 1

L in HR and HL. This is a good approximation, since, due to
the remarkable coherence length of quantum Hall edge states, the Hall bar employed
in transport experiments have edges with typical dimensions of the order of several
µm 4. Under this assumption, we obtain the following expansion of bosonic field
ΦR/L in terms of bosonic operators bR/L,k

ΦR/L(x) = i

√
2π
L

∑
k>0

e−
ak
2

√
k

(
e±ikxbR/L,k − e∓ikxb

†
R/L,k

)
. (1.109)

1.3.4 Bosonization for the Laughlin sequence

The derivation of the one-dimensional theory describing FQH edge states shows
that a system of interacting fermions in one-dimension behave as collective bosonic
modes propagating chirally along the edge. Here, we provide the connection between

4A careful treatment of the terms ∼ 1
L

becomes meaningful in strongly confined structures,
where the finite size effects cannot be neglected, such as quantum dots
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the bosonic fields ΦR/L and the excitations of a FQH state, which are electrons or
quasi-particle with fractional charge e∗ = νe, in the framework of the so-called
bosonization approach.
First of all, one has to understand how to add or remove charge at the edge. We
introduce the electronic annihilation operators Ψ(e)

R/L, which eliminate a charge e
from the R or L edge state. To implement this operation, they must satisfy the
following commutation relations with electron density operators[

ρR/L(x),Ψ(e)
R/L(y)

]
= −δ(x− y)Ψ(e)

R/L(y). (1.110)

As pointed out by X. G. Wen, from the Kac-Moody relations in Eq. (1.100) and
(1.106) one finds the following commutators involving ρR/L and ΦR/L[

ΦR/L(x),ΦR/L(y)
]

= ±iπsign(x− y), (1.111)[
ρR/L(x),ΦR/L(y)

]
= ∓i

√
νδ(x− y)Ψ(e)

R/L(y). (1.112)

By comparing commutators in Eqs. (1.110) and (1.112), the density operators seem
to behave as functional derivatives for the electronic fields Ψ(e)

R/L(x). Inspired by
this analogy, Wen postulated that the form of fermionic fields should be Ψ(e)

R/L ∝

e
i√
ν

ΦR/L(x). This is called bosonization identity. The exact expression for fermionic
fields is [46]

Ψ(e)
R/L =

F (e)
R/L√
2πa

e±ikF xe
− i√

ν
ΦR/L(x)

, (1.113)

where a is a finite length cut-off, kF is the Fermi momentum and F (e)
R/L are ladder

operators, called Klein factors, that change the numbers of electrons on the edge R
or L [34–36]. Their presence is fundamental to ensure that fermionic fields obey the
correct commutation relations and the right statistical properties between electrons
on different edges. Let us note that the role of the phase factor e±ikF x is to take
into account that excitations are built on the top of a Fermi sea [83].
In order to show the validity of the postulated form for fermionic fields, we check
whether they satisfy Eq. (1.110). By using the following operatorial identity[

eA, B
]

= [A,B] eA, (1.114)

which is valid only if [A,B] a c-number, we can easily prove that[
∓∂xΦR/L(x), F

(e)
√

2πa
e

i√
ν

ΦR/L(y)
]

= −δ(x− y)Ψ(e)
R/L(y), (1.115)

where the commutation relations in Eq. (1.111) have been used.
Fermionic fields must satisfy also the following anti-commutators{

Ψ(e)
R/L(x),Ψ(e)

R/L(y)
}

= 0. (1.116)

Indeed, fermionic operators in Eq. (1.113) provide the right anti-commutator only
if ν belongs to the Laughlin sequence. The Baker-Hausdorff relation, that holds for
two operators A and B, whose commutator [A,B] is a c-number,

eAeB = eA+Be
1
2 [A,B], (1.117)
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can be used to show that

Ψ(e)
R/L(x)Ψ(e)

R/L(y) = 1
2πae

i√
ν [ΦR/L(x)+ΦR/L(y)]e

iπ
2
√
ν

[±2(x+y)−sign(x−y)]
, (1.118)

Ψ(e)
R/L(x)Ψ(e)

R/L(y) = 1
2πae

i√
ν [ΦR/L(x)+ΦR/L(y)]e

iπ
2
√
ν

[±2(x+y)+sign(x−y)]
, (1.119)

where we employed again the commutation relations in Eq. (1.111). From these
equations,

Ψ(e)
R/L(x)Ψ(e)

R/L(y) = Ψ(e)
R/L(y)Ψ(e)

R/L(x)e
iπ√
ν

sign(x−y)
, (1.120)

which gives the correct anti-commutator in Eq. (1.116) only if ν = 1
2n+1 , with n ∈ N.

The other anti-commutator relations of fermionic statistics{
Ψ(e)
R/L(x),Ψ(e)

R/L

†
(y)
}

(1.121)

requires a more complicated demonstration, which is behind the aim of this thesis
and can be found in full detail in Ref. [36]. It is instructive to mention that the
presence Klein factors F (e)

R/L and the normalization constant 1√
2πa , with a → 0 are

crucial in order to ensure the validity of Eq. (1.121).

As we already mentioned, electrons are not the only possible excitations of a
FQH fluid. Indeed, Laughlin quasi-particles with fractional charge and statistics
also exist in this strongly correlated phase of matter. The form for the quasi-particle
field operators can be guessed by the previous discussion on fermion field operators
and by the additional requirement that they add or remove from the edge a fraction
of the electronic charge νe. For these reasons, we postulate that the field operators
for quasi-particles is implemented by an operator Ψ(qp)

R/L(x) ∝ e−i
√
νΦR/L(x). Indeed,

field operators with such a form satisfy[
ρR/L(x), e−i

√
νΦR/L(y)

]
= −i

√
ν
[
ρR/L(x),ΦR/L(y)

]
e−i
√
νΦR/L(y) =

= −νδ(x− y)e−i
√
νΦR/L(y), (1.122)

meaning that they correctly change the total density by a charge νe. Moreover, we
can show that they satisfy also the anyonic statistical exchange properties. Indeed,
one has that

e−i
√
νΦR/L(x)e−i

√
νΦR/L(y) =

=e−i
√
νΦR/L(y)e−i

√
νΦR/L(x)e−ν[ΦR/L(x),ΦR/L(y)] =

= e−i
√
νΦR/L(y)e−i

√
νΦR/L(x)e∓iνπsign(x−y). (1.123)

Thus, these quasi-particle fields return the fractional statistical angle νπ for anyons.
The complete bosonized expression for quasi-particle fields is

Ψ(qp)
R/L(x) =

F (qp)
R/L√
2πa

e±ikF xe−i
√
νΦR/L(x), (1.124)

where F (qp)
R/L is the Klein factor for quasi-particle, defined in analogy with fermionic

ones.
It is useful to point out the existence of a duality between electron and quasi-particle

43



fields, which can be understood by looking at Eqs. (1.113) and (1.124). The expo-
nents of these fields, containing the bosonic fields are related by the transformation
ν ↔ 1

ν . This duality allows to immediately obtain the transport properties of elec-
trons in presence of tunneling in terms of those of quasi-particles [84]. Let us notice
that the difference between Klein factors of quasi-particles and electrons can be ne-
glected, since Klein factors will play no role in our calculations.

Fermionic operators and hamiltonian at ν = 1

As a conclusion, let us comment on the connection between electronic and quasi-
particle fields derived in the bosonized for the unique integer filling factor of the
Laughlin sequence, namely ν = 1. Indeed, field operators in Eqs. (1.113) and
(1.124) coincide at ν = 1, such that one can use a single notation for that specific
filling factor

ΨR/L(x) ≡ Ψ(qp)
R/L(x)

∣∣∣
ν=1

= Ψ(el)
R/L(x)

∣∣∣
ν=1

. (1.125)

In addition, one can show that the bosonic description of low-energy excitations
is completely equivalent to a one-dimensional fermionic model of non-interacting
electrons with linear spectrum (see Appendix A). The hamiltonian for this system
reads

HR/L =
∫ +∞

−∞
dx : Ψ†(x)(∓iv∂x − µ)ΨR/L(x) :, (1.126)

where µ = vkF is the chemical potential. The contribution proportional to µ is
fundamental in order to fix the ground state charge and energy (see the work of
Haldane in Ref. [83]). The notation: · · · : stands for the normal ordering of operators
with respect to the ground state: for fermionic systems the ground state is the filled
Fermi sea. At ν = 1, fermionic fields ΨR/L(x) admit the following representation

ΨR/L(x) = 1√
2πv

∫ +∞

−∞
dεe∓iε

x
v aR/L(ε), (1.127)

where aR/L(ε) is a fermionic annihilation operator that satisfies the anti-commutation
relation {

aR/L(ε), a†R/L(ε′)
}

= δ(ε− ε′). (1.128)

Given Eq. (1.128), it is easy to show that also ΨR/L(x) satisfy fermionic anti-
commutation relations {

ΨR/L(x),Ψ†R/L(x′)
}

= δ(x− x′). (1.129)

Finally, in this fermionic picture, it is also possible to show that the electronic density
assumes the following form (see Appendix A)

ρR/L(x) =: Ψ†R/L(x)ΨR/L(x) : . (1.130)
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Chapter 2

Electron quantum optics

Due to the emergence of chiral and protected channels at the edges of a quantum Hall
bar, experiments able to explore quantum phenomena associated with the wave-like
nature of electrons can be realized. The idea of pushing this investigation down to
the single-electron level gave rise to the new field of electron quantum optics (EQO).
The wave nature of electrons traveling in one-dimensional edge states of quantum
Hall systems bears strong analogies with the propagation of photons in wave-guide.
Using analogs of beam-splitters and optical fibers, the electronic equivalents of op-
tical setups can be implemented in a solid state system and used to investigate
mesoscopic transport in the single-electron limit. These optical-like experiments
provide a powerful tool to improve the understanding of electron propagation in
quantum conductors. Inspired by the controlled manipulations of the quantum state
of light, the recent development of single electron emitters has opened the way to the
controlled preparation, manipulation and characterization of single to few electronic
excitations that propagate in electron quantum optics setups. However, these exper-
iments go beyond the simple transposition of optics concepts in electronics as several
major differences occur between electron and photons, as we will demonstrate in the
remainder of this thesis.

2.1 Introduction to electron quantum optics

In the context of EQO, a remarkable effort has been put forth by the condensed
matter community to implement on-demand sources of electronic wave-packets in
mesoscopic systems. After seminal theoretical works and groundbreaking experimen-
tal results, two main methods to realize single-electron sources assumed a prominent
role in the field of EQO [85–89]. The first injection protocol relies on the periodic
driving of the discrete energy spectrum of a quantum dot, which plays the role of a
mesoscopic capacitor [11, 12, 90]. In this way, it is possible to achieve the periodic
injection of an electron and a hole along the ballistic channels of a system coupled
to this mesoscopic capacitor through a quantum point contact (QPC) [13, 15, 91,
92].

A second major step has been the recent realization of an on-demand source of
electron through the application of a time-dependent voltage to a quantum conduc-
tor [31, 56, 87, 88, 93]. The main challenge to face, in this case, has been that an ac
voltage would generally excite unwanted neutral electron-hole pairs, thus spoiling
at its heart the idea of a single-electron source. The turning point to overcome this
issue was the theoretical prediction by Levitov and co-workers that a periodic train
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of quantized Lorentzian-shaped pulses, carrying an integer number of particles per
period, is able to inject minimal single-electron excitations devoid of any additional
electron-hole pair, then termed levitons [21–23]. Indeed, this kind of single-electron
source is simple to realize and operate, since it relies on usual electronic compo-
nents, and potentially provides a high level of miniaturization and scalability. For
their fascinating properties [94], levitons have been proposed as flying qubits [95]
and as source of entanglement [96–98] with appealing applications for quantum in-
formation processing. Moreover, quantum tomography protocols able to reconstruct
their single-electron wave-functions have been proposed [99–101] and experimentally
realized [28].

These single-electron sources allow the on-demand injection of individual excita-
tions into mesoscopic devices mimicking the conventional photonic quantum optics
with quantum Hall edge channels behaving as waveguides. Topological protection of
edge states guarantees long electronic coherence lengths, which ensure the coherent
manipulation of this individual electronic excitations over several µm. Moreover, the
role of electronic beam splitter, which should mimic the half-silvered mirror of con-
ventional optics, can be played by a quantum point contact (QPC), where electrons
are reflected or transmitted with a tunable probability. By combining these ele-
ments with the single-electron sources previously described, interferometric setup,
originally conceived for optics experiments, can be implemented also in the con-
densed matter realm [102, 103]. One famous example is the Hanbury-Brown-Twiss
(HBT) interferometer [19], where a stream of electronic wave-packets is excited along
ballistic channels and it is partitioned against a QPC [15]. The shot noise signal,
generated due to the granular nature of electrons [104, 105], was employed to probe
the single-electron nature of levitons in a non-interacting two-dimensional electron
gas [14, 31].

A fundamental achievement of EQO has been the implementation of the Hong-
Ou-Mandel (HOM) interferometer [18], where electrons impinge on the opposite side
of a QPC with a tunable delay [14, 16, 88]. By performing this kind of collisional
experiments, it is possible to gather information about the forms of the impinging
electronic wave-packets and to measure their degree of indistinguishability [56, 92,
106]. For instance, when two indistinguishable and coherent electronic states collide
simultaneously (zero time delay) at the QPC charge current fluctuations are known
to vanish at zero temperature, thus showing the so called Pauli dip [14, 88, 107].
This dip can be interpreted in terms of anti-bunching effects related to the Fermi
statistics of electrons [29, 30, 101, 108, 109].

In this Chapter, we restrict ourselves to consider only quantum Hall edge states
at filling factor ν = 1: due to the presence of a single non-interacting channel, this
is the simplest system for the theoretical description of EQO fundamental concepts
and results.
While many interesting and fascinating results have been obtained with the meso-
scopic capacitor [15, 29, 30], we focus on the single-electron source based on Lorentzian
voltage pulses for the rest of this thesis.

2.2 Single-electron voltage sources

A versatile protocol to emit in a controllable way single electrons along the channels
of quantum conductors can be implemented by resorting to the apparently sim-
ple principle of applying a time-dependent voltage drive to a quantum conductor.
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Figure 2.1: (Upper panel) A right-moving channel emerging on the edge of quantum
Hall bar. This edge state is connected to a reservoir driven by a time-dependent
drive. This configuration is modeled by a space- and time- dependent potential
VR(x, t). (Lower panel) The same situation for a left-moving channel. This config-
uration is modeled by a space- and time- dependent potential VL(x, t).

Electrons can be emitted into a mesoscopic system also by employing dc biased con-
tact. Nevertheless, a dc bias cannot be used as an on-demand and tunable source
of electron. In this sense, one has to trigger the single-electron emitter with a time-
dependent voltage to achieve the controllable manipulation of electrons required for
experimental and applicative purposes.
Let us consider the right-moving edge of a quantum Hall bar at filling factor ν = 1,
connected to a reservoir driven by a time-dependent voltage VR(t), as in Fig. 2.1.
For the following discussion, it does not matter on which chirality we focus on. The
total charge C emitted by this time-dependent voltage into the edge states can be
written as the integral over all times of the right-moving current in Eq. (B.22)

C =
∫ +∞

−∞
dtJR(x, t) = e2

2π

∫ +∞

−∞
dtVR(t). (2.1)

For a generic ac voltage, electrons are emitted into the edge state together with other
neutral excitations, such as electron-hole pairs. The main challenge to face is to get
rid of this unwanted neutral electron-hole pairs, that spoil at its heart the idea of
a single-electron source. In the following, we exploit the time-dependent transport
theory developed in Sec. B.1 of Appendix B in order to find out the form of the
optimal drive that is able to inject minimal single-electron excitations devoid of any
additional electron-hole pair.
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2.2.1 Fermionic fields in presence of time-dependent voltage

A single right-moving edge state of a quantum Hall bar at ν = 1 is described by the
edge hamiltonian

HR/L =
∫ +∞

−∞
dx : Ψ†(x)(∓iv∂x − µ)ΨR/L(x) :, (2.2)

where µ = vkF is the chemical potential and

ΨR/L(x) = 1√
2πv

∫ +∞

−∞
dεe∓iε

x
v aR/L(ε). (2.3)

Let us comment that operators aR(ε) satisfy the following average values over the
equilibrium configuration at temperature θ

(2.4)
〈a†R(ε)aR(ε′)〉 = δ(ε− ε′)f(ε), (2.5)

〈aR(ε)a†R(ε′)〉 = δ(ε− ε′) (1− f(ε)) , (2.6)

where f(ε) = 1
1+e

ε−µ
θ

is the Fermi distribution function at temperature θ.
The spectrum of hamiltonian in Eq. (2.3) is linear, namely ε(k) = vk (see upper
panel of Fig. 2.2), where k represents the momentum of electrons. As demon-
strated in detail in Appendix B, when a right-moving channel is connected to a
time-dependent voltage VR(t), electrons that exit the contact and enter into the
conducting channels have acquired a time-dependent phase eiχ(t), with

χ(t) = e

∫ t−x
v

−∞
dt′VR(t′). (2.7)

This time dependence reflects the fact that electrons are not emitted in quantum
states with definite energy. It is useful to introduce the Fourier transform of this
voltage phase, which reads

p(ε) =
∫ +∞

−∞
dteiχ(t)eiεt. (2.8)

The right-moving fermionic field operator in Eq. (B.23) can be recast in terms of
this Fourier transform as

ΨR(x, t) = ψR(x, t)eiχ(t)eiεt =

= 1√
2πv

∫ +∞

−∞
dεe−iε(t−

x
v )ã(ε), (2.9)

where we defined
ãR(ε) =

∫ +∞

−∞
dε1p(ε1)aR(ε− ε1), (2.10)

which are expressed as a superposition of fermionic operators a(ε) weighted by the
Fourier transform of the voltage phase.

In the presence of a time-dependent drive electrons is excited above the chemical
potential and holes are generated below, with respect to the equilibrium situation. In
the following, we employ this description of fermionic fields in presence of an external
voltage to find out the drive able to emit on-demand single-electron excitations.
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Figure 2.2: (Upper panel) A right-moving channel on the edge of quantum Hall bar.
Its energy dispersion ε(k) is linear according to the edge hamiltonian.
(Lower panel) A right-moving channel on the edge of quantum Hall bar connected
to a time-dependent voltage. Electrons are excited above the chemical potential µ
and holes are generated below.

2.2.2 Single-electron voltage source

In the lower part of Fig. 2.2, the linear dispersion ε(k) of edge states is plotted
in the presence of VR(t). The optimal condition for a time-dependent voltage is to
generate no hole at all. In order to find out the optimal drive for the on-demand
generation of single-electron excitations, we use the formalism to relate the property
of a specific voltage, encoded in the function p(ε), to the number of holes Nh that it
generates. This quantity can be calculated in terms of fermionic operators ãR(ε) as

Nh =
∫ µ

−∞
dε
〈
ãR(ε)ã†R(ε)

〉
, (2.11)

where the average is taken with respect to the equilibrium configuration. Let us
observe that the integration is performed exclusively over energy below the chemical
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potential. By using Eq. (2.10), one finds that

Nh =
∫ µ

−∞
dε

∫ +∞

−∞
dε1

∫ +∞

−∞
dε2p(ε1)p∗(ε2)

〈
a(ε)a†(ε)

〉
=

=
∫ µ

−∞
dε

∫ +∞

−∞
dε1

∫ +∞

−∞
dε2p(ε1)p∗(ε2)δ(ε1 − ε2) (1− f(ε− ε1)) , (2.12)

where we used the average value of operators a(ε) given in Eq. (2.6). Since finite
temperature effects can generate particle-hole pairs, we restrict our discussion to
the zero temperature limit, where holes can exist only due to the presence of the ac
voltage. In this limit, f(ε) = θ(µ− ε) and one finds

Nh =
∫ µ

−∞
dε

∫ ε−µ

−∞
dε1|p(ε1)|2 =

∫ 0

−∞
dε

∫ ε

−∞
dε1|p(ε1)|2., (2.13)

Notice that in the last step we performed the shift ε → ε + µ. Since ε is restricted
to negative values by the first integral in Eq. (2.13), it is necessary that p(ε) = 0 for
ε < 0 in order to ensure that no unwanted electron-hole pair is generated. By looking
at Eq. (2.8), it is clear that this condition imposes a constraint on the structure of
e−iχ(t), when prolongate to the complex plane. In particular, it must have no pole
in the lower half plane, in order to vanish for negative energy displacement, but at
least one pole in the upper half plane, since it has to be non-zero somewhere. The
simplest function that fulfills this requirement is

eiχ(t) = t+ iW

t− iW
, (2.14)

where W is a positive and real parameter. As a consequence, the corresponding
voltage is

V (t) = −i1
e

d

dt
ln
(
eiχ(t)

)
. (2.15)

By applying this last equation to Eq. (2.14), one finds that the optimal drive is a
Lorentzian voltage pulse with width at mid-height equal to 2W

Vlor(t) = 1
(−e)

2W
t2 +W 2 . (2.16)

In addition, notice that the parameter of this voltage pulse are already set in order
to give (see Eq. (2.1))

C =
∫ ∞
−∞

e2

2πVR(t) = −e. (2.17)

Thus, we demonstrated that the voltage in Eq. (2.15) emit into a quantum conductor
a single charge. This minimal single-electron excitation, devoid of any additional
electron-hole pair, emitted by the Lorentzian-shaped voltage in Eq. (2.16) is termed
leviton [14, 23, 31].
Levitov generalized this result to the injection of multiple levitons at different time
and with different width, such that the voltage

Vlor(t) =
N∑
k=1

1
(−e)

2Wk

(t− tk)2 +W 2
k

(2.18)

is a source of N pure electronic excitations. Let us point out that this result is anal-
ogous the properties of solitons in non-integrable systems, which can be arbitrarily
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superimposed without losing their solitonic nature. In this way, also the simultane-
ous and on-demand emission of many electronic excitations can be easily achieved.
On the experimental side, a single-electron source based on levitons is simple to
realize, since it relies on usual electronic components. Anyway, for a realistic imple-
mentation one has to considered periodic voltage pulses. The expression for a train
of quantized Lorentzian pulses with period T is

Vlor(t) =
∞∑

k=−∞

1
(−e)

2W
(t− kT )2 +W 2 , (2.19)

which is nothing but a particular case of Eq. (2.18), thus proving that levitons are
single-electron excitations even in the periodic case.

2.3 Electron coherence and levitons wave-functions

The single-electron source previously introduced can be employed to investigate the
properties of electronic quantum states traveling along the edge states of quantum
Hall systems. A single leviton that propagates along an edge channel can be properly
characterized in terms of a wave-function that represents a single-particle quantum
state placed on the top of the Fermi sea. In the following, our goal is to extract
the expression for this wave-function. For this reason, we focus on the electronic
correlations in energy space, where it is easy to discriminate the nature of excitations
induced into the edge states by the presence of a voltage. The best way to find out
levitons wave-function is to work at zero temperature, condition that we will assume
in the following.

2.3.1 Correlation in energy space

It is useful to start by describing the effect of a generic time-dependent voltage
VR(t) on the occupation number of electrons in the energy space. At this purpose,
we define the correlation function for fermionic operators ãR(ε)

G̃R(ε, ε′) =
〈
ã†R(ε)ãR(ε′)

〉
. (2.20)

Indeed, the function G̃R(ε, ε′) takes into account all the electronic correlations, in-
cluding those due to the driving voltage and those related to the presence of a filled
Fermi sea. At the equilibrium, i.e. when VR(t) = 0, Eq. (2.20) reduces to

G̃0,R(ε, ε′) =
〈
a†R(ε)aR(ε′)

〉
. (2.21)

It is convenient to subtract this equilibrium contribution to G̃R(ε, ε′), thus defining
the following excess correlation function in the energy space

∆G̃R(ε, ε′) = G̃R(ε, ε′)− G̃0,R(ε, ε′), (2.22)

which provides information about the distribution in energy of electronic states
exclusively related to the voltage drive. The off-diagonal contribution (ε 6= ε′) corre-
sponds to the coherence between electronic states at different energies. By exploiting
it, one can discriminate the nature of fermionic excitations by inspecting their en-
ergy properties. In Fig. 2.3, we present the Fourier plane corresponding to the
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Figure 2.3: Scheme of electronic correlations in Fourier space. Single-electron exci-
tations (e− e) contributes to the upper-right quadrant, while single-hole excitations
(h−h) to the lower-left quadrant (ε < µ, ε′ < µ). The remaining quadrants, defined
by ε < µε′ > µ or ε > µ, ε′ < µ correspond to the coherence between electronic and
hole excitations (e− h or h− e).

electronic correlation function ∆G̃R (ε, ε′). The upper-right quadrant, defined by
ε > µ and ε′ > µ contains the contribution of excitations having positive energies,
that correspond to single-electron excitations (e− e quadrant). Similarly, the lower-
left quadrant (ε < µ, ε′ < µ) contains the contribution of single-hole excitations with
negative energies (h − h quadrant). Finally, notice that, since the coherence func-
tions depends on two time variables (which correspond to two energy variables in
Fourier space), correlations of electron and hole excitations are possible. Therefore,
the remaining quadrants, defined by ε < µε′ > µ or ε > µ, ε′ < µ correspond to the
coherence between electronic and hole excitations. Let us observe that an optimal
drive, injecting exclusively single-electron excitations, should have non-vanishing
contribution solely from the e− e quadrant. In order to connect Eq. (2.33) directly
to the property of a particular drive VR(t), it is convenient to express Eq. (2.20) in
terms of fermionic field ΨR, which contains the voltage phase eiχ(t), by using

ãR(ε) =
√

v

2π

∫ +∞

−∞
dteiεtΨR(0, t). (2.23)

Indeed, one finds

G̃R(ε, ε) =
∫ +∞

−∞
dt

∫ +∞

−∞
dt′eiεte−iεt

′〈Ψ†R (0, t) ΨR

(
0, t′

)
〉 =

= 1
2π

∫ +∞

−∞
dt

∫ +∞

−∞
dt′eiεte−iεt

′
G<R(t, t′), (2.24)

where we defined the Green’s function

G<R(t, t′) = 〈Ψ†R (0, t) ΨR

(
0, t′

)
〉. (2.25)

(2.26)
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Let us comment, that, in analogy with Glauber’s coherence theory of photons [32],
Eq. (2.25) can be also termed electron coherence function. This object is the central
quantity of the electron coherence theory, which aims at extending the theory of
coherence originally conceived for photons to the case of electrons in mesoscopic
systems [33, 86, 100]. While for photons a single coherence functions is sufficient,
in mesoscopic systems one needs two types of coherence functions, respectively, for
electrons and holes. Therefore, in addition to Eq. (2.25), one has to introduce

G>R(t, t′) = 〈ΨR (0, t) Ψ†R
(
0, t′

)
〉. (2.27)

Similarly to G̃R(ε, ε′), also the equilibrium contribution G̃0,R(ε, ε′) can be connected
to fermionic operators ψR as

G̃0,R(ε, ε′) =
∫ +∞

−∞
dt

∫ +∞

−∞
dt′eiεte−iεt

′〈ψ†R (0, t)ψR
(
0, t′

)
〉 =

= 1
2π

∫ +∞

−∞
dt

∫ +∞

−∞
dt′eiεte−iε

′t′G<0,R(t− t′), (2.28)

where we identified the Green’s function of the system at equilibrium

G<0,R(t− t′) = 〈ψ†R (0, t)ψR
(
0, t′

)
〉, (2.29)

(2.30)

that corresponds to Eq. (2.27) when VR(t) = 0. By plugging Eqs. (2.24) and (2.28)
into Eq. (2.22), one obtains

∆G̃R(ε, ε′) =
∫ +∞

−∞
dt

∫ +∞

−∞
dt′eiεte−iε

′t′e−iµ(t−t′)∆G<R(t, t′), (2.31)

where we introduced the excess electron coherence function

∆G<R(t, t′) = eiµ(t−t′)
(
G<R(t, t′)−G<0,R(t− t′)

)
=

= eiµ(t−t′)ei(χ(t′)−χ(t))ψ†R (0, t) 〈ψR
(
0, t′

)
〉, (2.32)

which encodes all the effects of electron coherence due to the presence of a time-
dependent drive.
The diagonal part (ε = ε′) of ∆G̃R defines the following function

∆f̃R(ε) = ∆G̃R(ε, ε′), (2.33)

which represents the probability distribution of electrons in energy space associated
solely with the presence of the voltage. For a generic time-dependent drive, ∆f̃R(ε)
can be different from zero for energies below or above the chemical potential, thus
showing that unwanted electron-hole pairs are generated. On the contrary, when a
voltage emits single-electron minimal excitations, the quantity in Eq. (2.33) must
vanish for ε < µ, since hole-like states cannot be occupied. In this sense, ∆f̃R(ε)
is related to the occupation probability for single-electron states. In terms of Eq.
(2.32), the probability distribution ∆f̃R(ε) becomes

∆f̃R(ε) =
∫ +∞

−∞
dt

∫ +∞

−∞
dt′eiεte−iεt

′∆G<R(t, t′), (2.34)

This expression holds true for a generic time-dependent drive: in the following, we
evaluate it for the Lorentzian-shaped pulse in Eq. (2.89) and we use it to derive the
explicit expression for the single-leviton wave-function.
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2.3.2 Levitons wave-functions

The time-dependent phase for this Lorentizan-shaped pulse is given in Eq. (2.14).
For completeness, we report here its expression

eiχ(t) = t+ iW

t− iW
. (2.35)

Using this result, we can express Eq. (2.32) as

∆G<R(t, t′) = eiµ(t−t′)
(
t′ − iW
t′ + iW

t+ iW

t− iW
− 1

)
〈ψ†(0, t)ψ(0, t′)〉. (2.36)

At zero temperature, the Fermi sea contribution is

〈ψ†(0, t)ψ(0, t′)〉 = i

2πv
e−iµ(t−t′)

t− t′ − i0+ . (2.37)

By plugging this result into (2.36), one has that

∆G<R(t, t′) = i

2πv

(
t′ − iW
t′ + iW

t+ iW

t− iW
− 1

) 1
t− t′ + i0+

= i

2πv
1

tt′ +W 2 − iW (t′ − t)
2iW (t′ − t)
t− t′ + i0+ = W

πv

1
t′ + iW

1
t− iW

. (2.38)

Let us observe that ∆G<R(t, t′) has factorized into a function depending only on t
and one depending only on t′. This factorization does not occur for any kind of
driving voltage and it is a consequence of the peculiar form of the voltage phase for
levitons reported in Eq. (2.14). By inserting the specific expression for the voltage
phase of a single-leviton, appearing in Eq. (2.38), into Eq. (2.31), one finds

∆f̃R(ε) = W

πv

∫ +∞

−∞
dt

1
t− iW

∫ +∞

−∞
dt′eiεte−iεt

′ 1
t′ + iW

=

= |ϕ̃e(ε)|2, (2.39)

where we identified the function

ϕ̃e(ε) = 1√
2π

∫ ∞
−∞

dte−i(ε−µ)t

√
W

π

1
t+ iW

=

= 1√
2π

√
W

π
e−W (ε−µ)

∫ ∞
−∞

dte−i(ε−µ)t 1
t

= i
√

2We−W (ε−µ)Θ (ε− µ) , (2.40)

where we recognized the integral representation of a Θ function [110]. The possi-
bility to write ∆f̃R(ε) as a squared module of ϕ̃e(ε) is a direct consequence of the
factorization obtained in Eq. (2.39) and, therefore, it is a special property of levi-
tons, which does not hold true for a generic time-dependent voltage. Notice that
ϕ̃e(ε) 6= 0, only for ε > µ. For this reason, we interpret ϕ̃e(ε) as the probability
density for electronic states, namely as the wave-function of the single-leviton state
in energy space. It represents the probability density for a single electron, in the
sense that the probability to fill an electronic state (above the chemical potential)
between two given energies ε1 and ε2 is given by

Pe(ε1, ε2) =
∫ ε2

ε1
|ϕ̃e(ε)|2 . (2.41)
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Figure 2.4: ∆f̃R(ε) in units of 2µ−1 as a function of energy for a single leviton. The
width of the Lorentzian pulse assume the values W = µ−1, 2.5µ−1, 10µ−1.

In addition, this wave-function satisfies the normalization condition
∫+∞
−∞ |ϕ̃e(ε)|

2 =
1. According to this result, the wave-function of a single leviton in time space is

ϕe(t) =
√
W

π

1
t+ iW

. (2.42)

such that the excess Green’s function ∆G<(t, t′) in presence of a single leviton can
be written as

v∆G<R(t, t′) = ϕ∗e(t)ϕe(t′), (2.43)

This example illustrates that electron excess coherence function provides a direct
way to access the wave-function of the single-electron emitted state. By using the
expression for the single-leviton wave-function in Eq. (2.40), one can plot the distri-
bution function ∆f̃R(ε). In Fig. 2.4, one can see that up to ε = µ its value is zero,
according to the fact that all the states are filled: deviations from the equilibrium
situations occur only for ε > µ and correspond to the presence of a single excitations
on the top of the Fermi sea. This electronic excitations has an exponential distribu-
tion in energy which is related to the width of the Lorentizan pulse.
Since the simultaneous emission of many electrons is perfectly accessible using
Lorentzian shaped voltage pulse, one could also look for the expression of the excess
coherence function of a state made by q electronic excitations emitted simultane-
ously. It can be shown that the excess coherence function for such generic state is
given by [33, 86, 100]

v∆G<R(t, t′) =
q∑

k=1
ϕ∗k(t)ϕk(t′), (2.44)

where

ϕk(t) =
√
W

π

(t− iW )k−1

(t+ iW )k
, k = 1, ..., q, (2.45)

where we identified ϕ1 ≡ ϕe. The wave-functions ϕk form a complete and orthonor-
mal set. Indeed, one can convince himself of the correctness of this result by noticing
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that the diagonal part of (2.44) exactly describes the probability density of the many
body state found from the Slater determinant of {ϕk, k = 1, ..., q} [31, 86].
The analogous result for the hole coherence function is

v∆G>R(t, t′) = ve−iµ(t−t′)
(
G>R(t, t′)−G>0,R(t, t′)

)
=

q∑
k=1

ϕk(t)ϕ∗k(t′), (2.46)

For completeness, we report also the generalization of this orthonormal set of wave-
functions to the case of a periodic train of Lorentzian pulses that has been given in
Ref. [111]. In this case, the expressions for the excess Green’s functions are [31]

∆G<R(t, t′) = 1
πv

sin
(
π t−t

′

T

)
t′ − t

+∞∑
k=1

ϕ∗k(t)ϕk(t′), (2.47)

∆G>R(t, t′) = − 1
πv

sin
(
π t−t

′

T

)
t′ − t

+∞∑
k=1

ϕk(t)ϕ∗k(t′), (2.48)

with

ϕk(t) =

√√√√sinh
(
2πWT

)
2

sink−1
(
π t−iWT

)
sink

(
π t+iWT

) , k = 1, ..., q. (2.49)

2.4 Single-electron interferometry
Before entering the discussion about the real implementation of single-electron inter-
ferometers, we illustrate a schematic view of the concept of quantum interferometry
of few-particle states, which is a central concept of quantum optics with both pho-
tons and electrons [112]. We consider an experimental scheme with four different
arms, presented in the upper panel of Fig. 2.5, which contains two coherent sources
at the beginning of arms 1 and 2 of indistinguishable particles and two ideal detec-
tors at the end of arms 3 and 4. In the condensed matter domain, the waveguides
for photons can be replaced by ballistic edge channels of integer quantum Hall sys-
tems. The central scatter is assumed to reflect or transmit incident states with
probability amplitudes r and t, respectively. For photons, this scatter corresponds
to a beam splitter, which can be implemented using an half-silvered mirror (see left
lower panel of Fig. 2.5). In order to implement an electronic analog of a beam
splitter, such that electrons can be controllably reflected or transmitted as photons,
one can a quantum point contact (QPC) [24, 25]. This device consists of a pair
of electrostatic gates deposited on the surface of a Hall bar, as shown in the lower
panel of Fig. 2.5. Its working principle is simple: when a negative voltage VG is
applied to each gate, a potential barrier is formed, which tends to repel incoming
electrons. In general, one assign to a QPC a certain transmission probability T (and
a corresponding reflection probability R = 1 − T ) in a phenomenological way for
each edge channel. According to Landauer formula, the conductance for a quantum
Hall system at filling factor ν = 1 in a QPC geometry is GH = T e2

h . This result
allows to determine experimentally the relation between the gate voltage and the
transmission amplitude measuring the conductance GH of a sample as a function of
VG.
We describe the incident states propagating in the i-th arm (i = 1, 2) with annihila-
tion operators ai and creation operators a†i . Similarly, outgoing states scattered into
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Figure 2.5: (Upper panel) Setup for two-particle interferometry. Incoming particles,
traveling in input channels 1 and 2, impinge on the beam splitter in the middle
(yellow layer). They are either transmitted (with probability T ) or reflected (with
probability R = 1 − T ) into output channels 3 and 4. Two detectors are placed
at the end of output arms 3 and 4. (Lower panel)Half-silvered mirrors (left) and
quantum point contacts (right) play the role of beam splitter for bosons and fermions,
respectively geometry. In a quantum point contact geometry, two negative gate
voltages VG generates a narrow constriction by repelling incoming electrons.
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the j− th channel (j = 3, 4) are described by annihilation operators bj and creation
operators b†j . Due to the probabilistic nature of scattering processes, the incoming
and the out-coming states are related by a scattering matrix s as(

b3
b4

)
=
(
r t
t r

)(
a1
a2

)
. (2.50)

The occupation number of input and output arms are ni = a†iai and nj = b†jbj .The
occupation number of output channels are given by

n3 = Rn1 + Tn2 + t∗ra†2a1 + tr∗a†1a2, (2.51)
n4 = Rn2 + Tn1 + t∗ra†1a2 + tr∗a†2a1, (2.52)

where we introduce the reflection coefficient R = |r|2 and the transmission coefficient
T = |t|2. The probabilistic scattering of particles induce fluctuations in the occupa-
tion number of output arms. For instance, by using Eq. (2.51) and applying repeat-
edly Wick’s theorem, one can compute the auto-correlators and cross-correlator of
number occupations in arms 3 and 4, which are

〈∆n2
3〉 ≡ 〈n2

3〉 − 〈n3〉2 = R2〈n1〉2 +RT 〈n1〉〈a2a
†
2〉 −R

2〈n1〉2 = RT, (2.53)

where the average is performed over the initial state |Ψ〉 = a†1|0〉 and we introduced
∆nk = nk − 〈nk〉.
The correlations in the occupation numbers in transmitted and reflected beams
are called partition noise. Let us observe that the partition noise does not provide
information about the statistics of impinging particles, i.e. whether they are fermions
or bosons. To distinguish between the different character of bosonic and fermionic
statistics, multi-particle states have to be scattered. For this reason, we take into
exam in the following two-particle interference.
The relevant situation for the observation of statistical properties of fermions and
bosons is the simultaneous scattering of two identical particles at the beam-splitter.
The initial state can be expressed as |Ψ〉 = a†1a

†
2|0〉. In this case, a particle is present

in each input arm, such that 〈n1〉 = 〈n2〉 = 1. As a consequence, the average
values of number occupation in the output arms are 〈n3〉 = R〈n1〉+ T 〈n2〉 = 1 and
n4 = R〈n2〉+ T 〈n1〉 = 1.
The average values of 〈n2

3〉 is

〈n2
3〉 = R2〈n2

1〉+ T 2〈n2
2〉+ 2RT 〈a†1a1a

†
2a2〉+RT

(
〈a†1a1a2a

†
2〉+ 〈a†2a2a1a

†
1〉
)

=

= R2 + T 2 + 2RT 〈n1n2〉+RT (〈n1(1± n2)〉+ 〈n2(1± n1〉) =
= (R+ T )2 + (2± 2)RT = 1 + (2± 2)RT, (2.54)

where the upper and lower signs refer to bosons and fermions, respectively. This
difference arises because, according to the statistical properties,

aia
†
i =

{
1 + a†iai for bosons
1− a†iai for fermions

. (2.55)

Similarly, one can repeat an analogous calculation for the other output arm, thus
finding that 〈n2

3〉 = 〈n2
4〉. The correlation between the occupation number of different
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output channels can be obtained from the particle conservation n1 + n2 = n3 + n4
and its final value is

〈n3n4〉 = 1−RT (2± 2). (2.56)

By using these results, the fluctuations of the occupation number are

〈∆n2
3〉 = 〈∆n2

4〉 = −〈∆n3n4〉 = RT (2± 2). (2.57)

Interestingly, for fermions the fluctuations in Eq. (2.57) vanish, regardless of reflec-
tion and transmission coefficient.
The physical explanation for this result is deeply rooted in the statistics of bosons
and fermions. Let us notice that the probability to observe both particles scattered
into arm j is Pj,j = 1

2 |b
†
jb
†
j |Ψ〉|2, where the prefactor 1

2 is needed to normalize the
probability. These probabilities can be recast as

Pj,j = 1
2 |b
†
jb
†
j |Ψ〉|2 = ±1

2〈∆n
2
j 〉, P3,4 = 〈n3n4〉. (2.58)

In the case of bosons, when R = T = 1
2 , they are forced to exit on the same output

arm, since P3,4 = 0: this effect is called bosons (or photons) bunching (see left panel
of Fig. 2.6).
For fermions, we find that Pj,j = 0 and P3,4 = 1, independently of the barrier
transmission. This result is a strict consequence of Pauli exclusion principle, which
enforce two indistinguishable fermions to occupy different positions. In this way, the
two fermions always exit on opposite output arms, thus generating no fluctuations
in the occupation numbers. This result is usually termed fermion anti-bunching,
presented in the right panel of Fig. 2.6.

2.4.1 Noise in interferometric setup

By using IQH edge states as electronic wave-guides and QPC as electronic beam-
splitter, we can implement EQO experiments. As we have just understood, the
fluctuations in the occupation numbers encode valuable and interesting information
intimately related to the nature of particles involved into these experiments. This is
the reason way many photonic experiments, employing photo-detectors, were focused
on their measurement. In condensed matter system, it is not easy to obtain direct
information on electrons entering a certain reservoir, since particles are embedded
in a solid state system. Nevertheless, one can focus on the fluctuations of electrical
current, which are experimentally accessible by measuring the current noise [104,
112].
Let us consider a quantum Hall bar at filling factor ν = 1 in a two-terminal QPC
geometry, presented in Fig. 2.7. Two time-dependent voltage VR(t) and VL(t),
which are both function with period T = 2π

ω , are applied to reservoirs 1 and 2,
respectively. In this setup, reservoir 1 plays simultaneously the role of source for
right-movers and detector for left-movers. The opposite situation occurs for reservoir
2. The derivation of current noise will be carried out for generic periodic voltages
VR/L. At the end of calculations, we will focus on specific configurations for the
external drive and we will specify the form for VR/L.
The tunneling at the QPC is treated within the Scattering Matrix Theory [104, 112–
114], whose principles have been introduced in the schematic example presented at
the beginning of this section. This kind of approach provides a phenomenological
description of tunneling processes in presence of a QPC, without resorting to a
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Figure 2.6: Comparison between boson bunching and fermion anti-bunching in a
symmetric interferometer with T = R = 1

2 . When two wave-packets with finite
temporal extension collide at the beam splitter, different scenarios may emerge de-
pending on the statistics and the time delay tD between arrivals. At tD = 0, the
number of coincidence counts 〈n3n4〉 for bosons gets suppressed, while the one for
fermions is enhanced. Fluctuations in the particle number 〈∆n2

3〉 measured by a
single detector behave the opposite way: bosonic fluctuations are enhanced near
tD = 0, while fermionic ones are suppressed.
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Figure 2.7: Quantum Hall bar at filling factor ν = 1 in a two-terminal QPC geometry.
Two time-dependent potential VR and VL are applied to left and right reservoirs,
respectively.

microscopic model. We remark that this theory is valid only for free electrons and,
when in the next Chapters we will deal with interacting systems, it could no longer
be applied. Fermionic fields incoming into the edge states from the two reservoirs
are given by

Ψin,R/L(x, t) ≡ΨR/L(x, t) = eiχR/L(t∓x
v

)ψR/L(x, t), (2.59)

where χR/L(t) = e
∫ t
−∞ dtVR/L(t). Electronic fields outgoing from the QPC are

termed Ψout,R/L(x, t), whether they enter into reservoir 2 or 1. They are connected
to fermionic fields in Eq. (2.59) by a matrix, which model the scattering at the QPC
between the two edge states. In this way, the fermionic fields Ψout,R/L are expressed
as a simple linear combination of Ψin,R/L, weighted by the appropriate probability
transmission and reflexion, T and R, determined by the voltage gate of the QPC.
Thus, one has (

Ψout,L

Ψout,R

)
=
( √

T i
√
R

−i
√
R
√
T

)(
Ψin,L

Ψin,R

)
. (2.60)

As argued before, we are interested in using this scattering matrix approach to com-
pute the current noise in single-electron interferometric setup. The zero-frequency
current noise is defined as (α and β can assume the value 1 or 2)

Sαβ =
∫ T

2

−T2
dt

∫ +∞

−∞
dt′〈Jα(xα, t)Jβ(xβ, t′)〉 − 〈Jα(xα, t)〉〈Jβ(xβ, t′)〉 =

=
∫ T

2

−T2
dt

∫ +∞

−∞
dt′〈Jα(0, t− ξα

xα
v

)Jβ(0, t′ − ξβ
xβ
v

)〉+

− 〈Jα(0, t− ξα
xα
v

)〉〈Jβ(0, t′ − ξβ
xβ
v

)〉, (2.61)

where ξ1/2 = ±1, Jα(xα, t) is the chiral current operator incoming into reservoir α
and xα indicates the position of such reservoir. The current operator can be easily
expressed as a balance of fermionic operators entering or exiting reservoirs as

J1(x, t) = −ev
(
: Ψ†out,L(x, t)Ψout,L(x, t) : − : Ψ†in,R(x, t)Ψin,R(x, t) :

)
, (2.62)

J2(x, t) = −ev
(
: Ψ†out,R(x, t)Ψout,R(x, t) : − : Ψ†in,L(x, t)Ψin,L(x, t) :

)
, (2.63)
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where the notation : · · · : indicates the normal ordering with respect to the Fermi
sea.
The current fluctuations associated to the same reservoir (α = β) are called auto-
correlators, while for different reservoirs (α 6= β) they are called cross-correlators.
The current operator associated to terminal 1 and 2 can be recast using Eq. (2.60),
thus obtaining

J1(x, t) = −ev
[
T
(
− : Ψ†in,L(x, t)Ψin,L(x, t) : + : Ψ†in,R(x, t)Ψin,R(x, t) :

)
+

− i
√
RT

(
Ψ†in,R(x, t)Ψin,L(x, t)−Ψ†in,L(x, t)Ψin,R(x, t)

) ]
, (2.64)

J2(x, t) = −ev
[
T
(
: Ψ†in,L(x, t)Ψin,L(x, t) : − : Ψ†in,R(x, t)Ψin,R(x, t) :

)
+

+ i
√
RT

(
Ψ†in,L(x, t)Ψin,R(x, t)−Ψ†in,R(x, t)Ψin,L(x, t)

) ]
. (2.65)

Let us notice that the two current are related as J1(x, t) = −J2(x, t), which is
consistent with charge conservation. As a consequence, the auto-correlators are
related to the cross-correlators according to

S11 = S22 = −S12 = −S21. (2.66)

In the following, for definiteness we focus on the cross-correlator of reservoirs 1 and
2, namely S12, and we use the shorthand notation S = S12.
By using the definition of current noise in Eq. (2.61) and the expression for the
current J2 just derived, one finds for the zero-frequency auto-correlator of reservoir
2

S = −e2v2T 2
∫ T

2

−T2
dt

∫ +∞

−∞
dt′

∑
r=L,R

G<0,r(t, t′)G>0,r(t, t′)+

− e2v2RT

∫ T
2

−T2
dt

∫ +∞

−∞
dt′
(
G<R(t, t′)G>L (t, t′) +G<L (t, t′)G>R(t, t′)

)
, (2.67)

where we eliminate the dependence on x1 and x2, by using the chirality of fermionic
fields and we recall the expression for Green’s functions

G<R/L(t, t′) = 〈Ψ†in,R/L(0, t)Ψin,R/L(0, t′)〉, (2.68)

G>R/L(t, t′) = 〈Ψin,R/L(0, t)Ψ†in,R/L(0, t′)〉, (2.69)

and the equilibrium Green’s functions

G<0,R/L(t, t′) = 〈ψ†in,R/L(0, t)ψin,R/L(0, t′)〉 =
∫ +∞

−∞

dε

2πve
iε(t−t′)f(ε), (2.70)

G>0,R/L(t, t′) = 〈ψin,R/L(0, t)ψ†in,L/R(0, t′)〉 =
∫ +∞

−∞

dε

2πve
−iε(t−t′) (1− f(ε)) . (2.71)

While the second contribution in Eq. (2.67) encodes the effects of interplay between
the two edge channels, the first contribution is given by fluctuations of current in each
single channel. By exploiting Eqs. (2.70) and (2.71), a straightforward calculation
can show that this last contribution is given by

e2v2T 2
∫ T

2

−T2
dt

∫ +∞

−∞
dt′

∑
r=L,R

G<0,r(t, t′)G>0,r(t, t′) = 2T 2 e
2

2πkBθ. (2.72)

62



The second contribution is strongly dependent on the type of configurations chosen
for the voltage drive. In the following, we focus on two specific experimental config-
urations with a QPC geometry in order to further simplify the expression for S. In
the first case, a single voltage drive is turned on, namely

VR(t) = V (t), VL(t) = 0, (2.73)

where V (t) = Vdc + Vac(t), with Vac a generic function with period T and satisfying∫ T
2
−T2

dt
T Vac(t) = 0. This configuration is called Hanbury-Brown-Twiss (HBT) setup,

in analogy with the HBT experiment performed with photons. Indeed, when a
source of levitons is applied to the driven reservoir, a stream of single electrons is
partitioned against the QPC. The first experimental evidence of the existence of
levitons were reported by performing noise measurements in this setup. The second
configuration, is the Hong-Ou-Mandel (HOM) setup. In this configuration, two
identical trains of levitons are generated and delayed by a tunable time shift tD. We
describe the HOM setup by setting

VR(t) = Vlor(t), VL(t) = Vlor(t+ tD). (2.74)

Hanbury-Brown-Twiss setup

In the HBT setup, the noise in Eq. (2.67) becomes

SHBT = −2T 2 e
2

2πkBθ − e
2v2RT

∫ T
2

−T2
dt

∫ ∞
−∞

dt′
(
G<R(t, t′)G>0,L(t, t′)+

+G<0,L(t, t′)G>R(t, t′)
)
. (2.75)

In this configuration, the Green’s functions for right-movers are

G
</>
R (t, t′) = e±ie

∫ t′
t
dτV (τ)〈ψ†in,R(0, t)ψin,R(0, t′)〉. (2.76)

In order to conveniently deal with voltage phases, we introduce the following Fourier
decomposition [85]

eiχac(t) =
+∞∑
l=−∞

ple
−ilωt, (2.77)

where χac(t) = e
∫ t

0 dt
′Vac(t′) is a function with period T . Here, we have introduced

the Fourier coefficients

pl =
∫ T

2

−T2
dteiφac(t)eilωt =

∫ T
2

−T2
dteiφ(t)ei(l+q)ωt, (2.78)

where we defined q, the number of particle emitted by V (t) in a period as

q = − e
h

∫ T
2

−T2
dtV (t) = −eVdc

ω
. (2.79)

Eq. (2.78) is the probability amplitude for particles to absorb or emit an energy
lω. This discretization of energy shifts can be interpreted in terms of emission or
absorption of finite quanta of energy corresponding to photons of the electromagnetic
field generated by Vac. This kind of energy transfers due to an ac drive are called
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photo-assisted processes and expressions in Eq,. (2.78) are called photo-assisted
coefficients [31, 85].
By expressing G</>R in Fourier space as

G<R(t, t′) =
∑
l,k

p∗kple
−i(l+q)ωt′ei(k+q)ωt

∫ +∞

−∞

dε

2πve
iε(t−t′)f(ε), (2.80)

G>R(t, t′) =
∑
l,k

pkp
∗
l e
i(l+q)ωt′ei−(k+q)ωt

∫ +∞

−∞

dε

2πve
iε(t−t′)(1− f(ε)), (2.81)

one can further simplify the expression in Eq. (2.75). The zero-frequency noise at
finite temperature θ due to a QPC with transmission T is

SHBT = −2T 2 e
2

2πkBθ −
e2

2πRT
∑
l

|pl|2(l + q)~ω coth
((q + l)~ω

2kBθ

)
. (2.82)

The second contribution is called photo-assisted shot noise and carries information
about the properties of the driving voltage due to the presence of the coefficients pl.
At zero temperature, the noise in Eq. (2.82) becomes

SHBT = −S0
∑
l

|pl|2|l + q|, (2.83)

where we introduced S0 = e2

T RT .
The noise in the HBT geometry was used by the group of D. C. Glattli at CEA
Saclay in 2013 to provide the first experimental signatures of the correctness of
Levitov’s theoretical prediction [14]. In particular, they defined an excess noise

∆S = SHBT − Sdc, (2.84)

where Sdc is the noise due solely to Vdc (equivalent to set pl = δl,0), whose expression
at finite temperature is

Sdc = − e
2

2πRTeVdc coth
(
eVdc
2kBθ

)
. (2.85)

At zero temperature, the excess noise reads

∆S = −S0
∑
l<−q
|pl|2|l + q|. (2.86)

It is possible to demonstrate that ∆S object quantifies exactly the number of
unwanted electron-hole pairs generated at zero temperature by a generic time-
dependent drive [23]. Its usefulness can be also intuitively understood as follows.
When a time-dependent voltage V (t) = Vdc + Vac(t) works correctly as a single-
electron source only electrons are expected to be generated and partitioned against
the QPC, as for a dc bias Vdc. Therefore, the partition noise SHBT should be equiv-
alent to Sdc and the corresponding excess noise ∆S should vanish.
Before presenting the experimental results, we give the theoretical predictions for
the excess noise for some experimentally relevant voltage drive. In particular, we
choose a sinusoidal drive, a square drive and a Lorentizan drive, given respectively
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Figure 2.8: Theoretical expectation for the excess-noise ∆S as a function of q for a
cosine drive (red line), a square drive (black line) and a Lorentzian drive (blue line),
in units of S0, at zero temperature. The width of Lorentzian pulses is W = 0.1T .

by

Vsin(t) = Vdc(1− cos (ωt)), (2.87)

Vsqr(t) = 2Vdc
∞∑

k=−∞
Θ (t− kT ) Θ

(T
2 − t+ kT

)
, (2.88)

Vlor(t) = Vdc
π

+∞∑
k=−∞

W

W 2 + (t− kT )2 . (2.89)

The corresponding form for the pl coefficients can be calculated (see Appendix C)
and, subsequently, the excess noise associated to each particular drive is reported
in Fig. 2.8 for the case of zero temperature. A common features to all voltages is
the appearance of minima in correspondence of integer values of q = − eVdc

ω , showing
that an integer amount of charge always minimize the generation of extra electron-
hole pairs. More interestingly, only the excess noise of the Lorentzian voltage pulse
exactly vanishes at zero temperature: both the sinusoidal and the square drive stay
well above zero even for integer value of q.
We now address the experiment that demonstrated the existence of levitons, per-
formed by the group of D. C. Glattli. The measurement outcomes are presented in
Fig. 2.9. The dashed line corresponds to the value for Lorentzian pulses expected
at finite temperature (the difference between Eq. (2.82) and Eq. (2.85)). Let us
observe that this in a realistic setup the limit θ → 0 is forbidden. The Lorentzian
curve matches almost exactly the dashed level, indicating that no additional noise
is generated by the train of voltage pulses. The right panel of Fig. 2.9 shows an-
other set of data for sharper Lorentzian pulses and higher-frequency sinusoidal drive.
This time the finite temperature contributions are different, but we still observe that
the sinusoidal voltage generates some extra noise which is due to the excitation of
particle-hole pairs, while the Lorentzian one does not. All these features point to-
ward the observation of the minimal excitation state predicted by Levitov.

Hong-Ou-Mandel setup

In the quantum optics implementation of the HOM experiment, indistinguishable
photons collide at a beam splitter and the coincidence counts between detectors are
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Figure 2.9: Experimental evidence of the leviton (from Ref. [14] ). The excess
particle number, given by ∆S

S0
, is measured as a function of q. Square, sinusoidal

and Lorentzian voltages with different frequency are considered. The dashed lines
correspond to the contributions at finite temperature θ = 39 mK due to thermal
excitations at equilibrium for the sinusoidal and Lorentzian drives. Lorentzian pulses
in left and right panels have width W = 0.18T and W = 0.09T respectively.

measured. In this way, one can extract information about the statistical properties
of the colliding particles (observing the photon bunching effect) and the shape of
their wave-functions. A solid state analogue of the HOM experiment can be realized
in the context of EQO using a single-electron voltage pulses for emitting indistin-
guishable electrons. Information about statistical properties of electrons are rooted
in the current noise, given by Eq. (2.67), for the particular choice of voltage drive,
namely VL(t) = Vlor(t) and VR(t) = Vlor(t+tD). In this case, the number of particles
emitted per period by each Lorentzian drive is equal to q (see Eq. (2.89)).
For simplicity, we consider the limit of zero temperature, where the quantum inter-
ference effects dominate over the thermal fluctuations: in particular, the thermal
noise contribution in Eq. (2.67) vanishes. By using the relation

G
</>
R = e±iµ(t−t′)∆G</>R (t, t′) +G

</>
0,R (t− t′), (2.90)

G
</>
L = e±iµ(t−t′)∆G</>L (t, t′) +G

</>
0,L (t− t′), (2.91)

one finds

SHOM = −e2RT

∫ T
2

−T2
dt

∫ +∞

−∞
dt′
(
∆G<R(t, t′)∆G>L (t, t′) + ∆G<L (t, t′)∆G>R(t, t′)

)
+

− 2e2v2RT

∫ T
2

−T2
dt

∫ +∞

−∞
dt′
(
G<R(t, t′)G>0,L(t, t′) +G<L (t, t′)G>0,R(t, t′)

)
. (2.92)

This expression for noise in the case of q = 1 can be recast in terms of single-leviton
wave-functions in Eq. (2.49), using the expression for Green’s function in Eq. (2.38)
and for the single-leviton wave-function in the periodic case given. The expression
for the HOM current noise becomes

SHOM = 2SHBT − I(tD), (2.93)
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where SHBTLR is the zero temperature limit of the HBT noise given in Eq. (2.75) and

I(tD) = −e2v2RT

∫ T
2

−T2

dt

T

∫ +∞

−∞
dt′

sin2
(
π t
′−t
T

)
(t′ − t)2

(
ϕ1,L(t)ϕ∗1,L(t′)ϕ1,R(t′)ϕ∗1,R(t) + h.c.

)
,

(2.94)
encodes the interference between the wave-packets of levitons emitted by the two
reservoir, respectively, ϕ1,L(t) = ϕ1(t) and ϕ1,R(t) = ϕ1(t + tD). By exploiting the
following relation

∫ +∞

−∞
dt′

sin2
(
π (t′−t)
T

)
(t′ − t)2 F (t′) =

∫ T
2

−T2
dt′F (t′), (2.95)

which is valid for a generic function F (t′) of period T , the interference term can be
further simplified as

I(tD) = −2S0

∣∣∣∣∣
∫ T

2

−T2

dt

T
ϕ1(t)ϕ∗1(t+ tD)

∣∣∣∣∣ . (2.96)

This last formula shows that the HOM current noise is directly related to the overlap
between the two wave-functions of levitons impinging at the QPC.
It is useful to introduce the following ratio

R(tD) = S
HOM

2SHBT . (2.97)

From the vanishing of excess noise ∆S for levitons at zero temperature (see the
discussion about HBT setup), we know that the HBT contribution becomes

SHBT = Sdc = S0q = S0, (2.98)

where in the last step we explicited that q = 1. By using these results the HOM
ratio of two single-leviton states colliding at the QPC becomes

R(tD) = 1−
∣∣∣∣∣
∫ T

2

−T2

dt

T
ϕ1(t)ϕ∗1(t+ tD)

∣∣∣∣∣
2

. (2.99)

Let us notice that for tD = 0, the overlap integral of the single-leviton wave-function
is nothing but the normalization condition for the wave-function ϕ1(t), which is
therefore equal to 1. In this case, the HOM ratio vanishes, in accordance with the
expected anti-bunching effect of fermions. With the analytical form of ϕ1(t), given in
Eq. (2.49), the overlap integral for a single-leviton can be calculated using standard
complex analysis method. The result is [106]

R(tD) =
sin2

(
π tDT

)
sin2

(
π tDT

)
+ sinh2

(
2πWT

) . (2.100)

This HOM ratio is plotted in Fig. 2.10. Clearly, the interference effects that lead to
the total suppression of noise at tD = 0 are reduced for greater delay times, when
the distinguishability of the two levitons is increased. In this case, the ratio is close
to 1, meaning that the HOM current noise is similar to the sum of the partitioning
HBT noise of two uncorrelated levitons. Moreover, the shape of this HOM ratio is
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Figure 2.10: HOM ratio R as a function of tD/T for q = 1, ν = 1 and two values
of the width of the Lorentzian pulse, W = 0.09T (black line) and W = 0.18T (red
line). The single smooth dip at tD = 0 demonstrates fermion anti-bunching.

Lorentzian and it is plotted for two different values of the width W = 0.09 (black
line) and W = 0.18 (red line): by comparing these two curves, one can argue that
the HOM ratio is extremely sensitive to the shape of the overlapping wave-packets.
The HOM current noise can be generalized to the case when q levitons are emitted by
each source, by using all the set of wave-functions given in Eq. (2.49). By repeating
the same procedure using as excess Green’s function those in Eqs. (2.47) and (2.48),
one finds

R(tD) = 1− 1
q

∑
k,k′

∣∣∣∣∣
∫ T

2

−T2

dt

T
ϕk(t)ϕ∗k′(t+ tD)

∣∣∣∣∣
2

. (2.101)

It is interesting to point out that a peculiar property of the ratio for q = 1 when
a finite temperature is considered. When thermal effects are relevant, one has to
provide a more general definition of the HOM ratio, where equilibrium thermal noise
Svac has to be subtracted from signals. Indeed, for a finite temperature HOM ratio
is defined as

R(tD) = SHOM − Svac
2SHBT − 2Svac

. (2.102)

Interestingly, when a single leviton is emitted by each source, this ratio has exactly
the same expression of the zero temperature limit given in Eq. (2.100). The proof
of this result will be given in the next Chapter, where we will deal with fractional
filling factors of Laughlin sequence.
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Chapter 3

Levitons in the fractional
regime

In this Chapter, we take advantage of the edge transport theory developed in Chap-
ter 1 in order to compute charge current and noise in EQO-like configurations for
fractional filling factors in the Laughlin sequence. We will show that Lorentzian
pulses carrying integer charge represent the cleanest voltage drive even for the FQH
case [115], despite the presence of strong interactions and quasi-particles with frac-
tional charge and statistics.
At this purpose, by considering the simultaneous emission of multiple levitons, we
investigate the charge density backscattered off the QPC in the FQH regime. In this
case, a regular pattern of peaks and valleys emerges, reminiscent of analogous self-
organization recently observed for optical solitons in non-linear environments. This
rearrangement of the density of levitons can be interpreted as a real-time version of
the Wigner crystallization occurring in Luttinger liquids confined by a potential well.
This crystallization phenomenon is confirmed by additional side dips in the Hong-
Ou-Mandel noise, a feature that can be observed in nowadays EQO experiments [55,
56].

3.1 Transport properties in the QPC geometry

We consider a four-terminal FQH bar in the presence of a QPC, as shown in the
Fig. 3.1. For a quantum Hall system with filling factor ν in the Laughlin sequence
ν = 1/(2n + 1) [62], with n ∈ N, a single chiral mode emerges at each edge of the
sample. As derived in Sec. 1.3, the effective bosonic hamiltonian for edge states
reads (~ = 1) [47]

H0 =
∑
r=R,L

v

4π

∫ +∞

−∞
dx [∂xΦr(x)]2 . (3.1)

The presence of two voltage drives applied to reservoirs 1 and 4 is modeled by the
hamiltonian

Hg = −e
∑
r=R,L

∫ +∞

−∞
dxΘ(∓x− d)Vr(t)ρr(x), (3.2)

which couples densities ρR/L(x) = ∓
√
ν

2π ∂xΦR/L(x) with two voltage gates acting
separately on the right and left moving excitations. Here, the step function Θ(∓x−d)
describes the experimentally relevant situation of infinite, homogeneous contacts,
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Figure 3.1: Four-terminal setup for Hong-Ou-Mandel interferometry in the FQH
regime. Contact 1 and 4 are used as input terminals, while contact 2 and 3 are the
output terminals where current and noise are measured.

introduced in Sec. B.1. The corresponding time-evolution of bosonic modes reads
(see Eq. (B.17) in Appendix B)

ΦR/L(x, t) = φR/L

(
t∓ x

v

)
− e
√
ν

∫ t∓x
v

−∞
dt′VR/L(t′). (3.3)

This characteristic chiral dynamics is a consequence of the linear dispersion of edge
states for all filling factors in the Laughlin sequence.
Finally, the tunneling between the two edges occurs through a QPC at x = 0. In
Chapter 2, tunneling at the QPC in the IQH regime has been treated within the
scattering matrix approach. We remark that this approach relies on the approxi-
mation of non-interacting electrons, which does not hold true in the FQH phase. In
order to deal with tunneling processes we introduced in the main text an hamilto-
nian approach. A QPC at the position x = 0 can be effectively described by the
following tunneling hamiltonians [36, 116]

H
(qp)
T = ΛΨ(qp)

R
†(0)Ψ(qp)

L (0) + h.c., (3.4)

H
(el)
T = ΛΨ(el)

R
†(0)Ψ(el)

L (0) + h.c.. (3.5)

We will assume that the QPC weakly couples the two edges in the weak backscat-
tering regime, which means that the barrier is almost transparent and only a small
amount of particles are reflected back into the opposite chiral mode. In this tun-
neling regime, which is called weak-backscattering, tunneling hamiltonian can be
treated as a small perturbation with respect to the hamiltonian H0 + Hg. As a
consequence, the time evolution of quantum operators can be constructed in terms
of perturbative series in the parameter Λ (see Appendix D).
In general, contributions coming both from electrons and fractional quasi-particles
tunneling should be taken into account. In the following, charge current and noise
are perturbatively evaluated at lowest order in the tunneling amplitude and we will
focus on the case of quasi-particles tunneling. The results for electrons tunneling
will be given at the end of calculations by exploiting the substitution ν → 1

ν , as
discussed in Sec. 1.3.4. Indeed, we will see in the following that only quasi-particles
tunneling contribution has to be considered in the weak backscattering regime, since
this is the only relevant process in the renormalization group sense [117].
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3.1.1 Charge current

Charge current operators for right- and left-moving modes can be defined by resort-
ing to the continuity equation of densities ρR/L(x, t), namely

∂tρR/L(x, t) + ∂xJR/L(x, t) = 0. (3.6)

According to chirality of edge states, one finds

JR/L(x, t) = ∓evρR/L(x, t), (3.7)

where ρR/L(x, t) are density operators evolving with respect to the whole hamilto-
nian H0 +Hg +H

(qp)
T , whose exact expression we are not interested in.

Starting from the definition of chiral current operator, we can define the operators
for charge current entering reservoir 2 and 3 as

J2/3(t) = JR/L(±d, t), (3.8)

where we recall that the interfaces between edge states and contacts 2 and 3 are
placed in x = ±d respectively. The expansion of J2/3 in terms of the parameter Λ
is presented in detail in Appendix D. Here, we simply quote the result, which reads

J2/3(t) = J
(0)
2/3(t) + J

(1)
2/3(t) + J

(2)
2/3(t) +O(Λ3), (3.9)

where

J
(0)
2/3(t) = ev

√
ν

2π
(
∂xΦR/L(x, t)

)
x=±d

, (3.10)

J
(1)
2/3(t) = ±iΛeνΨR

†
(

0, t− d

v

)
ΨL

(
0, t− d

v

)
+ h.c., (3.11)

J
(2)
2/3(t) = ±i

∫ t− d
v

−∞
dt′′

[
H

(qp)
T (t′′),+iΛeνΨ(qp)

R
†
(

0, t− d

v

)
Ψ(qp)
L

(
0, t− d

v

)
+ h.c.

]
.

(3.12)

Let us observe that tunneling contribution entering reservoirs 2 and 3 are connected
by the simple relation

J
(1/2)
2 (t) = −J (1/2)

3 (t). (3.13)
Now, the different contributions to the expansion of charge current operators have
been expressed in a suitable form for calculating their average values. The thermal
average of current operators will be performed over the initial equilibrium condi-
tion, i.e. in the absence of driving voltages and tunneling. Let us observe that terms
involving a different number of annihilation or creation field operators with a de-
fined chirality have a vanishing average value: indeed, this is the case for J (1)

2/3(x, t).
Therefore, the average values of charge current operators are

〈J2/3(t)〉 = 〈J (0)
2/3(t)〉+ 〈J (2)

2/3(t)〉+O(Λ3), (3.14)

where

〈J (0)
2/3(t)〉 = e2ν

2π VR/L
(
t− 2d

v

)
, (3.15)

〈J (2)
2/3(t)〉 = ±ieνv

∫ t− d
v

−∞
dt′′ 〈

[
H

(qp)
T (t′′),+iΛΨ(qp)

R
†(d− vt, 0)Ψ(qp)

L (d− vt, 0) + h.c.
]
〉.

(3.16)
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Since we will focus only on quasi-particles contribution, we will omit the index (qp)
from now on.
The first term corresponds to the charge current emitted by reservoirs 1 and 4,
which constitutes the main contribution to the detected currents in reservoirs 2 and
3. In the absence of tunneling processes (Λ = 0), these zero-order contributions
would correspond to periodic current signals generated by the two voltages. For this
reason, their integral over one period T gives the total charge CR/L emitted by VR/L
into the edge states

CR/L =
∫ T

2

−T2
dt〈J (0)

2/3(t)〉 = e2ν

2π

∫ T
2

−T2
dtVR/L

(
t− 2d

v

)
= e2ν

ω
V

(R/L)
dc = −eqR/L,

(3.17)
where we defined

V
(R/L)
dc =

∫ T
2

−T2

dt

T
VR/L (t) , (3.18)

and where qR/L = − eνV
(R/L)
dc
ω are the numbers of electronic charges injected by VR/L.

Due to the QPC, some of the particles emitted into the edge states are backscattered:
〈J (2)

2/3(t)〉 are the current due to the reflection of particles incoming from reservoirs 1
and 4, respectively. These currents are usually termed backscattering currents [116,
118]. Due to the relation in Eq. (3.13), backscattering currents are equal up to a
sign, such that we can define

JBS(t) = 〈J (2)
3 (t)〉 = −〈J (2)

2 (t)〉. (3.19)

This backscattering current can be evaluated by expanding the tunneling hamilto-
nian in Eq. (3.16) in terms of quasi-particles fields as

JBS(t) = −ieν
∫ t− d

v

−∞
dt′′ 〈

[
ΛΨR

†(0, t′′)ΨL(0, t′′) + h.c.,+iΛΨR
†(d− vt, 0)ΨL(d− vt, 0) + h.c.

]
〉 =

= −e |Λ|2 ν
∫ t− d

v

−∞
dt′′

〈[
ΨR
†(0, t′′)ΨL(0, t′′)ΨL

†
(

0, t− d

v

)
ΨR

(
0, t− d

v

)
+

−ΨL
†(0, t′′)ΨR(0, t′′)ΨR

†
(

0, t− d

v

)
ΨL

(
0, t− d

v

)
+

−ΨL
†
(

0, t− d

v

)
ΨR

(
0, t− d

v

)
ΨR
†(0, t′′)ΨL(0, t′′)+

+ ΨR
†
(

0, t− d

v

)
ΨL

(
0, t− d

v

)
ΨL
†(0, t′′)ΨR(0, t′′)

]〉
=

= −e |Λ|2 ν
∫ t− d

v

−∞
dt′′

[
G<R

(
t′′, t− d

v

)
G>L

(
t′′, t− d

v

)
−G<L

(
t′′, t− d

v

)
G>R

(
t′′, t− d

v

)
+

−G<R
(
t− d

v
, t′′
)
G>L

(
t− d

v
, t′′
)

+G<L

(
t− d

v
, t′′
)
G>R

(
t− d

v
, t′′
)]

, (3.20)

where, in the intermediate step, we used again that average values with a different
number of annihilation or creation field operators with a defined chirality must
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vanish and, in the last step, we introduced the quasi-particles Green’s functions

G<R/L
(
t′, t
)

= 〈ΨR/L
†(0, t′)ΨR/L(0, t)〉 = e−iνe

∫ t′
t
dτVR/L(τ)〈ψR/L†(0, t′)ψR/L(0, t)〉,

(3.21)

G>R/L
(
t′, t
)

= 〈ΨR/L(0, t′)ΨR/L
†(0, t)〉 = eiνe

∫ t′
t
dτVR/L(τ)〈ψR/L(0, t′)ψR/L†(0, t)〉.

(3.22)

In order to proceed with the calculations of JBS , we have to derive the expressions
for the equilibrium Green’s functions involving quasi-particle fields ψR/L. We start
by considering those in Eq. (3.21). By using the Baker-Hausdorff formula

eAeB = eA+BeC/2, (3.23)

and bosonization identity, one finds〈
ψR/L

†(0, t′)ψR/L(0, t)
〉

=

= e−ikF v(t′−t)

2πa
〈
ei
√
ν[φR/L(0,t′)−φR/L(0,t)]〉 e ν2 [φR/L(0,t),φR/L(0,t′)]. (3.24)

It is useful to recast the above expression such that the average values involve poly-
nomials function of φR/L: in this way, we will be able to evaluate thermal averages
over the bosonic edge hamiltonian. This can be achieved by exploiting the relation〈

eO
〉

= e
1
2〈O2〉, (3.25)

which is valid for operators which are linear combinations of bR/L,k and b†R/L,k.
Inserting this relation in Eq. (3.24), one obtains〈
ψR/L

†(0, t′)ψR/L(0, t)
〉

=

= eikF v(t′−t)

2πa e
− ν2

〈
φ2
R/L

(0,t′)+φ2
R/L

(0,t)−φR/L(0,t)φR/L(0,t′)−φR/L(0,t′)φR/L(0,t)
〉
e
ν
2 [φR/L(0,t),φR/L(0,t′)] =

= eikF v(t′−t)

2πa e

〈
φR/L(0,t)φR/L(0,t′)−φ2

R/L
(0,0)

〉
, (3.26)

where we commuted φR/L(0, t′) and φR/L(0, t), thus eliminating the commutator in
the other exponential, and we used the transational invariance of the thermal average
to write

〈
φ2
R/L(0, t′)

〉
=
〈
φ2
R/L(0, t)

〉
=
〈
φ2
R/L(0, 0)

〉
. As a result, we managed to

write these expressions as an average involving solely polynomial functions of φR/L.
These average values are evaluated in Appendix C and read [59, 119]

W (t− t′) =
〈
φR/L(0, t)φR/L(0, t′)− φ2

R/L(0, t)
〉

=

= ln


∣∣∣Γ (1 + θ

ωc
+ iθ(t− t′)

)∣∣∣2∣∣∣Γ (1 + θ
ωc

)∣∣∣2 (1 + iωc(t− t′))

 ' ln
[

π(t− t′)θ
sinh (π(t− t′)θ) (1 + iωc(t− t′))

]
,

(3.27)

where we introduce the temperature θ and the high energy cut-off ωc = v
a : the

approximation in the above equation is valid as long as ωc � θ. Let us observe that
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these expressions are equal for right- and left-movers and, therefore, we omitted any
label R or L. Moreover, W depends only on the difference between t and t′ and it
is a single-argument function.
One can perform a very similar calculations for the case of G>R/L. In the end, the
expressions for the Green’s functions in Eqs. (3.21) and (3.22) are

G<R/L
(
t′, t
)

= 〈ΨR/L
†(0, t′)ΨR/L(0, t)〉 = e−iνe

∫ t′
t
dτVR/L(τ) e

ikF v(t′−t)

2πa Pν(t− t′),
(3.28)

G>R/L
(
t′, t
)

= 〈ΨR/L(0, t′)ΨR/L
†(0, t)〉 = eiνe

∫ t′
t
dτVR/L(τ) e

−ikF v(t′−t)

2πa Pν(t− t′),
(3.29)

where we defined the function

Pg(τ) = egW (τ). (3.30)

By inserting these expression for the Green’s functions into Eq. (3.20), one finds

JBS(t) = 2iνe |λ|2
∫ +∞

0
dτ sin

[
νe

∫ t

t−τ
dt′′V−(t′′)

]
(P2ν(τ)− P2ν(−τ)) , (3.31)

where we introduced V−(t) = VR(t) − VL(t). Since VR and VL are time-dependent
voltages with period T = 2π

ω , we expect the current to satisfy JBS(t) = JBS(t+ T ).
One can check this property by noticing that

sin
[
νe

∫ t+T

t+T −τ
dt′′V−(t′′ + T )

]
= sin

[
νe

∫ t

t−τ
dt′′V−(t′′)

]
. (3.32)

It is thus possible to perform an average over one period of the backscattering current

JBS(t) =
∫ T

0

dt

T
JBS(t) =

= 2iνe |λ|2
{∫ +∞

0
dτ

∫ T
0

dt

T
sin
[
νe

∫ t

t−τ
dt′′V−(t′′)

]
P2ν(τ)+

+
∫ 0

−∞
dτ

∫ T −τ
−τ

dt

T
sin
[
νe

∫ t+τ

t
dt′′V−(t′′)

]
P2ν(τ)

}
. (3.33)

Notice that we used the property valid for a generic periodic function that
∫ T

0 dtf(t) =∫ T +c
c dtf(t). Then, one obtains a single term involving an integration over τ over
the whole real axis by changing variable as t′ = t+τ in the second term, thus finding

JBS(t) = 2iνe |λ|2
{∫ +∞

0
dτ

∫ T
0

dt

T
sin
[
νe

∫ t

t−τ
dt′′V−(t′′)

]
P2ν(τ)+

+
∫ 0

−∞
dτ

∫ T
0

dt′

T
sin
[
νe

∫ t′

t′−τ
dt′′V−(t′′)

]
P2ν(τ)

}
=

= 2iνe |λ|2
∫ T

0

dt

T

∫
dτ sin

[
νe

∫ t′

t′−τ
dt′′V−(t′′)

]
P2ν(τ). (3.34)
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The presence of a periodic voltage can be conveniently handled by resorting to the
photo-assisted coefficient p̃l =

∫ T
0

dt
T e

i(l+qR−qL)ωteie
∫ t

0 dτV−(τ).
By using the following relation

sin
[
νe

∫ t

t−τ
dt′′V−(t′′)

]
= 1

2i
∑
l,m

[
p̃∗l p̃me

−i(l−m)ωtei(qR−qL+m)ωτ − h.c.
]

(3.35)

the backscattering current assumes the final expression

JBS(t) = 2iνe |λ|2
∑
l

|pl|2
∫ +∞

−∞
dτ sin [(qR − qL + l)ωτ ]P2ν(τ). (3.36)

Let us comment that now the backscattering current is directly related to the prop-
erties of a specific voltage drive through the coefficient p̃l and to the number of
emitted particles qR and qL.
By moving to Fourier space, this current can be recast as a simple sum over l. At
this purpose, we introduce the Fourier transform of Pg(t), which is calculated in
Appendix F. It reads [34, 120, 121]

P̃g(E) =
∫ +∞

−∞
dteiEtPg(t) =

(2πθ
ωc

)g−1 e
E
2θ

ωc
B
(
g

2 − i
E

2πθ ,
g

2 + i
E

2πθ

)
=

=
(2πθ
ωc

)g−1 e
E
2θ

Γ(g)ωc

∣∣∣∣Γ(g2 − i E2πθ
)∣∣∣∣2 . (3.37)

By substituting Pg(t) =
∫+∞
−∞

dE
2π e
−iEtP̃g(E) into Eq. (3.36), one finds

JBS(t) = νe |λ|2
∑
l

|pl|2
{
P̃2ν [(qR − qL + l)ω]− P̃2ν [−(qR − qL + l)ω]

}
. (3.38)

3.1.2 Charge current fluctuations

We recall that the dc component of the zero-frequency current noise is defined as

Sαβ =
∫ T

0

dt

T

∫ +∞

−∞
dt′
〈
Jα(t)Jβ(t′)

〉
− 〈Jα〉

〈
(t)Jβ(t′)

〉
, (3.39)

where α and β may refer to reservoirs 2 or 3.
By exploiting the expansion of current operator in Eq. (3.9), one can evaluate the
lowest order contribution in Λ of Sαβ, which read

Sαβ = S(02)
αβ + S(11)

αβ + S(20)
αβ +O

(
Λ3
)
, (3.40)

with

S(ij)
αβ =

∫ T
0

dt

T

∫ +∞

−∞
dt′
[〈
J (i)
α (t)J (j)

β (t′)
〉
−
〈
J (i)
α

〉〈
(t)J (j)

β (t′)
〉]
. (3.41)

Let us observe that, according to the relation in Eq. (3.13), auto-correlators and
cross-correlators are connected as [104, 112]

S22 = S33 = −S23 = −S32. (3.42)

Moreover, it is possible to demonstrate that the only term that contributes at lowest
order in Λ in the above expansion is S(11)

αβ (see Appendix G).
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For the following discussions, due to the relation in Eq. (3.42), we focus on the auto-
correlator of reservoirs 2, namely S22, and we use the shorthand notation SC ≡ S22.
At lowest order in tunneling it reads

SC = (νe)2 |Λ|2
∫ T

0

dt

T

∫ +∞

−∞
dt′
{
G<R(t, t′)G>L (t, t′) +G<L (t, t′)G>R(t, t′)

}
, (3.43)

where we used the definitions of quasi-particle Green’s functions. By using their
explicit expressions contained in Eqs. (3.28) and (3.29), the auto-correlator can be
recast as

SC = 2(νe)2 |Λ|2
∫ T

0

dt

T

∫ +∞

−∞
dt′ cos

[
νe

∫ t

t′
V−(t′′)dt′′

]
P2ν(t′ − t) =

= 2(νe)2 |Λ|2
∫ T

0

dt

T

∫ +∞

−∞
dτ cos

[
νe

∫ t

t+τ
V−(t′′)dt′′

]
P2ν(τ), (3.44)

where we changed variable as τ = t′ − t.
Even though this charge noise is generated in a double-drive configuration, it is
interesting to point out that it actually depends only on the single effective drive
V−(t). Therefore, the charge noise presented in Eq. (3.44) is the same as the one
generated in a single-drive configuration, where reservoir 4 is grounded (VL(t) = 0)
and reservoir 1 is contacted to the periodic voltage V−(t), such that

SC (VR, VL) = SC (V−, 0) . (3.45)

Here, the arguments in brackets indicate the voltage applied to reservoirs 1 and 4,
respectively. One might consider Eq. (3.45) as a consequence of a trivial shift of
both voltages by a value corresponding to VL. Nevertheless, such a result cannot
be obtained by means of a gauge transformation (see Appendix B). In this sense,
Eq. (3.45) implies that the charge noise incidentally acquires the same expression in
these two physically distinct experimental setups. As will be clearer in the following,
for the charge case this is a consequence of the presence of a single local (energy
independent) QPC. Generally, we expect that the double-drive and the single-drive
(VR(t) = V−(t) and VL(t) = 0) configurations return different outcomes for other
physical observables, such as heat noise, as discussed in the next Chapter.
The function cos

[
νe
∫ t
t+τ V−(t′′)dt′′

]
can be expanded into a Fourier series by ex-

ploiting the coefficient p̃l

cos
[
νe

∫ t

t+τ
V−(t′′)dt′′

]
= 1

2
∑
l,m

[
p̃∗l p̃me

−i(l−m)ωte−i(qR−qL+m)ωτ + h.c.
]
. (3.46)

By inserting this result into Eq. (3.44), one has

SC = 2(νe)2 |λ|2
∑
l

|p̃l|2
∫ +∞

−∞
dτ cos [(qR − qL + l)ωτ ]P2ν(τ). (3.47)

Finally, it is again useful to obtain an expression in the Fourier space by using the
Fourier transform of Pg(t). Indeed, one finds

SC = 2(νe)2 |λ|2
∑
l

|p̃l|2
[
P̃2ν [(qR − qL + l)ω] + P̃2ν [(qR − qL + l)ω]

]
. (3.48)
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3.2 Particular limits
The expressions for charge current and noise that we have just derived are valid for
a generic temperature θ 1 and for all kind of periodic voltage drive. Before moving
on with our discussion, it is useful to present some specific limits of these expression.
The first one is the zero-temperature limit, where the temperature is assumed to be
the lowest energy scale in the problem. In the other case, we assume to apply to
reservoir 1 a constant dc bias Vdc and to connect reservoir 4 to the ground.

Zero-temperature current and noise

The limit of zero-temperature for expressions in Eqs. (3.38) and (3.48) can be readily
obtained by observing that at θ → 0, the function P̃g(E) becomes

P̃g(E) = 2π
Γ(g)ωgc

Eg−1Θ(E), (3.49)

where we exploited the asymptotic relation |Γ(x + iy)| ∼
√

2π|y|x− 1
2 e−π|y|/2, which

is valid for |y| → ∞ [110]. Difference and sum of functions P̃g(E) appearing in Eqs.
(3.38) and (3.48) are in the zero-temperature limit

P̃g(E)− P̃g(E) = 2π
Γ(g)ωg |E|

2ν−1sign(E), (3.50)

P̃g(E) + P̃g(E) = 2π
Γ(g)ωg |E|

2ν−1. (3.51)

By substituting these asymptotic expressions into Eqs. (3.38) and (3.48), one finds

JBS(t)
∣∣∣
θ=0

= νe

ω
|λ|2 2π

Γ(2ν)

(
ω

ωc

)2ν∑
l

|pl|2 |qR − qL + l|2ν−1 sign(qR − qL + l),

(3.52)

SC
∣∣∣
θ=0

= (νe)2

ω
|λ|2 4π

Γ(2ν)

(
ω

ωc

)2ν∑
l

|pl|2 |qR − qL + l|2ν−1 . (3.53)

In the fractional case, each contribution to the sum are non-linear in qR−qL+l, since
they follow a power law with exponent 2ν − 1. The appearance of such power-law
behavior in tunneling contributions at θ = 0 is a typical feature of Luttinger liquid
physics [34, 35, 118, 122] (in particular of chiral Luttinger liquid, since the exponent
is a function of the filling factor ν).

Current and noise in the presence of a dc bias

Let us now discuss the situation where VR(t) = Vdc and VL(t) = 0. This particular
configuration entails that the photo-assisted coefficient reduce to p̃l = δl,0. Thus,
current and noise become

JBS = 2νe
ωc
|λ|2 1

Γ(2ν)

(2πθ
ωc

)2ν−1 ∣∣∣∣Γ(ν − iνeVdc2πθ

)∣∣∣∣2 sinh
(
νeVdc

2θ

)
, (3.54)

SC = 2(νe)2

ωc
|λ|2 1

Γ(2ν)

(2πθ
ωc

)2ν−1 ∣∣∣∣Γ(ν − iνeVdc2πθ

)∣∣∣∣2 cosh
(
νeVdc

2θ

)
, (3.55)

1Anyway, the temperature θ must be much smaller than the energy cut-off ωc.
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where qω = νeVdc. These expressions are valid both at zero and finite temperature
θ. It is instructive to discuss the limit θ → 0 of Eqs. (3.54) and (3.55), which read 2

JBS
∣∣∣
θ=0

= νe

ωc
|λ|2 2π

Γ(2ν)

∣∣∣∣νeVdcωc

∣∣∣∣2ν−1
sign(Vdc), (3.56)

SC
∣∣∣
θ=0

= (νe)2

ωc
|λ|2 4π

Γ(2ν)

∣∣∣∣νeVdcωc

∣∣∣∣2ν−1
. (3.57)

The duality between electron and quasi-particle fields, introduced in Sec. 1.3 can
be exploited to straightforwardly obtain backscattering current and noise due to the
tunneling of electrons at the QPC (i.e., when current operators evolve in time with
respect to H(el)

T ). At this purpose, the parameter ν has to be replaced with 1
ν in the

power laws appearing in Eqs. (3.56) and (3.57) [57]. By operating this substitution,
one can write the ratio between transport properties of tunneling electrons and
quasi-particles

J
(el)
BS

JBS
∼
∣∣∣∣νeVdcωc

∣∣∣∣ 2
ν
−2ν

,
S(el)
C

SC
∼
∣∣∣∣νeVdcωc

∣∣∣∣ 2
ν
−2ν

, (3.58)

where these exponents are always positive for ν = 1
2n+1 . Since eVdc � ωc, tunneling

electrons always generate negligible backscattering current and noise with respect to
tunneling quasi-particles in the weak-backscattering regime. This discussion for the
dc limit can be immediately extended to the ac case, since each contribution in the
sum appearing in Eqs. (3.52) and (3.53) exhibits the same power-law behavior of dc
contributions in Eqs. (3.56) and (3.57). Indeed, the relevance of tunneling processes
of quasi-particles in the weak-backscattering regime is a general result which can be
rigorously proven in the framework of renormalization group theory [117]. For this
reason, we will only focus on quasi-particle tunneling in the rest of this thesis.
In the dc case, a general relation can be found by comparing the backscattering
current and the noise in the low transmission regime of the QPC. From Eqs. (3.54)
and (3.55), one can easily deduce that

SC = νe coth
(
νeVdc

2θ

)
JBS(t), (3.59)

by noticing that cosh(x) = sinh(x) coth(x). In particular, in the zero-temperature
limit, one has 3

SC = νeJBS(t), (3.60)

which is the well-known Schottky result for noise in the weak-backscattering regime
[123]. Interestingly, noise and backscattering current are directly proportional in
this regime and the constant of proportionality is exactly the charge of tunneling
quasi-particles. Indeed, this holds true even in the non-interacting case at ν = 1,
where, in that case, the tunneling charge correspond exactly to e. This property of
the low-transmission current noise has been exploited in many experiments to test
the fractional values of quasi-particles charges in different FQH phases [40, 124].

2Since the backscattering current is time-independent for a constant bias, we simply indicate it
as JBS .

3We assume Vdc > 0.
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Figure 3.2: (Upper panel) Depiction of the generation of a soliton crystal. (Lower
panel) Simulation of the intensity pattern of the soliton crystal as a function of time.
Optical solitons present a regular and ordered structure in the time domain.Taken
from Ref. [126]

3.3 Crystallization of levitons in the FQH regime

In the first part of this section, we will employ the result for charge current and noise
previously derived in order to demonstrate that levitons are minimal excitation states
for both integer and fractional filling factors of the Laughlin sequence, as confirmed
by the vanishing of the excess noise for integer value of q in the case of a Lorentizan-
shaped voltage. In this way, it will be clear that that levitons are robust even to the
presence of electron-electron interaction.

By looking at this result from another perspective, this means that we have not
still identified any feature that marks a striking difference in the properties of levitons
in non-interacting or strongly-correlated phases. In this sense, an appealing problem
to investigate is the effect of strong interactions on the time-resolved propagation
of leviton wave-packets in the FQH effect. Indeed, due to their solitonic nature al-
ready discussed in Sec. 2, levitons are fairly independent particles [21]. Similarly to
solitons, q different levitons travel unhindered along one-dimensional electronic edge
states and can be controllably superimposed, thus forming many-body states called
multi-electron levitons or, simply, q-levitons [31, 125]. Nevertheless, self-organized
and correlated patterns of solitons have been recently reported in the optical do-
main(see Fig. 3.2 and Refs. [126–128]). An intriguing question is whether a similar
phenomenon can be observed also for levitons in FQH edge states. It is well known
that, in one dimensional electronic systems, electron-electron interaction drastically
affect the properties of particles, inducing, for instance, the arrangement of electrons
in a static regular pattern in space. This phenomenon is known as Wigner crystal-
lization and its finite size counterpart is termed Wigner molecule [49, 129–135].
Such strongly correlated states manifest as a regular arrangement of the electronic
density which oscillates around fixed positions in order to minimize the energy of
electrons. In particular, a system containing N electrons will exhibit, in presence of
a strong interaction, an oscillating pattern with exactly N peaks. Moreover, when
the strength of interaction is increased, the amplitude of oscillation is enhanced as
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Figure 3.3: Imaging in the real-space of Wigner molecule formed by 3, 4, 5 or 6
electrons. Taken from Ref. [137].

well. In FQH edge states, the connection between time and space given by chirality
opens the way to the possible realization of the real-time version of this interaction-
induced crystallization by applying time dependent voltage pulses directly to the
edge channels.
Anyway, the electronic density could exhibit oscillations even in the non-interacting
case, for instance, due to finite size effects (a phenomenon known as Friedel os-
cillations). In order to identify the pattern formation of a Wigner molecule, it is
thus necessary to investigate directly the electronic correlations, by focusing on the
density-density correlator [136]. An oscillating behavior in such correlator is consid-
ered a smoking gun evidence for the formation of a Wigner molecule.
Nevertheless, experimental observations of Wigner crystallization are quite challeng-
ing, since they require to probe a static arrangement of electrons without perturbing
it. An imaging of the real-space structure of a Wigner molecule has been realized
only in a recent experiment (see Fig. 3.3). In order to perform this observation, a
probe made by a carbon nanotube has been employed. The microscopic size of this
probe and the great experimental control over it allowed to perform a minimally-
invasive scanning of a Wigner molecule. Despite of this remarkable experimental
achievement, the density-density correlator could not be assessed anyway.
In the second part of this section, we propose FQH states belonging to the Laughlin
sequence [62], where a single mode exists on each edge, as a testbed to observe the
crystallization of robust q-Leviton excitations in condensed matter systems. Here,
the charge density reflected by a quantum point contact (QPC) shows a q-peaked
structure as a consequence of the interaction-induced rearrangement in the time do-
main, in open contrast to the featureless profile observed in the integer case. To
confirm the correlated character of the crystal state, we demonstrate that these
features generate unexpected side dips in the current-current correlator (which is
proportional to the density-density correlator) in a HOM collisional experiments,
which are within reach for the nowadays technology [14, 16, 29, 30, 108].
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3.3.1 Levitons as minimal excitations in the FQH effect

Charge current and noise previously evaluated for a generic drive can now be em-
ployed to test whether quantized Lorentzian pulses or other kind of driving voltages
are minimal excitations even in the FQH regime. At this purpose, the suitable
experimental configuration is the HBT setup, as for the integer case in Chap. 2.
Here, a drive is applied only to reservoir 1 and reservoir 4 is grounded, such that
VR(t) = V (t) and VL(t) = 0, with V (t) a generic periodic drive. Notice that, in this
case, the emitted numbers of particles are qR = q and qL = 0 .
In this light, one should find an extension to the concept of excess noise introduced
in the IQH case. The idea to extend the definition of excess noise to the FQH effect
is based on the Schottky result in Eq. (3.60). In general, time-dependent drives do
not satisfy that relation in contrast with a dc constant bias. The combination of
transport properties that we use to define the excess noise is given by

∆S = SC − νeJBS(t), (3.61)

where the noise is measured with respect to a reference value given by the average
value of ac current. First of all, let us observe that this definition is consistent with
the case at ν = 1, where the excess noise has been defined as ∆S = S22 − Sdc.
Indeed, by putting ν = 1 in Eqs. (3.52) and (3.53)

SC
∣∣∣
θ→0

= |Λ|
2

v2
e2

2πeVdc = eJBS
∣∣∣
θ→0

. (3.62)

By identifying the transmission as T = |Λ|2
v2 , the expression in Eq. (3.62) coincide

with Sdc (see Eq. (2.85)) in the weak-backscattering regime (T � 1). As a result,
according to Eq. (3.62), the reference subtracted from SC at ν = 1 can be viewed
as Sdc or as the backscattered current.
Another physical explanation for the choice of defining the excess noise as in Eq.
(3.61) is due to the relation between the excess noise and the number of particle-hole
pairs [23]. In this light, let us focus on the non-interacting case at ν = 1 and count
the number of electrons generated above the Fermi level (that we set to EF = 0) or
holes below it on a single right-moving edge channel. At θ = 0, these quantities are
defined as

Ne(t) =
∫ +∞

−∞

dε

2πf(−ε)
〈
ã†R(ε, t)ãR(ε, t)

〉
, (3.63)

Nh(t) =
∫ +∞

−∞

dε

2πf(ε)
〈
ãR(ε, t)ã†R(ε, t)

〉
, (3.64)

where f(E) = Θ(µ− E) and we introduced the operator

ãR(ε, t) = 1√
2πv

∫ +∞

−∞
dxe−i

ε
v
xΨR(x, t), (3.65)

which annihilates an electron with energy ε. Notice that we dropped all the index
R and L, which refer to a specific edge channel.
Here, our goal is to evaluate Nh, which corresponds to the number of unwanted
holes generated by a generic drive, and show that it is related to the excess noise
as defined in Eq. (3.61). At this purpose, let us observe that the Fermi function
f(E) can be written, at ν = 1, in terms of the function P̃ν=1(E) = 2π

ωc
f(E). By
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substituting this relation and the definition of operators ck into Eq. (3.64), thus
finding

Nh(t) = v2

(2πa)2

∫ +∞

−∞
dτ ′

∫ +∞

−∞
dτ exp

[
ie

∫ τ ′

τ ′−τ
dt′V (t′)

]
P2ν(t). (3.66)

A similar form for the excess noise at θ = 0 can be obtained by combining Eqs.
(3.33) and (3.44) according to the definition in Eq. (3.61)

∆S = 2(νe)2 |λ|2
∫ +∞

−∞
dτ ′

∫ T
0

dt

T
exp

[
iνe

∫ τ ′

τ ′−τ
dt′V (t′)

]
P2ν(t), (3.67)

which is proportional to Nh in Eq. (3.66) at ν = 1.
This relation can be used to prove that levitons are minimal excitation states at
ν = 1. For our discussion, we extend this result to FQH edge states, meaning that,
for minimal excitations in the FQH effect, the following quantity should be zero
[115]

N = v2

(2πa)2

∫ +∞

−∞
dτ ′

∫ +∞

−∞
dτ exp

[
iνe

∫ τ ′

τ ′−τ
dt′V (t′)

]
P2ν(t). (3.68)

The latter expression is proportional to the excess noise in Eq. (3.67) for a generic
ν belonging to the Laughlin sequence. As a consequence, a voltage drive which emit
clean pulses in the FQH regime must fulfill the condition ∆S = 0, where the excess
noise has been defined according to Eq. (3.61).
By using this definition of excess noise, at θ = 0, one can consider the expressions
for current and noise in Eqs. (3.52) and (3.53) and write

∆S = (νe)2

ω
|λ|2 4π

Γ(2ν)

(
ω

ωc

)2ν ∑
l<−q
|pl|2 |q + l|2ν−1 . (3.69)

This expression is directly related to the properties of a generic voltage: by substi-
tuting the proper form for the photo-assisted coefficient pl, one can directly inspect
whether a certain drive give rise to a vanishing excess noise.

Let us observe that the vanishing of the excess noise for Lorentzian pulses carry-
ing an integer number of particles can be proven mathematically. Equation (3.69)
depends directly on the Fourier coefficients pl with l < −q. Let us also remark
that the Lorentzian pulse is the only drive showing this striking feature. In such
case, the analytical behavior of e−iνe

∫ t
0 dτV (t) as a function of the complex variable

z = eiωt guarantees that pl<−q = 0 when q is an integer, as shown in Appendix C.
This immediately leads to the simultaneous vanishing of the excess noise at integer
charge q, as all contributions of the sum in Eq. (3.69) are positive terms and can
thus only vanish if |pl|2 is zero for all l below −q.
In order to confirm the validity of this analytical result, we plot the excess noise for
a Lorentzian-shaped voltage

Vlor(t) = Vdc
π

+∞∑
k=−∞

W

W 2 + (t− kT )2 , (3.70)
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Figure 3.4: Excess noise ∆SC in units of e2

ω |λ|
2 at filling factor ν = 1

3 as a function
of q. We compare the sinusoidal, square and Lorentzian voltages at θ = 0 (solid
curves) and θ = 0.1 (dashed curves). The width of Lorentzian pulses is W = 0.1T .
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and we compare it with other relevant voltage drives, as we did in Sec. 2, such as a
cosine and a square drive

Vsin(t) = Vdc(1− cos (ωt)), (3.71)

Vsqr(t) = 2Vdc
∞∑

k=−∞
Θ (t− kT ) Θ

(T
2 − t+ kT

)
. (3.72)

The excess noise corresponding to these drives are presented in Fig. 3.4 in the zero-
temperature limit for filling factor ν = 1

3 , which is the most stable FQH plateau of
the Laughlin sequence. All the curves show local minima in correspondence of integer
value of q. In particular, the signal for the Lorentzian drive at θ = 0 vanishes exactly
for q = 1, 2, 3, ..., in accordance with the quantization condition already discussed
in Chapter 1 in the framework of the non-interacting edge states of the IQH effect.
Again, cosine and square voltages always generate a finite excess noise, even in
correspondence of integer values of q. As proven analytically, integer Lorentzian
voltage pulses still generate minimal excitation states even in the Laughlin FQH
regime. Moreover, fractional values of q do not present any remarkable feature,
despite the presence of quasi-particles with a fractional charge.
Interestingly, all the curves show a diverging behavior right before integer values of
q. This feature is connected to the orthogonality catastrophe argument discussed
by Levitov: non-optimal pulses generate a quantum state that is orthogonal to the
unperturbed ground state, and this manifests as a huge number of particle-hole pairs
contributing to the transport [21]. Nevertheless, apart from the power-law divergent
behavior, the excess noise is qualitatively similar to the case of a normal metal.
At finite temperature, one can modify the excess noise as follows

∆S = SC − νeJBS(t) coth
(
qω

2θ

)
, (3.73)

where the reference value νeJBS(t) coth
( qω

2θ
)
has been changed accordingly to Eq.

(3.59). Black dashed curves in Fig. 3.4 are plotted for θ = 0.1ωc. Here, the diverging
behavior is smoothed by finite temperature effects. For a non-zero temperature, the
excess noise is always finite, a fact that was already observed in the Fermi liquid
case. Nevertheless, at finite temperature the excess noise is not expected to vanish
even for an optimal drive, since electron-hole pairs would be additionally generated
by thermal effects.

3.3.2 Density and Leviton crystallization

In the following, we focus only on Lorentzian-shaped voltage Vlor(t) carrying an
integer number of emitted particles. The formation of a multi-leviton crystal can be
seen from the behavior of the excess charge density, defined as

∆ρR/L(x, t) = −e
(
〈ρR/L(x, t)〉 − 〈ρ(eq)

R/L(x, t)〉
)
. (3.74)

Here, ρ(eq)
R/L(x, t) = ∓

√
ν

2π ∂xφR/L(x, t) is the charge density operator at equilibrium
(VR = VL = 0). Thermal averages are performed over the initial equilibrium density
matrix in the absence of tunneling.
Since the density will be perturbatively evaluated at lowest order in tunneling, cal-
culations are usefully carried out in terms of quasi-particle correlation functions
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G<R/L(t′, t) and G>R/L(t′, t), presented in Eqs. (3.28) and (3.29). Contrarily to ordi-
nary optics, these correlators do not vanish even at equilibrium, due to the different
nature of the ground state in condensed matter systems. Since one is mainly inter-
ested in characterizing deviations from equilibrium introduced by the voltage drives,
it is useful to define the excess quasi-particle and quasi-hole correlators as

∆G(qp)
R/L(t′, t) = e−ikF v(t′−t)

(
G<R/L(t′, t)−G<0,R/L(t′ − t)

)
, (3.75)

∆G(qh)
R/L(t′, t) = eikF v(t′−t)

(
G>R/L(t′, t)−G>0,R/L(t′ − t)

)
, (3.76)

where we recall that the equilibrium Green’s function (VL = VR = 0) are

G<0,R/L(t′ − t) = 〈ψ(qp)
R/L
†(0, t′)ψ(qp)

R/L(0, t)〉 = eikF v(t′−t)

2πa Pν(t′ − t), (3.77)

G>0,R/L(t′ − t) = 〈ψ(qp)
R/L(0, t′)ψ(qp)

R/L
†(0, t)〉 = e−ikF v(t′−t)

2πa Pν(t′ − t). (3.78)

The expression for the excess correlators can be explicited by inserting Eqs. (3.28)
and (3.29),

∆G(qp)
R/L(t′, t) = 1

2πa

(
e−iνe

∫ t′
t
dτVR/L(τ) − 1

)
Pν(t′ − t), (3.79)

∆G(qh)
R/L(t′, t) = 1

2πa

(
eiνe

∫ t′
t
dτVR/L(τ) − 1

)
Pν(t′ − t). (3.80)

Interestingly, it can be shown that the phases containing the voltages VR/L is inde-
pendent of the filling factor. Indeed, for a Lorentzian-shaped voltage, one finds

e±iνe
∫ t′
t
dτVR/L(τ) =

(
sin
(
π
T (t± iW )

)
sin
(
π
T (t−∓iW )

))q . (3.81)

In the following we focus on the HBT experimental configuration, where we create
only right-moving excitations, by imposing VR(t) = Vlor(t) and VL(t) = 0. In
this case, the Green’s functions for left-moving modes are simply ∆G(qp/qh)

L (t′, t) =
1

2πaPν(t′, t) and the excess correlators vanish. Moreover, the number of emitted
particles by reservoir 1 will be labeled as q. By exploiting the result in Eq. (3.81),
excess quasi-particle and quasi-hole correlators for the right-moving modes become

∆G(qp)
R (t′, t) = − i

πa
Pν(t′ − t) sin

(
π(t′ − t)

T

) qR/L∑
k=1

ϕk(t)ϕ∗k(t′), (3.82)

∆G(qh)
R (t′, t) = i

πa
Pν(t′ − t) sin

(
π(t′ − t)

T

) qR/L∑
k=1

ϕ∗k(t)ϕk(t′). (3.83)

Here, we remind that the functions

ϕk(t) =

√√√√sinh
(
2πWT

)
2

sink−1
(
π t−iWT

)
sink

(
π t+iWT

) (3.84)

are the periodic wave functions with period 2T , already defined in Eq. (2.49). [31,
138]. We recall that they form a complete orthonormal basis, thus satisfying the
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Figure 3.5: Excess charge density ∆ρL(−d, t) evaluated in terminal 2 (i.e. x = −d),
in the presence of a single source for q = 5 and q = 6, in units of e|Λ|2ωc

2πv3 . Two
different filling factors are considered: ν = 1

3 (solid lines) and ν = 1
5 (dashed lines).

The other parameters are W = 0.04T , kBθ = 10−3ω and ω = 0.01ωc.

condition
∫ T

0
dt
T ϕk(t)ϕ∗k′(t) = δk,k′ . Let us notice that Eq. (3.98) reduces to single-

electron and single-hole coherence functions in the limit of free fermions (ν = 1) and
infinite period [86, 100].
The excess density in Eq. (3.74) varies significantly if evaluated before or after the
scattering of injected particles at the QPC. Indeed, before the scattering we have
∆ρL(x, t)=0, while ∆ρR(x, t) can be readily obtained by evaluating the excess quasi-
particle correlator at equal times and positions. In the region −d < x < 0 (that is,
downstream of the contact but still before the QPC) we find

∆ρR(x, t) = − e

vT

q∑
k=1
|ϕk(t−)|2 = − e

2ν

2πvV (t−), (3.85)

since |ϕk(t)|2 = eνV (t)
qω for each k. We note that Eq. (3.85) is nothing but the

single-particle density of a q-particle state described by a Slater determinant formed
by the set of wave functions {ϕk}, k = 1, ..., q [86]. Remarkably, this excess density
does not display any qualitative difference between the integer and the fractional
case.
Non-linear tunneling, typical of the interacting FQH phase, is however expected to
influence the propagation of levitons after the scattering at the QPC [116, 117]. We
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thus focus on the excess density backscattered into the left-moving channel, namely
∆ρL(x, t), with x < 0. Since the QPC is assumed to work in the weak backscattering
regime, we are allowed to set up a perturbative expansion in the tunneling amplitude
Λ for the charge density operator ρL(x) = − e

√
ν

2π ∂xΦL(x), which reads (see Eqs.
(D.16) in Appendix D)

ρL(x, t) = ρ
(0)
L (x, t) + ρ

(1)
L (x, t) + ρ

(2)
L (x, t) + o(Λ3). (3.86)

The different contributions are written in Eqs. (D.17), (D.27) and (D.28): we quote
here their expressions

ρ
(0)
L (x, t) =

√
ν

2π ∂xΦL(x, t), (3.87)

ρ
(1)
L (x, t) = iΘ(±x)Λν

v
Ψ(qp)
R
†
(

0, t+ x

v

)
Ψ(qp)
L

(
0, t+ x

v

)
+ h.c., (3.88)

ρ
(2)
L (x, t) = iΘ(∓x)

∫ t∓x
v

−∞
dt′′

[
H

(qp)
T (t′′),+iΛν

v
Ψ(qp)
R
†
(

0, t+ x

v

)
Ψ(qp)
L

(
0, t+ x

v

)
+ h.c.

]
.

(3.89)

Note that the step function in ρ(1)
L (x, t) is directly related to the effect of backscat-

tering at x = 0.
We thus get the excess charge density to lowest non-vanishing order in the tunneling
expressed in terms of quasi-particles and quasi-holes Green’s functions, by repeating
similar steps that led to Eq. (3.20). One finds

∆ρL(x, t) = e |Λ|2 ν
2πav

∫ t+x
v

−∞
dt′′

[
G<R

(
t′′, t+ x

v

)
G>0,L

(
t′′,−t+ x

v

)
+

−G<0,L
(
t′′ − t+ x

v

)
G>R

(
t′′, t+ x

v

)
+

−G<R
(
t+ x

v
, t′′
)
G>0,L

(
t+ x

v
− t′′

)
+

+ eikF (t′′−t+x
v

)G<0,L

(
t+ x

v
− t′′

)
G>R

(
t− d

v
, t′′
)]

. (3.90)

By inserting the excess correlators in Eqs. (3.82) and (3.83) into the above expres-
sion, one finds

∆ρL(x, t) = eν|Λ|2
2πav

∫ t+

−∞
dt′
[
∆G(qp)

R (0, t′; 0, t+)+

−∆G(qh)
R (0, t′; 0, t+)

]
Pν
(
t′ − t+

)
+ h.c.. (3.91)

According to the completeness of the set {ϕk}, the above result can be recast in the
more compact and physically insightful form

∆ρL(x, t) = e|Λ|2
v3T

q∑
k=1

+∞∑
p=1
<[ck,pϕk(t+)ϕ∗p(t+)], (3.92)

where coefficients ck,p depend on the temperature θ and the filling factor ν. In terms
of the overlap integrals gkp(t̄) =

∫ T
0

dt
T ϕk(t+ t̄)ϕ∗p(t), they are given by

ck,p = 4νv2

πa2ω

∫ 0

−∞
dt′g∗kp(t′) sin

(
πt′

T

)
=
[
P2ν(t′)

]
. (3.93)
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In an ordinary metallic system (ν = 1), they reduce to ck,p = δk,p, so that Eq.
(3.92) becomes simply ∆ρL(x, t) = − e2ν

2πvV (t+). Thus backscattered pulses at ν = 1
maintain the same Lorentzian shape as the injected ones.
Conversely, the excess density in a Laughlin FQH system departs strongly from the
trivial metallic result, as we show in Fig. 3.5, for ν = 1

3 and ν = 1
5 and different

values of q. Here we focus on the excess density measured in terminal 2, i.e. for
x = −d [139]. Due to the strongly correlated background, the q-Leviton state
backscattered off the QPC is rearranged into an oscillatory pattern with a number
of peaks exactly equal to q, regardless of any other parameter. The amplitude of the
oscillations increases with decreasing filling factor (that is, for stronger correlations).
These patterns suggest that scattering at the QPC creates a correlated structure of q
separated and co-moving levitons. In analogy with other strongly correlated phases
in condensed matter [130, 136, 140], we interpret this structure as a crystallization of
the q-Leviton state. However, in contrast to Wigner crystallization, the arrangement
induced by interaction does not show a static profile but rather a propagating one,
thus leading to the emergence of a regular structure in time and not only in space.
Due to the soliton-like nature of levitons [21], this process presents an intriguing
analogy with the formation of optical soliton crystal in the presence of a non-linear
environment [126], albeit in a completely different context.

In passing, let us comment about the parity of excess density shown in Fig. 3.5.
In this light, it is useful to further manipulate Eq. (3.91) in such a way that

∆ρL(x, t) = e|Λ|2
v3T

q∑
k=1

+∞∑
p=1

{
<[ck,p]<[ϕk(t+)ϕ∗p(t+)]+

−=[ck,p]=[ϕk(t+)ϕ∗p(t+)]
}
. (3.94)

Here, <[ϕk(τ)ϕ∗p(τ)] and =[ϕk(τ)ϕ∗p(τ)] are, respectively, an even function and an
odd function of τ , since ϕk(τ) = −ϕ∗k(−τ) (see Eq. (3.84)). It is thus clear that
the excess density has not a definite parity with respect to t+ = t+ x

v for a generic
value of ν, as both an even term and an odd component are present in Eq. (3.94). In
the non-interacting case (ν = 1), the coefficients ck,p are real-valued and the excess
density reduces to an even function of t+.

3.3.3 Experimental signatures in current noise

A direct observation of the oscillating density would require a real-time measurement
of the backscattered current with extremely high temporal resolution. Moreover, this
observation alone would not be the conclusive proof of the crystallization process.
In order to indubitably relate the oscillations of the density to the crystallization
of levitons, one has to further investigate the density-density or current-current
correlators [131, 141]. The very special nature of the q-Leviton crystal, which is
not confined to a finite spatial region, but rather moves rigidly along the edges,
lets us envisage an experimental test based on the cross-correlations of two flying
crystallized patterns. In this light, we propose to perform a much more feasible zero-
frequency measurement of current noise in a HOM experimental setup [16, 18, 85].
In this configuration, a second train of levitons (identical to the first one) is generated
in terminal 4 and delayed by a tunable time shift tD. We describe the HOM setup
by setting VR(t) = V (t) and VL(t) = V (t + tD). A genuine crystallization process
is expected to manifest as oscillations in the current noise analyzed as a function
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of the delay tD. As a side note, let us observe that intensity-intensity correlation
measurements are analogously performed to probe the crystallization of solitons in
the optical domain [126].
We thus focus on the zero-frequency cross-correlation between terminals 2 and 3,
defined as

S23 =
∫ T

0

dt

T

∫ +∞

−∞
dτ [〈J2(t+ τ)J3(t)〉 − 〈J2(t+ τ)〉 〈J3(t)〉] , (3.95)

which can be put in a form manifestly related to a density-density correlators

S23 = −v2e2
∫ T

0

dt

T

∫ +∞

−∞
dτ [〈ρR(d, t+ τ)ρL(−d, t)〉 − 〈ρR(d, t+ τ)〉 〈ρL(−d, t)〉] ,

(3.96)

by using the connection between density operator and chiral current operators.
In the following, we use the notation SHOMC ≡ −S23. Due to the relation SC =
−SHOMC , the expression for the HOM current noise in terms of Green’s functions in
Eqs. (3.28) and (3.29) can be obtained directly from Eq. (3.43)

SHOM
C = −(νe)2|Λ|2

∫ T
0

dt

T

∫ +∞

−∞
dτ
[
G<R(t+ τ, t)G>L (t+ τ, t) +G<R(t+ τ, t)G>L (t+ τ, t)

]
.

(3.97)
It is interesting to recast the current noise directly in terms of the excess correlation
functions ∆G(qp)

R/L and ∆G(qh)
R/L, which encode all the information about levitons. Let

us observe that in the HOM configuration they are given by

∆G(qp)
R/L(t′, t) = −2iG0(t′ − t) sin

(
π(t′ − t)
T

) qR/L∑
k=1

ϕk,R/L(t)ϕ∗k,R/L(t′), (3.98)

∆G(qh)
R/L(t′, t) = 2iG0(t′ − t) sin

(
π(t′ − t)
T

) qR/L∑
k=1

ϕ∗k,R/L(t)ϕk,R/L(t′), (3.99)

where ϕk,R(t) = ϕk(t) and ϕk,L(t) = ϕk(t+ tD). By using the relations G<R/L(t′, t) =
eikF v(t′−t)∆G(qp)

R/L(t′, t) + G<0,R/L(t′ − t) and G>R/L(t′, t) = e−ikF v(t′−t)∆G(qh)
R/L(t′, t) +

G>0,R/L(t′ − t) (we omitted here the time dependence for notational convenience),
one finds

SHOM
C = −S(0)

C + SHBT
C,R + SHBT

C,L +

− (νe)2|Λ|2
∫ T

0

dt

T

∫ +∞

−∞
dτ
[
∆G(qp)

R (t+ τ, t)∆G(qh)
L (t+ τ, t)+

+ ∆G(qh)
R (t+ τ, t)∆G(qp)

L (t+ τ, t)
]
, (3.100)

where we have used the expressions of the equilibrium noise S(0)
32 and the HBT noise

SHBT
32,R/L in terms of Green’s functions, which read

S(0)
C = −(νe)2|Λ|2

2(πa)2

∫ +∞

−∞
dτP2ν(τ), (3.101)

SHBT
C,R/L = −(νe)2|Λ|2

∫ T
0

dt

T

∫ +∞

−∞
dτ
[
G

(qp)
R/L(t+ τ, t)G>0,R/L(τ) +G

(qh)
R/L(t+ τ, t)G<0,R/L(τ)

]
.

(3.102)
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A standard procedure is to normalize the HOM signal with respect to the HBT one
[16, 106]. We thus define the ratio

R = SHOM
C (tD)− S(0)

C

SHBT
C,R + SHBT

C,L − 2S(0)
C

. (3.103)

By using the previous results the HOM ratio becomes

R = 1− N
D
, (3.104)

with N and D given respectively by

N = −
∫ T

0

dt

T

∫ +∞

−∞
dτ
[
∆G(qp)

R (t+ τ, t)∆G(qh)
L (t+ τ, t)+

+∆G(qh)
R (t+ τ, t)∆G(qp)

L (t+ τ, t)
]
, (3.105)

D = 1
2πa

∑
r=R,L

∫ T
0

dt

T

∫ +∞

−∞
dτ
[
∆G(qp)

r (t+ τ, t) + ∆G(qh)
r (t+ τ, t)

]
Pν(τ). (3.106)

By inserting equations (3.98) and (3.99) into the above equations, these two contri-
butions can be further expressed in terms of the wave-functions {ϕk} as

N = 1
(2πa)2

∫ T
0

dt

T

∫ +∞

−∞
dτ

[ qR∑
k=1

qL∑
k′=1

ϕk(t)ϕ∗k(t+ τ)ϕ∗k′(t+ tD)ϕk′(t+ tD + τ) + h.c.
]
×

× sin2
(
πτ

T

)
P2ν(τ), (3.107)

D = 1
2(2πa)2

∑
r=R,L

∫ T
0

dt

T

∫ +∞

−∞
dτ

[
i
qr∑
k=1

ϕk(t)ϕ∗k(t+ τ) + h.c.
]

sin
(
πτ

T

)
P2ν(τ).

(3.108)

Finally, by introducing the overlap integrals of wave-functions gkp(tD) =
∫ T

0
dt
T ϕk(t+

tD)ϕ∗p(t), the ratio acquires the form

R = 1−

qR∑
k=1

qL∑
k′=1

+∞∑
p=1

+∞∑
p′=1
<
[
wkpp′gk′p(tD)g∗k′p′(tD)

]
1
2 (vqR + vqL)

, (3.109)

where the coefficients are

wkpp′ =
∫ T

0

dt

T

∫ +∞

−∞
dτ ϕk(t)ϕ∗k(t+ τ)ϕp(t)ϕ∗p′(t+ τ) sin2

(
πτ

T

)
P2ν(τ), (3.110)

vqr =
qr∑
k=1

∫ +∞

−∞
dτ sin

(
πτ

T

)
g∗kk(τ)P2ν(τ). (3.111)

Finally, starting from equation (3.109) one also gets a simplified formula for the
integer case at zero temperature, which reads

R = 1− 2
qL + qR

qR∑
k=1

qL∑
k′=1
|gk′k(tD)|2 , (3.112)

90



Figure 3.6: Ratio R as a function of the time delay tD for q = 1, q = 4, q = 5, q = 6.
The integer case (dashed lines) and the fractional case for ν = 1

3 (solid lines) are
compared. The other parameters are W = 0.04T , kBθ = 10−3ω and ω = 0.01ωc.
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in accordance with previous results [106, 111].
Let us start by analyzing the most interesting situation of collision between identical
wave-packets, namely the case with qR = qL = q.
The HOM ratio at ν = 1 consists of a single, smooth dip shown with dashed lines in
Fig. 3.6 for different values of q. The absence of any additional structure at ν = 1
confirms the uncorrelated nature of levitons in the Fermi-liquid state. Conversely,
full lines in Fig. 3.6 show the behavior of R(tD) at fractional filling ν = 1

3 for the
same values of q. We first notice that completely destructive interference between
the two signals always occurs at tD = 0 (as demonstrated by the total central
dip), whether the system is interacting or not. This shows that electron-electron
interactions in single-edge-mode Laughlin states do not induce decoherence effects,
in contrast with the role played by interactions in the ν = 2 integer quantum Hall
effect, where two co-propagating edge states exist [101, 108]. At q = 1, the ratio
exhibits the same behavior for integer and fractional filling factors [115]. This is
related to the fact that backscattering of a single Leviton generates a simple signal
with no internal peak/valley structure. For higher values of q, rearrangement of
q-Leviton excitations generates peculiar features that distinguish between the non-
interacting and the strongly correlated phase. Plots at ν = 1

3 clearly show the
presence of oscillations in the current-current correlators for q > 1, with 2q − 2
new dips aside of the principal one at tD = 0. It is interesting to notice that
their arrangement bears similarities with the behavior of ∆ρL(x, t) shown in Fig.
3.5. Indeed, as for the excess density, the spacing between maxima/minima of
R(tD) tends to widen while approaching the ends of the period. These features
unambiguously identify the effects of the strongly correlated FQH phase on Leviton
excitations, in striking contrast with the uncorrelated Fermi liquid phase. A similar
pattern was predicted in Ref. [108] and experimentally observed in Ref. [29], where
the internal peak/valley structure is generated by a fractionalization effect in a
ν = 2 quantum Hall interferometer. Here we argue that the new side dips must
be related to the unprecedentedly reported process of crystallization of q-levitons
in FQH edge states, as no fractionalization occurs in the single-edge-mode Laughlin
sequence. Therefore, the appearance of local maxima and minima in the current-
current correlators at fractional filling factors proves the existence of a q-Leviton
crystal in the time domain induced by interactions.

By increasing the ratio between the width of the pulses and the period, the peak-
to-valley amplitude of oscillations is enhanced for fractional filling factors, while for
the integer case the situation is qualitatively unchanged, as depicted in Fig. 3.7.
The principal downside is that some of the oscillations that are clearly visible for
sharper pulses are now lost, since pulses belonging to neighboring periods start to
overlap significantly. Therefore, the choice of increasing the ratio W/T makes it
easier to observe the presence of oscillations in the current-current correlators, even
though some dips inevitably disappear. Complementary information can be drawn
by fixing a value of the delay tD and inspecting the shape of the ratio R as the ratio
W/T is varied. The plots of R as a function of W/T for different values of q are
shown in Fig. 3.8, where we set tD = 0.5T since the signal is bigger and oscillations
are more pronounced for such a value of the delay. Interestingly, the integer and the
fractional cases show a dramatically different behavior. In the former case, the ratio
is smoothly decreasing without any particular feature. In the latter, conversely, it
oscillates for quite a large interval of W/T , before eventually decreasing. Further-
more, the number of peaks appearing for fractional filling factors is exactly equal
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Figure 3.7: Ratio R as a function of the time delay tD for q = 3, q = 4, q = 5,
q = 6. The integer case (dashed lines) and the fractional case for ν = 1

3 (solid lines)
are compared. The other parameters are W = 0.1T and ω = 0.01ωc.

to q. This additional experimental investigation could significantly help in discrimi-
nating between the crystallized and the non-crystallized regime. Finally, it is worth
noting that the same behavior of the ratio can be observed for all filling factors in
the Laughlin sequence. Such an universality tells us that interactions in Laughlin
FQH states are always strong enough to induce a complete crystallization.

3.3.4 Asymmetric collisions

We now examine what happens when wave-packets carrying different charges are
injected in terminals 1 and 4 and sent to the collider. For simplicity, we inject
integer Lorentzian pulses with qR = 1 on the upper right-moving edge, while the
opposite contact is driven with a generic Lorentzian drive with tunable qL and tD.
Starting from the ν = 1 case, we observe that the total suppression of HOM noise
is achieved only for qL = qR = 1, as expected. However, different values of qL still
generate a partial dip in the noise whose value is given by

R(qR, qL, tD = 0) = qL − qR
qL + qR

, (3.113)
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Figure 3.8: Ratio R as a function ofW/T for q = 3, q = 4, q = 5, q = 6. The integer
case (dashed lines) and the fractional case for ν = 1

3 (solid lines) are compared. The
other parameters are tD = 0.5T and ω = 0.01ωc.

as one can infer by looking at Figure 3.9a. For instance, by fixing the value of qL
we obtain the four curves shown in Figure 3.9b, which clearly demonstrate that the
anti-bunching effect is not complete - although still present - when excitations with
different charge collide at the QPC.

In the FQH regime the values of the ratio R at zero delay is slightly modified,
while two unexpected sub-dips appear (see Figures 3.9c and 3.9d). Moreover, the
distance between these two side-dips progressively increases by increasing qL. As
deduced previously from Figure 3.6, the qL-levitons, with qL > 1, are re-arranged
in a crystallized structure, while the single Leviton wave-packet maintains a trivial
pattern. Therefore, the latter is not suitable to resolve the more complicated crystal
of qL-levitons in the type of experiment presented in Figure 3.9. As a consequence,
the number of side-dips is totally unrelated to the specific value of qL, in contrast
to the configuration with identical drives. A better resolution would require the
injection of a very narrow Leviton wave-packet from terminal 1, ideally reaching the
limit of a delta-like pulse: anyway, the generation of such a narrow pulse is beyond
the state-of-art technology. Another possibility would be to increase the value of
qR, thus characterizing the crystal of qL-levitons with a comparably complicated
wave-packet: in this case, a total number of 2qR side-dips would appear.
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Figure 3.9: HOM ratio R for collisions of integer (qR = 1) and generic (qL = q)
pulses as a function of the delay tD and the charge q injected in the left-moving
edge. The upper panels refers to the case of integer filling factor, while the lower
panels corresponds to fractional filling ν = 1/3. The temperature is θ = 0.01ω,
the dimensionless width of the pulses is W = 0.04T and the high energy cut-off is
v/a = 10ω.
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Chapter 4

Heat transport properties of
levitons

In this Chapter we investigate heat transport properties of Lorentzian-shaped volt-
age pulses in the quantum Hall systems. Excitations are studied through heat and
mixed noise generated by the random partitioning at the QPC. It is shown that
levitons represent the cleanest states even for heat transport properties, since excess
heat and mixed shot noise both vanish only when Lorentzian voltage pulses carrying
integer electric charge are applied to the conductor. This happens in the integer QH
regime and for Laughlin fractional states as well, with no signature associated to
fractional excitations. In addition, we demonstrate the robustness of such excita-
tions to the overlap of Lorentzian wave-packets. Even though mixed and heat noise
have nonlinear dependence on the voltage bias, and despite the non-integer power-
law behavior arising from the FQH physics, an arbitrary superposition of levitons
always generates minimal excitation states. Finally, we investigate heat current fluc-
tuations induced by levitons in a Hong-Ou-Mandel interferometer implemented in
a quantum Hall bar in the Laughlin sequence. We demonstrate that the noise in
this collisional experiment cannot be reproduced in a setup with a single drive, in
contrast to what is observed in the charge noise case. Nevertheless, the simultaneous
collision of two identical levitons always leads to a total suppression even for the
Hong-Ou-Mandel heat noise at all filling factors, despite the presence of emergent
anyonic quasi-particle excitations in the fractional regime. Interestingly, the strong
correlations characterizing the fractional phase are responsible for a remarkable os-
cillating pattern in the HOM heat noise, which is completely absent in the integer
case.

4.1 Introduction

The interest in quantum Hall systems has been mainly devoted to its electrical trans-
port properties, due to the many fascinating physical phenomena related to its chiral
edge states and fractionally charged excitations. Nevertheless, charge is not the only
interesting degree of freedom that could be investigated in quantum transport. In
the past, heat fluxes in small quantum conductors have been mostly considered as a
detrimental effect in experiments. Indeed, the experimental control over heat fluxes
in mesoscopic devices represented a great challenge from the technical point of view,
which was overcome only in recent years. Indeed, some recent groundbreaking ex-
periments has spurred the investigation also in the direction of heat transport at
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the nanoscale [142–147]. New intriguing challenges posed by extending concepts
like energy harvesting [148–152], driven heat and energy transport [59, 153–155],
energy exchange in open systems [156, 157] and fluctuation-dissipation theorems
[158–161] to the quantum realm resulted in a great progress of the field of quantum
thermodynamics. In this context, the investigation of heat transport in the ballistic
regime, where electrons propagate in ideally transmitting channels, is fundamental
to access the quantum limit of thermal phenomena. Of course, a prominent role
is played by chiral edge states of quantum Hall systems: the coherent transport
and manipulation of heat fluxes have been reported in quantum Hall systems [162–
164]. Intriguingly, the quantization of heat conductance has been observed in inte-
ger [51] and fractional quantum Hall systems [52, 53, 122]. In this way, ample and
valuable information about these peculiar states of matter, complementary to the
well-established results associated with quantized charge transport, is now available
with interesting implications also for quantum computation [165–167].

As discussed in the previous Chapters, the main driving force behind EQO has
been to properly revise quantum optics experiments focusing on charge transport
properties of single-electron excitations. Nevertheless, a new perspective on EQO
has been also triggered by the rising interest for heat transport properties of single-
electron excitations. As described in Chapters 2 and 3, the study of noise is an
extremely powerful tool to investigate the response of quantum Hall edge channels
to single-electron sources. In addition to fluctuations of heat current, also correlators
between charge and heat currents attracted a lot of attention due to their relation
with thermoelectric properties of a system [168, 169]. Indeed, both heat and mixed
noises started to be investigated also in the presence of single-electron voltage sources
[170–172]. Moreover, heat current has revealed an useful resource in the context of
EQO, since it might provide the full reconstruction of a single-electron wave-function
[173].

A natural question immediately arises when one considers heat dynamics in
EQO, namely what kind of voltage drive gives rise to minimal excitation states for
heat transport in mesoscopic conductors. The first result of this Chapter will be
exactly the answer to this question. To this end, we study heat conduction along
the topologically-protected chiral edge states of the quantum Hall effect. We analyze
heat current fluctuations as well as mixed charge-heat correlations [168, 169] when
different types of periodic voltage pulses are sent to the conductor and partitioned off
a QPC [14]. Starting from the dc regime of the voltage drive, where simple relations
between noises and currents can be derived in the spirit of the celebrated Schottky’s
formula [112, 123], we introduce the excess signals for charge, heat and mixed fluc-
tuations, which basically measure the difference between the zero-frequency noises
in an ac-driven system and their respective reference signals in the dc configuration.
The vanishing of excess heat and mixed noise is thus used to flag the occurrence of a
minimal excitation state for heat transport in the quantum Hall regime. With this
powerful tool we demonstrate that minimal noise states for heat transport can be
achieved only when the voltage drive takes the form of Lorentzian pulses carrying
an integer multiple of the electron charge, i.e. when levitons are injected into the
quantum Hall edge states. We study this problem both in the integer regime and in
the FQH regime, where strong interactions give rise to the fractional properties of
quasi-particle excitations.

Having recognized levitons as the fundamental building block for heat trans-
port, we then turn to the second central issue of this paper, which deals with the
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robustness of multiple overlapping Lorentzian pulses as minimal excitation states.
Indeed, Levitov and collaborators demonstrated that N levitons traveling through a
quantum conductor with transmission T < 1 represent N independent attempts to
pass the barrier, with the total noise not affected by the overlap between their wave-
packets. This is no more guaranteed when we look for quantities which, like heat
current and noise, have a non-linear dependence on the voltage bias. In addition,
other non-linearities arise as a natural consequence of FQH physics, which give rise
to exotic power laws with non-integer exponents. We show that, while currents and
noises are sensitive to the actual number of particles sent to the QPC, excess signals
always vanish for arbitrary superposition of integer levitons. One then concludes
that levitons show a remarkable stability even regarding heat transport properties,
combined with the equally surprising robustness in the strongly-correlated FQH liq-
uid. This provides further evidence of the uniqueness of the leviton state in the
quantum Hall regime.

In the last part of this Chapter, we address the problem of the heat noise gen-
erated by levitons injected in a HOM interferometer in the fractional quantum Hall
regime. We consider a four terminal quantum Hall bar in the Laughlin sequence
[62], where a single channel arises on each edge. Two terminals are contacted to
time-dependent voltages, namely VL and VR. Tunneling processes of quasi-particles
are allowed by the presence of a QPC connecting the two edge states. In this case,
charge noise generated in the HOM setup is identical to the one generated in a
single-drive setup driven by the voltage VL − VR. Interestingly, we prove that this
does not hold true anymore for heat noise, since it is possible to identify a contribu-
tion to HOM heat noise which is absent in a single-drive interferometer driven by
VL − VR. In addition, we prove that the HOM heat noise always vanishes for a zero
delay between the driving voltage, both for integer and fractional filling factors. Fi-
nally, we focus on the case of Lorentzian-shaped voltage carrying an integer number
of electrons and we show that the HOM heat noise displays unexpected side dips in
the fractional quantum Hall regime, which have no parallel in the integer regime.
Intriguingly, the number of these side dips increases with the number of levitons in-
jected per period. This result is consistent with the recently predicted phenomenon
of charge crystallization of levitons in the fractional quantum Hall regime [55].

4.2 Heat current and noise in quantum Hall systems
In order to extend the concepts of EQO to heat transport, this section is devoted
to the introduction and the definition of heat current operators and heat noise. We
will refer to the model for time-dependent transport in the FQH effect described
in Sec. B.1 of Appendix B. For a system, with hamiltonian density H and particle
number density N , heat density Q is defined as

Q = H− µN , (4.1)

where µ is the system chemical potential. This definition is motivated by the fact
that the energy density depends on an arbitrary energy reference and, thus, it is
not a well-defined experimental observable. On the contrary, heat is defined as the
energy carried by particles with respect to the chemical potential in order to be a
valid observable, thus motivating Eq. (4.1). For this reason, a correct heat transport
quantity should be completely unaffected by chemical potential.
In a chiral Luttinger liquid hamiltonian density (see the integrand function in Eq.
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(3.1)), the contributions proportional to µ is automatically subtracted [118, 122]:
the presence of a chemical potential µ = vkF is taken into account in the bosonized
expression for field operators by inserting the exponential e±ikF x

Ψ(qp)
R/L(x, t) = e−iνe

∫ t∓xv
0 dt′VR/L(t′) F

(qp)
R/L√
2πa

e±ikF (x∓vt)e−i
√
νφR/L(x,t). (4.2)

Therefore, one can define heat density as the hamiltonian densities (see Eqs. (1.91)
and (1.89))

QR/L(x, t) = v

4π
(
∂xΦR/L(x, t)

)2
. (4.3)

The heat current operators of terminal 2 and 3 can be expressed in terms of heat
density operators [118] as

J2/3(t) = ±v QR/L(±d, t), (4.4)

due to the chirality of Laughlin edge states.
Analogously to charge current, one can expand heat current operators in power of
the tunneling amplitude Λ, thus obtaining (see appendix D)

J2/3(t) = J (0)
2/3(t) + J (1)

2/3(t) + J (2)
2/3(t) +O

(
|Λ|3

)
, (4.5)

where

J (0)
2/3(t) = ±vQ(0)

R/L(±d, t), (4.6)

J (1)
2/3(t) = ±iv

∫ t

−∞
dt′
[
H

(qp)
T (t′),Q(0)

R/L(±d, t)
]
, (4.7)

J (2)
2/3(t) = ±i2v

∫ t

−∞
dt′
∫ t′

−∞
dt′′

[
H

(qp)
T (t′′),

[
Ht(t′),Q(0)

R/L(±d, t)
]]
. (4.8)

In the above equations we have denoted with Q(0)(x, t), the time evolution of heat
density in the absence of tunneling, which can be obtained from the time evolution
of bosonic fields in Eq. (B.17) and reads

Q(0)
R/L(x, t) = v

4π
[ (
∂xφR/L(x, t)

)2
± 2e
√
ν∂xφR/L(x, t)VR/L

(
t∓ x

v

)
+ e2ν

v
V 2
R/L

(
t∓ x

v

) ]
.

(4.9)

By exploiting bosonization identity and Baker-Hausdorff relation, the commutator
involving Q(0)

R/L(x, t) in Eqs. (4.7) and (4.8) can be recast into an expression in terms
of quasi-particle fields, as we did for charge current operators, which will be useful
for the following calculation of average values. It reads[
H

(qp)
T (t′),Q(0)

R/L(x, t)
]

=
[
ΛΨ(qp)

R
†(0, t′)Ψ(qp)

L (0, t′) + h.c., v4π
[ (
∂xφR/L(x, t)

)2
+

± e
√
ν

2π ∂xφR/L(x, t)VR/L
(
t∓ x

v

)
+ e2ν

v
V 2
R/L

(
t∓ x

v

) ]]
=

= 2
[
ΛΨ(qp)

R
†(0, t′)Ψ(qp)

L (0, t′) + h.c., v4π∂xφR/L(x, t)
]
∂xφR/L(x, t)+

±
[
ΛΨ(qp)

R
†(0, t′)Ψ(qp)

L (0, t′) + h.c., e
√
ν

2π ∂xφR/L(x, t)VR/L
(
t∓ x

v

) ]
,

(4.10)
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where we used that VR/L are c-numbers and commute with any operator. At this
point, we can take advantage of the following commutator, derived in Eq. (D.25),[

ψ
(qp)
R/L(0, t′), ∂xφR/L(x, t)

]
= ±2π

√
νδ(x∓ v(t− t′))Ψ(qp)

R/L(0, t′), (4.11)

in order to recast Eq. (4.10) as[
H

(qp)
T (t′),Q(0)

R/L(x, t)
]

= −ivδ
(
x∓ v(t− t′)

)
Q̇R/L(x, t), (4.12)

where we introduced the following operators

Q̇R (x, t) = vΛ (∂x + ikF ) Ψ(qp)
R
†(x, t)Ψ(qp)

L (x, t) + H.c., (4.13)

Q̇L (x, t) = −vΛΨ(qp)
R
†(x, t) (∂x + ikF ) Ψ(qp)

L (x, t) + H.c.. (4.14)

Eq. (4.12) can be used to recast Eqs. (4.7) and (4.8)

J (1)
2/3(t) = ±Q̇R/L (±d, t) , (4.15)

J (2)
2/3(t) = ±i

∫ t− d
v

−∞
dt′′

[
Ht(t′′), Q̇R/L (±d, t)

]
. (4.16)

Then, we can define mixed and heat noises as

SX,αβ =
∫ T

0

dt

T

∫ +∞

−∞
dt′

[
〈Jα(t′)Jβ(t)〉 − 〈Jα(t′)〉 〈Jβ(t)〉

]
, (4.17)

SQ,αβ =
∫ T

0

dt

T

∫ +∞

−∞
dt′

[
〈Jα(t′)Jβ(t)〉 − 〈Jα(t′)〉 〈Jβ(t)〉

]
. (4.18)

The perturbative expansion of charge and heat current operators in Eqs. (D.16) and
(4.5) allows to express mixed and heat noises at lowest order as

SX,αβ = S(02)
X,αβ + S(20)

X,αβ + S(11)
X,αβ +O

(
|Λ|3

)
, (4.19)

SQ,αβ = S(02)
Q,αβ + S(20)

Q,αβ + S(11)
Q,αβ +O

(
|Λ|3

)
, (4.20)

where

S(ij)
X,αβ =

∫ T
0

dt

T

∫ +∞

−∞
dt′
{
〈J (i)
α (t′)J (j)

β (t)〉 − 〈J (i)
α (t′)〉〈J (j)

β (t)〉
}
, (4.21)

S(ij)
Q,αβ =

∫ T
0

dt

T

∫ +∞

−∞
dt′
{
〈J (i)

α (t′)J (j)
β (t)〉 − 〈J (i)

α (t′)〉〈J (j)
β (t)〉

}
. (4.22)

4.3 Minimal excitation states for heat transport

4.3.1 Calculations of heat transport in the HBT geometry

In this Section, our goal is to establish which drive gives rise to minimal excitations
of heat transport. In analogy with the discussion for charge, we focus on a HBT
geometry, where VR(t) = V (t) and VL(t) = 0, with V (t) a generic drive with period
T . In this case, a single stream of particles emitted from reservoir 1 is scattered off
the QPC (see Fig. 3.5). Moreover, we will focus on the case of zero temperature,
in order to get rid of thermal fluctuations that would hide the existence of minimal
excitations for heat noise
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Let us start by looking at the thermal average of heat current operators in Eq. (4.5),
which reads 〈

J2/3(t)
〉

= 〈J (0)
2/3〉+ 〈J (2)

2/3〉, (4.23)

where

〈J (0)
2/3(t)〉 = ±〈vQ(0)

R/L(x, t)〉 = v

4π
[〈 (

∂xφR/L(x, t)
)2 〉

+ e2ν

4πvV
2
R/L

(
t∓ x

v

) ]
,

(4.24)

〈J (2)
2/3(t)〉 = ±i

∫ t− d
v

−∞
dt′′〈

[
Ht(t′′), Q̇R/L (±d, t)

]
〉. (4.25)

Notice that the average value of J (1)
2/3 is zero due to the unbalance between annihi-

lation and creation field operators of each chirality. The terms in Eq. (4.24) are the
heat currents flowing along the edge states emitted from reservoirs 1 and 4, which
would reach unmodified reservoirs 2 and 3 in the absence of any tunneling process
between the two edges. The presence of a QPC tuned to the high transparency limit
generates the other contribution in Eq. (4.25). For the following discussion, we are
interested in the heat current that is backscattered by the QPC into reservoir 3.
Therefore, we define backscattering heat current as

JBS(t) = 〈J (2)
3 (t)〉. (4.26)

The latter can be expressed in terms of Green’s functions in Eqs. (3.28) and (3.29),
by exploiting the explicit expression of Q̇L(x, t) in Eq. (4.14) for VL(t) = 0, thus
finding

JBS(t) = i|Λ|2
∫ t− d

v

−∞
dτ

[
G<R

(
t′, t− d

v

)
(∂t − ikF v)G<L

(
t′, t− d

v

)
+

+G<R

(
t′, t− d

v

)
(∂t + ikF v)G<L

(
t′, t− d

v

)
+

−G<R
(
t− d

v
, t′
)

(∂t − ikF v)G<L
(
t− d

v
, t′
)

+

−G<R
(
t− d

v
, t′
)

(∂t + ikF v)G<L
(
t− d

v
, t′
)]

. (4.27)

By recalling the link between Green’s functions and the function Pg(t),which, in this
case, is

G
</>
R (t′, t) = e±ikF v(t′−t)

2πa e∓iνe
∫ t′
t
dτVR(τ)Pν(t′ − t), (4.28)

G
</>
L (t′, t) = e±ikF v(t′−t)

2πa Pν(t′ − t), (4.29)

(4.30)

the contributions with kF in Eq. (4.27) are exactly canceled by the derivative of the
exponentials e±ikF v(t′−t) and heat backscattering current becomes

JBS(t) = i|λ|2
∫ +∞

0
dτ cos

[
νe

∫ t−τ

t
dt′′VR(t′′)

]
∂τ [P2ν(τ)− P2ν(−τ)] . (4.31)
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At this stage it is useful to recall the Fourier transform P̃g(E) =
∫+∞
−∞ dτeiEτPg(τ)at

zero temperature, that reads [174, 175]

P̃g(E) = 2π
Γ(g)ωc

∣∣∣∣Eωc

∣∣∣∣g−1
Θ(E). (4.32)

Using Eq. (4.32) and averaging over one period of the voltage drive we get

JBS(t) = |λ|2ω2
∑
l

|pl|2(q + l)
{
P̃2ν [(q + l)ω]− P̃2ν [−(q + l)ω]

}
(4.33)

where the notation . . . stands for
∫ T

0
dt
T 〈. . .〉.

We now turn to the calculation of the noises defined in Eqs. (4.17) and (4.18).In
particular, we focus exclusively on the auto-correlators of reservoir 3, namely SX,33
and SQ,33. For the sake of simplicity, we will use the shorthand notation SX ≡ SX,33
and SQ ≡ SQ,33.
Firstly, let us comment that in the perturbative expansions in Eqs. (4.19) and (4.20),
the only surviving terms are S(11)

X and S(11)
Q , since one can show that (see Appendix

G)

S(02)
X = S(20)

X = 0, (4.34)

S(02)
Q = S(20)

Q = 0. (4.35)

Mixed and heat noises are obtained in terms of Green’s functions as

SX = i |Λ|2
∫ T

0

dt

T

∫ +∞

−∞
dt′
[
G<R(t′, t)(∂t − ikF v)G<L (t′, t)−G<R(t′, t)(∂t + ikF v)G<L (t′, t)

]
,

(4.36)

SQ = |Λ|2
∫ T

0

dt

T

∫ +∞

−∞
dt′
[
G<R(t′, t)(∂t′ + ikF v)(∂t − ikF v)G<L (t′, t)+

+G<R(t′, t)(∂t′ − ikF v)(∂t + ikF v)G<L (t′, t)
]
. (4.37)

Then, exploiting Eqs. (4.28) and (4.29), mixed and heat noises become

SX = 2νe|λ|2
∫ T

0

dt

T

∫ +∞

−∞
dt′ sin

[
νe

∫ t

t′
dt′′V (t′′)

]
Pν(t′ − t)∂t′Pν(t′ − t), (4.38)

SQ = 2|λ|2
∫ T

0

dt

T

∫ +∞

−∞
dt′ cos

[
νe

∫ t

t′
dt′′V (t′′)

]
Pν(t′ − t)∂t∂t′Pν(t′ − t). (4.39)

Using the series e−iϕ(t) = ∑
l ple

−ilωt and the Fourier transform for Pν(t′ − t) one is
left with

SX = νeω

2 |λ|
2∑

l

|pl|2(q + l)
{
P̃2ν [(q + l)ω] + P̃2ν [−(q + l)ω]

}
, (4.40)

SQ = |λ|
2

2π
∑
l

|pl|2
∫ +∞

−∞
dEE2P̂ν(E)

{
P̃ν [(q + l)ω − E] + P̃ν [−(q + l)ω − E]

}
.

(4.41)

To perform the integral in the equation for SQ, we make use of the identity∫ +∞

−∞

dY

2π Y
2P̃g1(Y )P̃g2(X − Y ) =

= P̃g1+g2(X)
1 + g1 + g2

[
g1g2π

2θ2 + g1(1 + g1)
g1 + g2

ω2
]
. (4.42)
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The latter leads to

SQ = |λ|2
∑
l

|pl|2
[

2π2ν2

1 + 2ν θ
2 + 1 + ν

1 + 2ν (q + l)2ω2
]
×

×
{
P̃2ν [(q + l)ω] + P̃2ν [−(q + l)ω]

}
. (4.43)

for the zero-frequency component of the noises. In particular, using the expres-
sion for Pg(E) at zero temperature one has

P̃g(E) = 2π
Γ(g)ωc

∣∣∣∣Eωc

∣∣∣∣g−1
Θ(E), (4.44)

with ωc = v/a the high energy cutoff and Θ(E) the Heaviside step function. The
noises then reduce to

SX = νe|λ|2 π

Γ(2ν)

(
ω

ωc

)2ν∑
l

|pl|2|q + l|2νsign(q + l), (4.45)

SQ = ω|λ|2 π(1 + ν)
Γ(2ν)(1 + 2ν)

(
ω

ωc

)2ν∑
l

|pl|2|q + l|2ν+1. (4.46)

Heat current at zero-temperature reads

JBS(t) = |λ|2 π

Γ(2ν)

(
ω

ωc

)2ν∑
l

|pl|2|q + l|2ν . (4.47)

Equation (4.44) and subsequent Eqs. (4.40), (4.43) and (4.47) show the familiar
power-law behavior of the Luttinger liquid [34, 176].

Constant bias limit

In the following, we present heat current, mixed and heat noises in the presence
of a single constant bias, i.e. V (t) = Vdc, at zero temperature. Such a situation
entails that photo-assisted Fourier coefficients reduce to pl = δl,0. In the dc case, a
proportionality relation between charge backscattered current and noise in the weak
backscattering limit, known as Schottky relation, has been introduced in Eq. (3.60).
Interestingly, similar expressions can be derived relating mixed and heat noise to
the heat current for a dc bias. From Eq. (4.33) and assuming Vdc > 0, one gets the
following formula for the heat current

JBS = |λ|2 π

Γ(2ν)

(
e∗Vdc
ωc

)2ν
. (4.48)

Similarly, mixed and heat noise are obtained from Eqs. (4.40) and (4.43) with the
condition pl = δl,0. They read

SX = νe |λ|2 π

Γ(2ν)

(
e∗Vdc
ωc

)2ν
, (4.49)

SQ = νeVdc |λ|2
π (1 + ν)

Γ(2ν) (1 + 2ν)

(
e∗Vdc
ωc

)2ν
. (4.50)
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Comparing the last three results we immediately notice a proportionality between
SX , SQ and JBS , namely

SX = νeJBS , (4.51)

SQ = νe
1 + ν

1 + 2ν VDCJBS . (4.52)

Equations (4.51) and (4.52) are generalizations of Schottky’s formula to the heat
and mixed noise. They show that the uncorrelated backscattering of Laughlin quasi-
particles at the QPC leaves Poissonian signature in heat transport properties also.
This holds both in a chiral Fermi liquid (i.e. at ν = 1, when tunneling involves integer
electrons only) and in the FQH regime, with proportionality constants governed by
the filling factor ν. Similar relations for transport across a quantum dot were recently
reported [168, 177].

4.3.2 Excess signals and noiseless drive

In general, the Schottky relation breaks down in the ac regime, since the oscillating
drive excites particle-hole pairs contributing to transport. Nevertheless, when a
single electron is extracted from the filled Fermi sea we expect the photon-assisted
zero-frequency shot noise to match the lower bound set by Schottky’s Poissonian dc
relation, as already seen for charge excess-noise in Sec. 3.1.

We now address the central quantities of interest for the present Section. Equa-
tion (4.51), representing a proportionality between the mixed charge-heat correlator
SX and the heat current for a dc voltage drive governed by the charge νe, leads us
to introduce the excess mixed noise given by

∆SX = SX − νeJBS(t). (4.53)

As for ∆SC , this quantity measures the difference between the noise in presence
of a generic periodic voltage drive and the dc reference value. Using the results of
Sec. 4.3.1 the excess mixed noise reads

∆SX = −νe|λ|2 2π
Γ(2ν)

(
ω

ωc

)2ν ∑
l<−q
|pl|2|q + l|2ν . (4.54)

With a very similar procedure it is possible to extract the excess component of the
zero-frequency heat noise due to the time dependent drive. Equation (4.52) states
that SQ is proportional to the heat current multiplied by the voltage bias in the dc
limit. In view of this consideration we define the excess heat noise

∆SQ = SQ − 2e∗ 1 + ν

1 + 2ν V (t)JBS(t). (4.55)

The time-averaged value of V (t)JBS(t) can be calculated from Eq. (4.31) using the
relation νeV (t)e−iχ(t) = (ωq + i∂t)e−iχ(t). Then from the above definition we get

∆SQ = ω|λ|2 4π(1 + ν)
Γ(2ν)(1 + 2ν)

(
ω

ωc

)2ν ∑
l<−q
|pl|2|q + l|2ν+1. (4.56)

Let us now look for the physics described by Eqs. (4.54) and (4.56). Once again, it
is enlightening to start from the analogy with the charge shot noise. In the ν = 1
quantum Hall state, described by a one-dimensional chiral Fermi liquid, the excess
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charge noise ∆SC is proportional to the number of holes Nh induced in the Fermi
sea by the voltage drive. One has

Nh(t) ∝ SC − 2e〈JC(t)〉, (4.57)

where nF(E) = Θ(−E) is the Fermi distribution at zero temperature. Similarly, the
number of quasi-holes in the FQH liquid reads

N ∝ SC − 2e∗〈JC(t)〉. (4.58)

It is worth noticing that Eqs. (4.57) and (4.58) hold in an unperturbed system
without tunneling between opposite edges. The shot-noise induced by the presence
of the QPC can thus be viewed as a probe for the number of holes (or quasi-holes
in the case of a fractional filling) generated by the ac pulses.

We now consider the energy associated with hole-like excitations at ν = 1, that
reads

Eqh = −
∫ +∞

∞

dε

2π
ωc
2πf(ε)ε

〈
ãR(ε, t)ã†R(ε, t)

〉
. (4.59)

This quantity can be written as

Eqh = i

2
v2

(2πa)2

∫ +∞

−∞
dτ ′

∫ +∞

−∞
dτ e

ie
∫ τ ′
τ ′−τ dt

′V (t′)
∂τP2(τ)

= 1
2

v2

(2πa)2

∫ +∞

−∞
dτ ′

∫ +∞

−∞
dτ

{
sin
[
e

∫ τ ′

τ ′−τ
dt′V (t′)

]

+i cos
[
e

∫ τ ′

τ ′−τ
dt′V (t′)

]}
∂τP2(τ). (4.60)

Then, comparing this result with Eqs. (4.38) and (4.31) we find that ∆SX measures
the energy associated with the unwanted quasi-holes generated through the periodic
voltage drive, namely

Eqh ∝ −SX + 2eJBS(t) = −∆SX . (4.61)

This accounts for the negative value of ∆SX arising from Eq. (4.54).In analogy with
what we have done in Sec. 3.3, one can generalize this relation to the fractional
regime

Eqh ∝ −SX + 2νeJBS(t) = −∆SX . (4.62)
The vanishing of ∆SX should highlight an energetically clean pulse, for which the
mixed noise reaches the minimal value SX = 2νe〈JQ(t)〉 expected from Schottky’s
formula for the mixed noise Eq. (4.51). A similar relation involving the sum of the
squared energy for each value of k holds for ∆SQ at ν = 1∫ +∞

−∞

dε

2π
ωc
2πf(ε)ε2

〈
ãR(ε, t)ã†R(ε, t)

〉
∝ ∆SQ. (4.63)

In Fig. 4.1 we show the behavior of the excess mixed noise as a function of the
charge q injected during one period T . Notice that we normalize ∆SX by a negative
quantity, in order to deal with a positive function. Two types of bias are considered:
a sinusoidal drive and a train of Lorentzian pulses given respectively by

Vsin(t) = Vdc[1− cos(ωt)], (4.64)

Vlor(t) = Vdc
π

∑
k

η

η2 + (t/T − k)2 , (4.65)
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Figure 4.1: Excess mixed noise −∆SX as a function of the charge per period q at zero
temperature. The high energy cutoff is set to ωc = 10ω. Behavior for Lorentzian
pulses (full black line) and sinusoidal voltage drive (dashed red line) is reported.

with η = W/T the ratio between the half width W at half maximum of the
Lorentzian peak and the period T . The former is representative of all kinds of
non-optimal voltage drive, while the latter is known to give rise to minimal charge
noise both at integer [23] and fractional [115] fillings. We will set η = 0.1, a value
lying in the range investigated by experiments [14]. At ν = 1, both curves display
local minima whenever q assumes integer values. However, while the sinusoidal drive
always generates an additional noise with respect to the reference Schottky value
νeJBS , the Lorentzian signal drops to zero for q ∈ N, indicating that the mixed noise
SX due to levitons exactly matches the Poissonian value set by Eq. (4.51). Since
the excess mixed noise is linked to the unwanted energy introduced into the system
as a result of hole injection [see Eq. (4.61)], Fig. 4.1 shows that there is no hole-like
excitation carrying energy in our system. The bottom panel of Fig. 4.1 shows the
same situation in a ν = 1/3 FQH bar. The hierarchy of the ν = 1 configuration
is confirmed, with Lorentzian pulses generating minimal mixed noise for q ∈ N and
sinusoidal voltage displaying non-optimal characteristics with non-zero ∆SX . As for
the charge excess noise no signature for fractional values of q arises, signaling once
again the robustness of levitons in interacting fractional systems. This is markedly
different from driven-quantum-dot systems, where a strategy to inject a periodic
train of fractionally charged quasi-particles in the FQH regime has been recently
discussed [92].

The same analysis can be carried out for the excess heat noise ∆SQ. Equation
(4.56) suggests that the excess heat noise vanishes for the very same conditions that
determine the vanishing of ∆SC and ∆SX , given that we get a similar structure with
only a different power law behavior. This expectation is confirmed in Fig. 4.2, where
we report the behavior of ∆SQ for both ν = 1 and ν = 1/3. Lorentzian pulses car-
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Figure 4.2: Excess heat noise ∆SQ as a function of the charge per period q. Full
black and dashed red lines represent Lorentzian and sinusoidal drives respectively.
The temperature is θ = 0 and the cutoff is ωc = 10ω.

rying integer charge per period represent minimal-heat-noise states, independently
of the filling factor.

4.3.3 Multiple Lorentzian pulses

In the previous section we demonstrated that quantized Lorentzian pulses with inte-
ger charge q represent minimal excitation states for the heat transport in the FQH
regime, but this statement may potentially fail when different Lorentzian pulses have
a substantial overlap. Indeed, nonlinear quantities such as J2/3, SX and SQ may be-
have very differently from charge current and noise, which are linear functions of the
bias V (t) in a Fermi liquid. For instance, at ν = 1 one already sees a fundamental
difference between average charge and heat currents in their response to the external
drive, as J2/3 is independent of Vac, while J2/3 goes like V (t)2 = V 2

dc +V 2
ac(t). Then,

one might wonder whether the independence of overlapping levitons survives when
we look at such nonlinearity. In this regard Battista et al. pointed out that in Fermi
liquid systems N levitons emitted in the same pulse are not truly independent exci-
tations, since heat current and noise associated with such a drive are proportional
to N2 times the single-particle heat current and N3 times the single-particle heat
noise respectively. Nevertheless, well-separated levitons always give rise to really in-
dependent excitations with J2/3 and SQ both equal to N times their corresponding
single-particle signal, due to the vanishing of their overlap [171]. Moreover, an addi-
tional source of nonlinearity is provided by electron-electron interactions giving rise
to the FQH phase, whose power-law behavior is governed by fractional exponents,
thus strongly deviating from the linear regime.

In the following we study how nonlinearities due to heat transport properties and
interactions affect the excess signals we introduced in Sec. 4.3.2. For this purpose,
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Figure 4.3: Time-periodic voltage drive given by Eq. (4.66) in the case of N = 2
Lorentzian-shaped pulses per period at total charge q = 1 (i.e. 1/2 for each pulse).
The top panel represents two completely overlapping pulses (α = 0), for which we
simply have V2(t) = 2Ṽ (t). The central and bottom panels correspond to non-
trivial cases α = 0.45 and α = 0.9 with finite overlap between pulses. In all cases
the behavior of individual Lorentzian pulses Ṽ (t) and Ṽ

(
t− α

N T
)
are depicted with

dashed, thin lines.

we consider a periodic signal made of a cluster of N pulses described by

VN (t) =
N−1∑
j=0

Ṽ

(
t− j α

N
T
)
, (4.66)

where Ṽ (t) is periodic of period T . We still consider the parameter q as the total
charge injected during one complete period T of the drive VN (t), which means
that each pulse in the cluster carries a fraction q/N of the total charge. Inside a
single cluster, the N signals in Eq. (4.66) are equally spaced with a fixed time delay
∆t = αT /N between successive pulses. Note that α = 0 corresponds to several
superimposed pulses, giving VN (t)|α=0 = NṼ (t). Also, for α = 1 we just get a new
periodic signal with period T /N . We thus restrict the parameter α to the interval
0 ≤ α < 1. An example of such a voltage drive is provided in Fig. 4.3.

Fourier coefficients for a periodic multi-pulse cluster can be factorized in a con-
venient way (see Appendix C). Here we take as an example the simple case N = 2,
whose coefficients are given by

p
(2)
l (q) =

+∞∑
m=−∞

eiπαmpl−m

(
q

2

)
pm

(
q

2

)
. (4.67)

Each pulse carries one half of the total charge q, a fact that is clearly reflected in
the structure of Eq. (4.67).

Let us first focus on an integer quantum Hall effect with ν = 1. It is easy to see
that, at least in the DC regime, SX and SQ scale as V 2 and V 3 respectively. It is
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Figure 4.4: Excess signals −∆SX (top panel) and ∆SQ (bottom panel) as a function
of q for a cluster of two identical Lorentzian pulses separated by a time delay αT /2.
All curves refer to the case of ν = 1 and zero temperature. The cutoff is set to
ωc = 10ω.

then natural to wonder if a cluster of Lorentzian pulses still gives rise to minimal
values of SX and SQ when the interplay of nonlinearities, AC effects and overlapping
comes into play. We thus look for the excess mixed and heat noises for the case
of N = 2 Lorentzian pulses per period, in order to shed light on this problem.
The top and bottom panels of Fig. 4.4 show the excess mixed and heat noises
respectively in presence of two pulses per period at ν = 1. For α = 0 we get
a perfect superposition between pulses, and we are left with a single Lorentzian
carrying the total charge q. This case displays zeros whenever the total charge
reaches an integer value, as was already discussed in the previous Section. Higher
values of α represent non-trivial behavior corresponding to different, time-resolved
Lorentzian pulses. A Lorentzian voltage source injecting q = 1/2 electrons per
period is not an optimal drive (and so is, a fortiori, an arbitrary superposition of
such pulses). As a result, signals for α = 0.45 and α = 0.9 turn out to be greater than
zero at q = 1. However ∆SX and ∆SQ still vanish at q = 2, where they correspond to
a pair of integer levitons, showing the typical behavior of minimal excitation states
with no excess noise. This demonstrates that integer levitons, although overlapping,
always generate the Poissonian value for heat and mixed noises expected from their
respective Schottky formulas. It is worth noticing that the blue curves in Fig. 4.4
(nearly approaching the limit α → 1) almost totally forget the local minimum in
q = 1 and get close to a simple rescaling of the single-pulse excess noises ∆SX

( q
2
)

and ∆SQ
( q

2
)
. This is because α→ 1 is a trivial configuration corresponding to one

pulse per period with T ′ = T
2 , as was mentioned before.

It is even more remarkable, however, to still observe a similar qualitative behavior
in the FQH regime, where one may expect this phenomenon to break down as a
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Figure 4.5: Excess signals −∆SX and ∆SQ as a function of q for two identical
Lorentzian pulses with time delay αT /2 at fractional filling ν = 1/3 and zero tem-
perature. The cutoff is set to ωc = 10ω.

result of the strong nonlinearities due to the chiral Luttinger liquid physics. Figure
4.5 shows that both signals drop to zero for q = 2, representing a robust evidence
for a minimal excitation state even in a strongly-interacting fractional liquid. We
stress that such a strong stability of heat transport properties is an interesting
and unexpected result both at integer and fractional filling factor. Indeed, the
bare signals 〈JQ〉, SX and SQ are affected by the parameters governing the overlap
between pulses, namely

JBS
(N) 6= NJBS

(1)
, (4.68a)

SX (N) 6= NSX (1), (4.68b)
SQ(N) 6= NSQ(1), (4.68c)

even at q = N , in accordance with Ref. [171]. Nonetheless, such differences are
washed out when the DC Schottky-like signals are subtracted from SX and SQ in
Eqs. (4.53) and (4.55), giving

∆SX (N) = ∆SX (1) = 0, (4.69)
∆SQ(N) = ∆SQ(1) = 0. (4.70)

While multiple levitons are not independent [in the sense of Eqs. (4.68)], they do
represent minimal excitation states even in presence of a finite overlap between
Lorentzian pulses. This is a remarkable property which seems to distinguish the
Lorentzian drive from every other type of voltage bias.

Let us note that the robustness with respect to the overlap of Lorentzian pulses
is an interesting result for the charge transport at fractional filling as well. Indeed
JBS and SC do not show a trivial rescaling at ν 6= 1. Nevertheless, we have checked
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Figure 4.6: Excess mixed noise −∆SX as a function of q for a cluster of two
Lorentzian pulses. Here q is partitioned asymmetrically, with the two pulses carry-
ing respectively 1/3 and 2/3 of the total charge per period. One should compare this
figure with Figs. 4.4 and 4.5, where −∆SX for identical pulses is plotted. The time
delay between pulses is αT /2, with different values of α according to the legend.
The cutoff is set to ωc = 10ω and the temperature is θ = 0.

that the excess charge noise ∆SC is insensitive to different overlap between levitons
as it vanishes when exactly one electron is transported under each pulse, i.e. when
q = N . Note that a very similar behavior was described for the excess charge noise
in Ref. [86], where multiple pulses were generated as a result of fractionalization due
to inter-channel interactions in the integer quantum Hall regime at ν = 2.

To provide a further proof for our results, we analyze a two-pulse configuration
with an asymmetrical charge distribution, namely a case in which the first pulse
carries 1/3 of the total charge q while the second pulse takes care of the remainder.
It is straightforward to verify that the voltage phase associated with such a drive is
represented by a Fourier series with coefficients

p
(2)
l (q) =

+∞∑
m=−∞

eiπαmpl−m

(
q

3

)
pm

(2q
3

)
, (4.71)

where the asymmetry in the charge distribution is manifest, as opposed to the sym-
metric case in Eq. (4.67). In view of previous considerations, we expect this signal
to be an optimal voltage drive when both pulses carry an integer amount of charge.
This condition is obviously fulfilled when q = 3, so that the total charge can be
divided into one and two electrons associated with the first and second pulse re-
spectively. Figure 4.6 confirms our prediction, showing the first universal vanishing
point shared by all three curves at q = 3 instead of q = 2.

In passing, it is worth remarking that the choice of multiple Lorentzian pulses
with identical shape was only carried out for the sake of simplicity. A generalization
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to more complicated clusters with different width W gives rise to a very similar
qualitative behavior (not shown).

4.4 Heat interferometry with single-electron in fractional
edge states

The main purpose of EQO is to reproduce conventional optics interferometric ex-
periments using electronic wave-packets propagating in condensed matter systems
instead of photons traveling along waveguides. While this issue has been widely
investigated in relation to charge transport, in condensed matter systems one can
figure out interferometric experiments even in the heat transport domain. Here,
we address the problem of the heat noise generated by levitons injected in a HOM
interferometer in the FQH effect. We consider a four terminal quantum Hall bar
in the Laughlin sequence, where a single channel arises on each edge, as presented
in Fig. 4.7. Since, we are interested in the effect of the overlap between right-
moving and left-moving states at the QPC on heat noise, our focus is put on the
cross-correlation noise between reservoirs 2 and 3, namely SQ,23. In this section, we
derive its expressions exploiting the model introduced in Chapter 3, focusing on the
regions downstream of the voltage contacts, namely −d < x < d.
The perturbative expansion of heat current operator in Eq. (4.5) allows to express
heat correlation noise at lowest order as

SQ,23 = S(02)
Q,23 + S(20)

Q,23 + S(11)
Q,23 +O

(
|Λ|2

)
, (4.72)

where

S(ij)
Q,23 =

∫ T
0

dt

T

∫
dt′
{
〈J (i)

2 (t′)J (j)
3 (t)〉 − 〈J (i)

2 (t′)〉〈J (j)
3 (t)〉

}
. (4.73)

Now, we can perform standard calculations, whose details are given in Appendix G,
in order to evaluate all the terms appearing in Eq. (4.72). In this way, the total heat
noise in the double-drive configuration can be obtained. Interestingly, double-drive
heat noise is not equivalent to the one generated in a single-drive configuration with
an effective drive V−(t) = VR(t)− VL(t), contrarily to charge noise (see Eq. (3.45)).
Indeed, one finds that

SQ,23(VR, VL) = SQ,23(V−, 0) + ∆SQ,23(VR, VL), (4.74)

where

SQ,23(V−, 0) = |λ|2
∫ T

0

dt

T

∫
dt′
{

cos
(
νe

∫ t′

t
dτV−(τ)

)
<
[
Pν(t′ − t)∂2

t Pν(t′ − t)
]

+

+ νev

π

∫
dt′′V−(t′)K

(
t′, t, t′′

)
sin
(
νe

∫ t′

t
dτV−(τ)

)
=
[
∂t′′P2ν(t′′ − t)

] }
,

(4.75)

∆SQ,23(VR, VL) = ν2e2|λ|2
∫ T

0

dt

T

∫
dt′γRL cos

(
νe

∫ t′

t
dτV−(τ)

)
×

×
(
αRL(t, t′)<

[
P2ν(t′ − t)

]
+ βRL(t, t′)=

[
P2ν(t′ − t)

] )
, (4.76)
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Figure 4.7: Four-terminal setup for Hong-Ou-Mandel interferometry in the FQH
regime. Contact 1 and 4 are used as input terminals, while contact 2 and 3 are the
output terminals where current and noise are measured.

where we defined the following functions

K(t1, t2, t3) = πθ

v
(coth (πθ(t1 − t3))− coth (πθ(t1 − t2))) =

=πθ

v

sinh (πθ(t2 − t3))
sinh (πθ(t1 − t3)) sinh (πθ(t1 − t2)) , (4.77)

αRL(t, t′) =
(
VR(t)VL(t′)− VL(t)VR(t′)

)
, (4.78)

βRL(t, t′) = v

π

∫
dt′′K(t′′, t, t′)VR(t′′)

[
VL(t′)− VL(t)

]
. (4.79)

The result of Eq. (4.74) arises because heat noise is sensitive to the energy distribu-
tion of the injected particles, thus leading to different outcomes in single-drive and
double-drive configurations. In this light, we expect this to hold true for general
energy-dependent phenomena occurring at the QPC. For instance, any similarity
between charge noises generated in the two setups discussed previously would dis-
appear for more complicated tunneling geometry, such as multiple QPC or extended
contacts, where transmission functions become energy-dependent [57, 58, 119, 178].
Eq. (4.74) further indicates that the double-drive and the single-drive configura-
tions are completely distinct setups and that the relation in Eq. (3.45) is solely a
contingent effect of the single local QPC geometry.
It is useful to express heat correlation noise in energy space, by introducing the
following Fourier series

νeVR/L(t) =
∑
k

ck,R/Le
ikωt, (4.80)

eiνe
∫ t

0 dτV−(τ) =
∑
l

p̃le
−i(l+qR−qL)ωt, (4.81)

where we recall that

qR/L = − e

2π

∫ T
0
dt VR/L(t) = −

νeVR/L,dc
ω

(4.82)

is the number of particles excited by VR/L along the system in a period and the
Fourier transform of Pg(t) in Eq. (3.30)

P̃g(E) =
∫ +∞

−∞
dtPg(t)eiEt. (4.83)
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By exploiting these results, the two contributions to SQ,23 become

SQ,23(V−, 0) = − |λ|2
∑
l

{2ν2π2θ2 + (1 + ν) ((l + qR − qL)ω)2

1 + 2ν |p̃l|2 P̃2ν((l + qR − qL)ω)+

− 1
4
∑
k 6=0

(ck,R − ck,L)
(
p̃l−kp̃

∗
l − p̃lp̃∗l+k

)
(l + qR − qL)ω coth kω2θ ×

×
(
P̃2ν((l + qR − qL)ω)− P̃2ν(−(l + qR − qL)ω)

)}
, (4.84)

∆SQ,23(VR, VL) = |λ|
2

2
∑
k,p,l

(ck,Rcp,L − ck,Lcp,R) p̃l+k+pp̃
∗
l

W(l+qR−qL),k,p +W(l+qR−qL),p,k
2 ,

(4.85)

where the coefficients Wl,k,p encodes all the effects due to temperature and interac-
tion on S(+−)

Q and reads

Wl,k,p = ωc
4π

∫ +∞

−∞

dE

2π
{
P̃1(E)P̃1(kω − E)

[
P̃2ν−1(E − lω)+

+ P̃2ν−1(−E − (l + k + p)ω) + P̃2ν−1(−E + lω)
]

+ P̃2ν−1(E + (l + k + p)ω)
}

+

− 1
2
(
P̃2ν((l + k)ω) + P̃2ν(−(l + k)

)
. (4.86)

Let us observe that the contribution ∆SQ exists only in the double-drive configura-
tions. Indeed, in the configuration with a single drive, where VL = 0, one obtains
that ck,L = 0 for each k, and the contribution in Eq. (4.85) vanishes.

4.4.1 Hong-Ou-Mandel noise

Among all the possible choice for the configuration involving the two voltages VR
and VL, one of the most interesting, even from the experimental point of view, is
the Hong-Ou-Mandel (HOM) setup, where two identical voltage drives are applied
to reservoirs 1 and 4 and delayed by a constant time tD. This experimental config-
uration corresponds to set VR(t) = V (t) and VL(t) = V (t+ tD), with V (t) a generic
periodic drive. In this situation the charge excited by each drive along the edge
channels are equal, such that qR = qL = q.
For notational convenience, we define the single-drive and the HOM heat noises as

SsdQ = SQ,23(V−(t), 0), (4.87)
SHOMQ = SQ,23(V (t), V (t+ tD). (4.88)

According to Eq. (4.74) and using the above definitions, the HOM heat noise can
be expressed as

SHOMQ = SsdQ + ∆SQ,23. (4.89)
Before entering into the details of our discussion, we would like to prove analytically
that the HOM heat noise SHOMQ reduces to its equilibrium value for null time delay
tD, independently of the choice of any parameter. The photo-assisted amplitude
in Eq. (4.81) reduces to p̃l = δl,0 and the Fourier coefficients ck,− vanish for all k.
Let us start by looking at the HBT contribution. By substituting this analytical
simplification in Eq. (4.84), we obtain

SsdQ (tD = 0) = − |λ|2 ν
2π2θ2

1 + 2ν ≡ S
vac
Q , (4.90)
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which is independent of the injected particles and correspond simply to the equilib-
rium noise SvacQ due to thermal fluctuations. This can be clearly understood given
the fact that V−(t) = 0 for tD = 0 and the HBT contribution corresponds to the
noise generated in a driveless configuration.
Concerning the remaining part in Eq. (4.89), one has for tD = 0

∆SQ,23 = |λ|
2

4
∑
k

ck,Rc−k,R (W0,k,−k +W0,−k,k) , (4.91)

where

W0,k,−k = P̃2ν(kω)− P̃2ν(−kω)
2 . (4.92)

From Eq. (4.92), we can clearly deduce that W0,k,−k = −W0,−k,k, which enforces
the vanishing of ∆SQ in Eq. (4.91). This is enough to prove that HOM heat noise
always reaches its equilibrium value at tD = 0, such that

SHOMQ (tD = 0) = SsdQ (tD = 0) = SvacQ . (4.93)

Let us note that this is not a trivial result since SHOMQ does not depend effectively
on the single drive V− as SsdQ , but on both VR and VL and even at tD = 0 the system
is still driven by these two voltages.

4.4.2 Results and discussions

In this section, we discuss the results concerning the heat correlation noises in the
HOM interferometer. In particular, we focus our discussion on the specific case of
levitons. The Fourier coefficients for this specific drive are given in Appendix C.
In the HOM setup, a state composed by qL = qR = q levitons [125] is injected by
each driven contact and collide at the QPC, separated by a controllable time delay.
In analogy with the previous literature on charge noise, we introduce the following
ratio [30, 100, 108, 115]

RHOMQ =
SHOMQ − SvacQ

2SRQ − 2SvacQ

, (4.94)

where we subtracted the equilibrium noise SvacQ and we normalize with respect to
SRQ ≡ SQ(VR, 0), which is the noise expected for the random partitioning of a single
source of levitons, i.e. when VR(t) = Vlor(t) and VL(t) = 0. The latter reads

SRQ = − |λ|2
∑
l

{2ν2π2θ2 + (1 + ν) (lω)2

1 + 2ν |pl|2 P̃2ν((l + q)ω)+

−
∑
k 6=0

ck
(
pl−kp

∗
l − plp∗l+k

)
(l + q)ω P̃2(kω)

2kω
(
P̃2ν((l + q)ω)− P̃2ν(−(l + q)ω)

)}
,

(4.95)

where ck = νe
∫ T

0
dt
T Vlor(t)eikωt are the Fourier coefficients for a single Lorentzian

voltage and pl =
∫ T

0
dt
T e
−iνe

∫ t
0 dτVlor(τ)ei(l+q)ωt (see Appendix C).

In addition, we define an analogous ratio for the single-drive heat noise as

RsdQ =
SsdQ − SvacQ

2SRQ − 2SvacQ

, (4.96)
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in order to asses its relative contribution to the overall HOM heat noise.
Let us notice that, according to Eqs (4.90) and (4.93) both ratios, RHOMQ and
RsdQ vanishes for tD = 0. In the specific case of levitons, which are single-electron
excitations, at ν = 1 the physical explanation for the total dip at tD = 0 involves
the anti-bunching effect of identical fermions: electron-like excitations colliding at
the QPC at the same time are forced to escape on opposite channels, thus leading
to a total suppression of fluctuations at tD = 0 and generating the so called Pauli
dip [14, 15, 106]. For fractional filling factors, it is remarkable that this total dip is
still present despite the presence of anyonic quasi-particle in the system, which do
not obey Fermi-Pauli statistics [56, 115]. Anyway, this single QPC geometry does
not allow for the braiding of one quasi-particle around the other, thus excluding any
possible effect due to fractional statistics.
In the following, we exploit the full generality of our derivation by performing the

Figure 4.8: HOM heat ratio RHOMQ (upper panels) and single-drive heat ratio RsdQ
(lower panels) as a function of the time delay tD for q = 1 and temperatures θ =
0.25ω (solid lines) and θ = 0.5ω (dashed lines). The integer case (left panel) and
the fractional case for ν = 1

3 (right panel) are compared. The other parameters are
W = 0.1T and ω = 0.01ωc.

analysis for different values of q.
We start by considering the regime where thermal and quantum fluctuations are
comparable.
As a beginning, we focus on the relevant case of q = 1, where states formed by a
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single Leviton are injected from both sources [173]. The collision of identical single-
Leviton states is very interesting because previous work on fluctuations of charge
current proved that in this case the ratio of HOM charge noise is independent of
filling factors and temperatures, acquiring an universal analytical expression [31,
115]. In order to perform a similar comparison for the heat noise, we present in Fig.
4.8 the HOM heat ratio (upper panels) considering two temperatures θ = 0.25ω
(solid line) and θ = 0.5ω (dashed lines) for the both integer and fractional case.
Contrarily to the charge case, these curves are all clearly distinct. This means that
this universality does not extend also to heat fluctuations. This fact can be explained
by the dependence of heat HOM noise on the energy distribution of particles injected
by the drives, which in turn is significantly affected by the temperature and by
the strength of correlations encoded in the filling factor ν. In particular, as the
temperature is further increased, the thermal fluctuations tend to hide the effect of
the voltages, resulting in a reduction of RHOMQ for both filling factors.
Interestingly, we also note that the single-drive ratio can switch sign as tD is tuned,
independently of the filling factor. Since SRQ is independent of tD, the change of
sign of the HBT ratio is entirely due to SsdQ itself. This is a remarkable difference
with respect to the charge noise generated in the same configurations, since charge
conservation fixes the sign of current-current correlations. On the contrary, it should
be pointed out that the sign of heat noise is not constrained by any conservation
law [160].
In Fig. 4.9, we start looking at the collision of states composed by multiple levitons
and compare the HOM charge and heat ratios (dashed and solid lines, respectively)
for q = 2 and q = 4. In the fermionic case, presented in the two upper panels, the
qualitative behavior of the two ratios is very similar, showing no particular features.
It is interesting to point out that in an interval of time delays tD, heat noise is less
suppressed that charge noise. This means that, if levitons overlap only partially,
then the heat carried by them fluctuates more than their charge. These additional
fluctuations could be attributed to the fact that, in the case of heat, the quantum-
statistical exchange is not constrained by the conservation law per particle as in
the case of charge. Therefore, we can conclude that the different nature of heat and
charge single-electron transport can be extracted in heat interferometric experiments
by observing the fluctuations of heat current. Remarkably, the curves for the HOM
heat ratio in the fractional case display instead some unexpected side peaks and
dips in addition to the central dip, which appear for the same value of tD as in
charge noise. In particular, the number of these maxima and minima increases for
states composed by more levitons. On the contrary, in the analogous curves for the
effective single-drive ratio at fractional filling factors, these features are completely
absent. In order to understand this remarkable result, we recall the crystallization
of multiple levitons states discussed in Chapter 3. Based on this argument, we
can infer that the HOM heat noise is affected by the crystallization induced in the
propagating levitons, thus giving rise to the features observed in the lower panel of
Fig. 4.9.
We conclude by noticing that strong correlation of the fractional regime can increase
the value of the HOM heat ratio even above 1. Once again, since this is not the
case for the effective single-drive contribution, this is due to the presence of ∆SQ,23,
which is peculiar to collision between levitons incoming from different reservoirs.
Now, we consider the regime of very low temperature θ � ω, where the quantum
effects should be largely enhanced with respect to the thermal fluctuations.
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Figure 4.9: ( HOM heat ratio RHOMQ (solid lines) and charge HOM ratio RHOMC

(dashed lines) as a function of the time delay tD for ν = 1 (upper panel) and ν = 1
3

(lower panel) for q = 2 or q = 4. The other parameters are θ = 0.25ω,W = 0.1T
and ω = 0.01ωc.

The plots for RHOMQ in the integer and in the fractional case are compared in Fig.
4.10 for different values of q. In the integer case, a single smooth dip is present for all
the values of q, confirming the phenomenology described for the finite temperature
case. For the strongly correlated case, at q = 1 one observes a smooth profile, except
for a small decreasing close to tD = 0.5. Intriguingly, the oscillations observed in
Fig. 3.7 for q > 1 are widely enhanced in this regime, such that the HOM ratio
displays zeros, whose number increases with q, in addition to the central one and
can reach also negative values.
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Figure 4.10: HOM heat ratio RHOMQ as a function of the time delay tD for q = 1,
q = 2, q = 3, q = 4. The integer case (dashed lines) and the fractional case for
ν = 1

3 (solid lines) are compared. The other parameters are W = 0.1T , θ = 10−4ω
and ω = 0.01ωc.
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Summary

In this thesis, we have investigated charge and heat transport in integer and frac-
tional quantum Hall systems in the presence of time-dependent external voltages.
Quantum Hall systems are one of the most famous and important example of topo-
logical states, which are exotic phases of matter, whose properties are described by
quantities that do not depend on the details of a specific system. The hallmark of
quantum Hall systems is the emergence of one-dimensional conducting channels at
the boundary. These edge states are topologically protected against backscatter-
ing, thus ensuring a coherence length of several µm. In Chapter 1, we reviewed
the phenomenology of integer and fractional quantum Hall states, with a particular
emphasis of the theoretical description of their edge states. To this end, we have
derived a chiral Luttinger liquid model, which is the most suitable tool to inspect
both non-interacting and strongly correlated states of quantum Hall systems.

The discovery of quantum Hall states of matter and their protected edge states
has triggered a huge number of theoretical proposals and cutting-edge experiments.
Several analogies can be drawn between the propagation of electrons in quantum
Hall edge channels and photons in vacuum. This observation opened the way to a
new research field, known as electron quantum optics (EQO). The main purpose of
EQO is to reproduce conventional optics experiments using electronic wave-packets
propagating in condensed matter systems instead of photons traveling along wave-
guides. In Chapter 2, we revisited the main concepts of electron quantum optics.
Here, we introduced the idea of single-electron sources, that can be exploited to
emit purely electronic excitations into quantum Hall edge states. In particular, we
focused on the case of Lorentzian pulses carrying an integer number of particles,
the so-called levitons, which are one of the main building blocks of EQO. By parti-
tioning a periodic train of levitons traveling along quantum Hall edge states against
a quantum point contact, which is the analogue of a photonic beam splitter for
electrons, we showed that levitons are minimal excitation states for integer filling
factors of the Laughlin sequence. Finally, we presented the HOM interferometry
with levitons, where electrons impinge on the opposite side of a QPC with a tunable
delay. By performing such interferometric experiments, it is possible to observe the
anti-bunching effect typical of particle obeying Fermi statistics.

Chapter 3 is devoted to the study of correlation effects. Here, we consider a
fractional liquid and we have shown that the strongly correlated phase of FQH sys-
tems is able to crystallize levitons, soliton-like excitations in the realm of condensed
matter, after their tunneling at a QPC. This process rearranges the excess density
of levitons in a regular oscillating pattern, showing as many peaks as the num-
ber of injected particles. The amplitude of oscillations gets enhanced by increasing
the strength of interactions. The crystallization of levitons represents an electronic
counterpart of soliton crystals realized with photons in optical fiber setups. Exper-
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imental evidence of this effect can be found in a Hong-Ou-Mandel interferometer,
where unexpected dips in the noise reveal the crystallization mechanism. This kind
of experiment is within reach for nowadays technology.

Despite several challenging and fascinating results concerning charge transport
properties, electric charge is far from being the only interesting degree of freedom
in the framework of electron quantum optics. For this reason, we consider heat
transport properties of levitons in Chapter 4. Even though the experimental in-
vestigation of heat transport properties remains quite challenging, the problem of
heat conduction and manipulation at the nanoscale has become more actual than
ever, as demonstrated by some recent groundbreaking results.

In Chapter 4, we have shown that mixed and heat noises measured in one of
the output arms of a Hanbury-Brown-Twiss interferometer all reach their minimal
value (set by the respective poissonian dc relations) when levitons impinge on the
beam splitter, that is when the voltage drive generates Lorentzian pulses carrying
an integer amount of electronic charge along the edge states of the quantum Hall
system. These results extend the notion of leviton as a minimal excitation state in
the Laughlin sequence to the heat transport domain. Furthermore, we demonstrated
the robustness of this result even in the presence of an arbitrary overlap between
multiple levitons, regardless of the nonlinear dependence on the voltage bias typical
of heat-transport-related quantities.

Finally, we investigated heat current fluctuations in a Hong-Ou-Mandel interfer-
ometer in the fractional quantum Hall regime. Here, two identical leviton excitations
impinge at a quantum point contact with a given time delay. We showed that single-
drive configuration and HOM interferometer implemented with voltage sources are
two physically distinct experimental configurations. Interestingly, unexpected side
dips emerged only in the fractional regime which can be related to the crystallization
mechanism discussed in Chapter 3 for levitons.
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Perspectives

The generation and control of levitons and, more in general, of single- to few-
electronic excitations in one-dimensional ballistic conductors have attracted a huge
interest in recent years and is actually at the forefront of research in condensed mat-
ter physics, and may lead to fascinating applications in quantum communication
and quantum information. However, several important issues, including for instance
the role of decoherence or screening in the dynamics of single-electron excitations
[30, 87, 109], are yet to be fully understood and will certainly deserve a lot of at-
tention in years to come. Further interesting developments could also involve the
investigation of pseudo-random emission of levitons, as recently proposed for the
free fermion case [95]. Besides closing the conceptual gap between time-periodic in-
jection and individual wave-packet emission this newly proposed emission protocol
opens important perspectives for the FQH case, as it promises to strongly magnify
the side dip features discussed in Chapter 3.

Possible extensions include the investigations of related setups as optimal sources
for fractionally charged single-anyons. On one side, it would be extremely interesting
to investigate whether related setups can serve as optimal sources for fractionally
charged single-anyons. In this sense, it has been proposed that a quantum point
contact may be used to break the leviton into a coherent quasi-particle reflected off
the barrier and a pair of Laughlin quasi-particles transmitted [88]. The outcome of
such a setup should then be used as the input of a Hanbury-Brown-Twiss interfer-
ometer, in order to investigate the cleanliness of such a state. On the other hand,
multiple-QPC setups such as Fabry-Perot interferometers could be investigated in
an attempt to reveal signatures of the fractional statistics through Hong-Ou-Mandel
interferometry.

Moreover, the exotic physics of the quantum Hall effect allows for the existence
of peculiar neutral edge modes for some values of the filling factor [179–182]. While
they cannot contribute to charge transport, they do carry a finite amount of en-
ergy, which often flows in opposite direction with respect to the charged modes.
An application of EQO paradigms to FQH states supporting neutral modes let us
envisage an exciting setup were single-particle charge and energy are separated on-
demand into different output terminals, exploiting the composite edge structure of
two-dimensional systems in the QH regime.

Other possibilities may involve two-dimensional topological insulators, where a
pair of counter-propagating gapless and one-dimensional channels appears on each
edge, in the absence of a magnetic field [183–185]. Interestingly, the direction of
propagation of electrons belonging to these edge channel is linked to their spin by
a property called helicity. The injection of levitons in these helical edge states
might open up interesting application where a single spin-polarized electron can be
manipulated for applications in the field of spintronic.
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Very remarkably, some experiment in the presence of time-dependent voltages
are starting to be realized in the fractional regime [186]. These preliminary results
might pave the way for the emission of levitons in states with a fractional filling
factor, thus leading to the possibility of an experimental verification of the many
fascinating phenomena that arise due to the interplay between the properties of
levitons and strong correlations of fractional quantum Hall systems.
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Appendix A

Bosonic commutators

In this appendix, we compute bosonic commutators introduced in the main text
(see Eqs. (1.111) and Eqs. (1.112) in Chapter 1) . In addition, we will show the
connection between bosonic and fermionic formalism at ν = 1.

A.1 Bosonic commutators
Before starting this calculation, we recall the form of bosonic field appearing in the
main text in Eq. (1.109)

ΦR/L(x) = i

√
2π
L

∑
k>0

e−
ak
2

√
k

(
e±ikxbR/L,k − e∓ikxb

†
R/L,k

)
, (A.1)

where bosonic operators bk,R/L satisfy
[
bk,R/L, b

†
R/L

]
= δk,q. Bosonic fields in Eq,

(A.1) can be splitted into two conjugate fields ϕR/L(x) and ϕ†R/L(x) as

ΦR/L(x) = ϕR/L(x) + ϕ†R/L(x), (A.2)

where
ϕR/L(x) = i

√
2π
L

∑
q>0

e−
aq
2

√
q
e±iqxbq,R/L. (A.3)

Here, parameter a indicates the lattice spacing and corresponds to an ultra-violet
length cut-off. In the end of calculations, one has to take the limit a→ 0+ in order
to find the final expressions of commutators.
Let us evaluate commutators for fields ϕR/L(x) and ϕ†R/L(x)

[
ϕR/L(x), ϕ†R/L(x′)

]
= 2π

L

∑
k,q>0

e−
a(k+q)

2

√
q
√
k
e±ikxe∓iqx

′ =

= 2π
L

∑
q>0

1
q
e−q[±i(x

′−x)+a] =

= − ln
[
1− e−

2π
L

[±i(x′−x)+a]
]
, (A.4)

where, in the last step, we used the series ∑∞n=1
xn

n = − ln (1− x). By taking the
lowest order in the expansion over 1

L (which corresponds to the limit L→∞), one
has that [

ϕR/L(x), ϕ†R/L(x′)
]

= ln
[
−2π
L
r[i(x′ − x) + ar]

]
. (A.5)
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At this stage, one can directly obtain the commutators in Eq. (1.111), by resorting
to Eq. (A.2), thus finding[

ΦR/L(x),ΦR/L(x′)
]

=
[
ϕR/L(x), ϕ†R/L(x′)

]
+
[
ϕ†R/L(x), ϕR/L(x′)

]
=

= − ln
[

1− e− 2π
L

[±i(x′−x)+a]

1− e− 2π
L
r[±i(x−x′)+a]

]
. (A.6)

In the limit L→ +∞, one has
[
ΦR/L(x),ΦR/L(x′)

]
' − ln

[
1− 1± 2π

L [i(x′ − x) + a]
1− 1± 2π

L [i(x− x′) + a]

]
=

= − ln
[
±

x−x′
a + i

∓x−x′
a + i

]
. (A.7)

By using the identity z = i
2 ln

(
z+i
−z+i

)
[110], the commutators become

[
ΦR/L(x),ΦR/L(x′)

]
= ∓2

i
arctan

(
x− x′

a

)
. (A.8)

Since the limit a→ 0 is now well-defined, one can perform it, thus getting rid of the
short-length cut-off and finally finding[

ΦR/L(x),ΦR/L(x′)
]

= ±iπsign(x− x′). (A.9)

The commutators with density operator, appearing in Eq. (1.112), can be easily
calculated by taking the derivative with respect to x of both members in Eq. (A.9)
and inserting the proper prefactor. Indeed, one has[

ρR/L(x),ΦR/L(x′)
]

= −i
√
νδ(x− x′). (A.10)

A.2 Fermionic formalism at ν = 1
In the following, we show that a low-energy bosonic theory of a one-dimensional
non-interacting system is equivalent to a fermionic model with linear spectrum.
The corresponding hamiltonian is

HR/L =
∫ +∞

−∞
dx : Ψ†R/L(x)(∓iv∂x − µ)ΨR/L(x) :, (A.11)

where µ = vkF and the fermionic fields ΨR/L are given by

ΨR/L(x) = 1√
2πv

∫ ∞
−∞

dεe±i
ε
v
xaR/L(ε). (A.12)

For the following calculations, we will consider for simplicity the discrete version of
these fermionic fields, which reads

ΨR/L(x) = 1√
L

k=∞∑
k=−∞

e±ikF xcR/L,k. (A.13)

Note that the second contribution in Eq. (A.11) is proportional to the chemical
potential µ, which is fundamental to fix the ground state charge and energy [83].
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The notation : · · · : stands for normal ordering of operators with respect to the
fermionic ground state, i.e. the filled Fermi sea. It means that all operators that
destroy the ground state are moved to the right of all other operators [35, 36].

Fermionic fields obey the following anti-commutation relations{
ΨR/L(x),Ψ†R/L(y)

}
= δ(x− y). (A.14)

Charge and energy density operators can be defined in terms of these fields as

ρR/L(x) =: Ψ†R/L(x)ΨR/L(x) :, (A.15)

HR/L(x) = ∓iv : Ψ†R/L(x)∂xΨR/L(x) : −vkFρR/L(x). (A.16)

The relation between fermionic and bosonic descriptions relies on the bosonization
approach at ν = 1. In this case, the bosonization identity is

ΨR/L(x) =
FR/L√

2πa
e±ikF xe−iΦR/L(x). (A.17)

We will show that the bosonic form for Eqs. (A.11), (A.15) and (A.16) will lead us
to

ρR/L(x) = ∓ 1
2π∂xΦR/L(x),

HR/L(x) = v

4π :
[
∂xΦR/L(x)

]2
: . (A.18)

A.2.1 Particle density

Let us first consider the density operator ρR. We focus again on the case of right-
moving excitations, and drop the label R for brevity. We also drop for the moment
the factor eikF x in the definition of ΨR(x) (see Eq. (A.17)) which will be reinstated
at the end of calculations. We thus consider the field

Ψ̃(x) = F√
L
e−iϕ

†(x)eiϕ(x) = F√
2πa

e−iΦ(x). (A.19)

Note that the operator in the middle of Eq. (A.19) is normal ordered, while the
right-hand side if the equation is not, hence the presence of the diverging factor
(
√

2πa)−1[35, 36]. We can now work out the bosonized expression for the density
ρ̃(x) =: Ψ̃†(x)Ψ̃(x) :. We use the point splitting technique to regularize such a
diverging quantity, using δ = ia as the splitting parameter and taking the limit
a→ 0 at the end of calculation [36]. Using eAeB = eBeAe[A,B], we have

Ψ̃†(x+ ia)Ψ̃(x) = 1
L
eiϕ
†(x+ia)eiϕ(x+ia)F†Fe−iϕ†(x)e−iϕ(x) =

= 1
L
eiϕ
†(x+ia)e−iϕ

†(x)eiϕ(x+ia)e?−iϕ(x)e[ϕ(x+ia),ϕ†(x)]. (A.20)

The commutator in the exponential gives

e[ϕ(x+ia),ϕ†(x)] = e− ln 2πa
L = L

2πa. (A.21)

Eq. (A.20) now reads

Ψ̃†(x+ ia)Ψ̃(x) = 1
2πae

i[ϕ†(x+ia)−ϕ†(x)]ei[ϕ(x+ia)−ϕ(x)]. (A.22)
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We now expand the exponentials in powers of a

Ψ̃†(x+ ia)Ψ̃(x) = 1
2πa

[
1 + i∂xϕ

†(x)ia+O(a2)
] [

1 + i∂xϕ(x)ia+O(a2)
]

=

= 1
2πa −

1
2π
[
∂xϕ

†(x) + ∂xϕ(x)
]

+O(a) =

= 1
2πa −

1
2π∂xΦ(x) +O(a). (A.23)

Finally, normal ordering the last expression and taking the limit a → 0 we get the
final result

ρ̃(x) = lim
a→0

: Ψ̃†(x+ ia)Ψ̃(x) :=

= lim
a→0

[
Ψ̃†(x+ ia)Ψ̃(x)−

〈
Ψ̃†(x+ ia)Ψ̃(x)

〉]
0

=

= − 1
2π∂xΦ(x), (A.24)

where the notation 〈. . . 〉0 stands for a quantum average over the ground state. Notice
that the normal ordering allowed us to get rid of the diverging contribution (2πa)−1.

A.2.2 Hamiltonian density

We proceed similarly for the energy densityH(x). However, this calculation presents
some tricky passages that need to be performed carefully. Consider the first term in
Eq. (A.16) for the case of right-moving fermions, which we will denote as H0. We
have

H0(x) = −iv : Ψ†(x)∂xΨ(x) : . (A.25)
Now, let us drop the exponential factor eikF x and work with the field Ψ̃ = e−ikF xΨ.
We resort to the point splitting technique and write

Ψ̃†(x+ ia)∂xΨ̃(x) =

= 1
L
eiϕ
†(x+ia)eiϕ(x+ia)F†F∂x

[
e−iϕ

†(x)e−iϕ(x)
]

=

= 1
L
eiϕ
†(x)eiϕ(x+ia)e−iϕ

†(x)
[
−i∂xϕ†(x)e−ϕ(x) − ie−iϕ(x)∂xϕ(x)

]
=

= 1
L
eiϕ
†(x)eiϕ(x+ia)e−iϕ

†(x)e−iϕ(x)
{
−i∂xϕ†(x)− i∂xϕ(x)−

[
∂xϕ

†(x), ϕ(x)
]}
.

(A.26)

It is worth noticing that we had to move the exponential e−iϕ(x) to the left of ∂xϕ†(x),
thus generating an additional commutator. The latter is given by[

∂xϕ
†(x), ϕ(x)

]
= −∂y

[
ϕ(x), ϕ†(y)

]
x=y
' ∂y ln

[
−i2π

L
(x− y + ia)

]
x=y

=

=
[

i2π
L

−i2π
L (x− y + ia)

]
x=y

= i

a
. (A.27)

Then we obtain

Ψ̃†(x+ ia)∂xΨ̃(x) =

= 1
L
ei[ϕ†(x+ia)−ϕ†(x)]ei[ϕ(x+ia)−ϕ(x)]e[ϕ(x+ia),ϕ†(x)]

[
−i∂xϕ†(x)− i∂xϕ(x)− i

a

]
.

(A.28)
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At this stage, one should notice that the exponential of the commutator
[
ϕ(x), ϕ†(x)

]
is proportional to 1/a, and we also have a term ∼ 1/a in the square brackets. It
follows immediately that we need to expand the exponential of ϕ and ϕ† up to order
a2 to get the correct result. We have

ei[ϕ†(x+ia)−ϕ†(x)] =

= 1 + a
{
∂ae

i[ϕ†(x+ia)−ϕ†(x)]}
a=0

+ a2

2
{
∂2
ae
i[ϕ†(x+ia)−ϕ†(x)]}

a=0
+O(a3) =

= 1− a∂xϕ†(x) + a2

2 ∂a
{
−∂xϕ†(x+ ia)ei[ϕ†(x+ia)−ϕ†(x)]}

a=0
+O(a3) =

= 1− a∂xϕ†(x) + a2

2

{
−i∂2

xϕ
†(x) +

[
∂xϕ

†(x)
]2}

+O(a3), (A.29)

and we obtain similarly the expansion for ei[ϕ(x+ia)−ϕ(x)]. Inserting both results into
Eq. (A.28) we get

Ψ̃†(x+ ia)∂xΨ̃(x) =

= − i

2πa

[
∂xΦ(x) + 1

a

]{
1− a∂xϕ†(x)− ia

2

2 ∂
2
xϕ
†(x) + a2

2 [∂xϕ†]2
}
×

×
{

1− a∂xϕ(x)− ia
2

2 ∂
2
xϕ(x) + a2

2 [∂xϕ(x)]2 +O(a3)
}

=

= − i

2πa

[
∂xΦ(x) + 1

a

] {
1− a∂xϕ(x)− ia

2

2 ∂
2
xϕ(x) + a2

2 [∂xϕ(x)]2 − a∂xϕ†(x)+

+ a2∂xϕ
†(x)∂xϕ(x)− ia

2

2 ∂
2
xϕ
†(x) + a2

2
[
∂xϕ

†(x)
]2

+O(a3)
}

=

= − i

2πa

[
∂xΦ(x) + 1

a

]{
1− a∂xΦ(x)− ia

2

2 ∂
2
xΦ(x) + a2

2 : [∂xΦ(x)]2 :
}

+O(a3).

(A.30)
In the last step we recognized that

a2

2

{[
∂xϕ

†(x)
]2

+ ∂xϕ
†(x)∂xϕ(x) + [∂xϕ(x)]2

}
= a2

2 : [∂xΦ(x)]2 : (A.31)

is a normal ordered expression, since the field ϕ† is always on the left of ϕ. We are
left with

Ψ̃†(x+ ia)∂xΨ̃(x) =

= −i
{ 1

2πa2 −
1

2π [∂xΦ(x)]2 − i 1
4π∂

2
xΦ(x) + 1

4π : [∂xΦ(x)]2 :
}

+O(a). (A.32)

We can drop the term ∼ ∂2
xΦ(x) which is a total derivative and vanishes as we

integrate over x. Indeed, we should remember that the only meaningful physical
quantity is proportional to

∫∞
−∞ Ψ̃†∂xΨ̃. Finally, we normal order the entire expres-

sion and take the limit a→ 0. This yields

: Ψ̃†(x)∂xΨ̃(x) : = lim
a→0

[
Ψ̃†(x+ ia)∂xΨ̃(x)−

〈
Ψ̃†(x+ ia)∂xΨ̃(x)

〉
0

]
=

= i

4π : [∂xΦ(x)]2 : . (A.33)

We only have to multiply by −iv to get H̃0

H̃0(x) = −iv : Ψ̃†(x)∂xΨ̃(x) := v

4π : [∂xΦ(x)]2 : . (A.34)
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Introducing the Fermi momentum

As a final step, we restore the oscillating exponential factor eikF x dropped at the
beginning of the calculation. Considering a right-moving field, we have Ψ(x) =
eikF xΨ̃(x). The particle density in our formalism is left unchanged since

ρ(x) =: Ψ†(x)Ψ(x) :=: Ψ̃†(x)Ψ̃(x) := − 1
2π∂xΦ(x). (A.35)

Differently, the energy density acquires an additional term due to the derivative
acting on the exponential eikF x

H0(x) = −iv : Ψ†(x)∂xΨ(x) := −iv : Ψ̃†(x)∂xΨ̃(x) : +vkF : Ψ†(x)Ψ(x) :=

= v

4π : [∂xΦ(x)]2 : +vkFρ(x). (A.36)

We finally get the result anticipated in Eq. (A.18), since

H(x) = H0(x)− vkFρ(x) = v

4π : [∂xΦ(x)]2 : . (A.37)
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Appendix B

Gate voltages and gauge
transformation

In this Appendix, we derive the time evolution of bosonic fields in the presence of
external space- and time-dependent voltages introduced in the main text. Moreover,
we show that there is no gauge transformation able to link the equations of motion
for the configurations with two driving voltages VR and VL and the configuration
with a single drive V− = VR − VL, presented in the main text.

B.1 Bosonic fields in the presence of external gate volt-
ages

In the main text, we investigated time-dependent transport properties of quantum
Hall states in the Laughlin sequence in presence of external gate voltages. The effect
of the gate potential on transport properties of the Hall bar can be inspected by
finding the time evolution of bosonic fields ΦR(x, t). Let us start by considering
a right-moving channel emerging on the edge of quantum Hall bar connected to a
reservoir, as in Fig. 2.1 of the main text. The coupling to an external potential
is implemented in the hamiltonian description of the edge channel by capacitively
coupling the charge density, given by −eρR(x), to the space- and time- dependent
gate voltages VR(x, t). In the remainder of this thesis, we will always consider semi-
infinite contacts, namely restricted to x < −d (for the right-moving channel) or to
x > d (for left-moving channel). Nevertheless, for the present discussion, we keep a
generic spatial dependence for VR(x, t). The corresponding gate hamiltonian is

Hg = −e
∫ +∞

−∞
dx {VR(x, t)ρR(x)} =

= e
√
ν

2π

∫ +∞

−∞
dx {VR(x, t)∂xΦR(x)} . (B.1)

The equation of motion for bosonic fields from the total hamiltonian H = HR +Hg

reads
(∂t + v∂x) ΦR(x, t) = −e

√
νVR(x, t). (B.2)

These inhomogeneous transport equations can be solved by resorting to the Green’s
function method for first order partial differential equations [187]. The first step is
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to find the solution of the homogeneous equation

(∂t + v∂x)φR(x, t) = −e
√
νVR(x, t), (B.3)

where φR is the time-evolved bosonic field without external voltage. Eq. (B.3) is
solved by a generic function of the form FR(x, t) = FR(x− vt). Indeed, since these
solutions should coincide at t = 0 with bosonic field ΦR(x) in Eq. (1.109) , they
read

φR(x, t) = ΦR(x− vt). (B.4)

In the presence of the inhomogeneous terms VR(x, t), it can be easily shown that
the solution to Eq. (B.2) is given by

ΦR(x, t) = φR(x, t) + φ̃R(x, t), (B.5)

where
φ̃R(x, t) = −e

√
ν

∫ +∞

−∞
dx′

∫ +∞

−∞
dt′VR(x′, t′)G(x, t;x′, t′). (B.6)

Here, the function G is called Green’s function and it is defined by the requirement
that it satisfy the following equation

(∂t ± v∂x)G(x, t;x′, t′) = δ(x− x′)δ(t− t′). (B.7)

For the differential operator (∂t + v∂x), the Green’s function is

G(x, t;x′, t′) = Θ(t− t′)δ(v(t− t′)− (x− x′)), (B.8)

which, substituted into Eq. (B.6) gives the full solution for the right-moving bosonic
field in presence of gate voltage VR(x, t), which reads

ΦR(x, t) = φR(x, t)− e
√
ν

∫ t

−∞
dt′VR(x− v(t− t′), t′). (B.9)

Similarly, one can repeat the same procedure for an external potential VL(x, t) ap-
plied to the left-moving channel. In this case, the solution for the left-moving bosonic
field is

ΦL(x, t) = φL(x, t)− e
√
ν

∫ t

−∞
dt′VL(x+ v(t− t′), t′). (B.10)

By means of bosonization identities in Eqs. (1.113) and (1.124), the time evolution
of electron and quasi-particle field operators is given by

Ψ(el)
R/L(x, t) = ψ

(el)
R/L(x, t) exp

{
ie

∫ t

−∞
dt′VR/L(x∓ v(t− t′), t′)

}
, (B.11)

Ψ(qp)
R/L(x, t) = ψ

(qp)
R/L(x, t) exp

{
iνe

∫ t

−∞
dt′VR/L(x∓ v(t− t′), t′)

}
, (B.12)

where we introduced time-dependent electronic and quasi-particle field operators at
the equilibrium, i.e. VR = VL = 0

ψ
(el)
R/L(x, t) =

F (el)
R/L√
2πa

e±ikF xe
− i√

ν
φR/L(x,t)

, (B.13)

ψ
(qp)
R/L(x, t) =

F (qp)
R/L√
2πa

e±ikF xe−i
√
νφR/L(x,t). (B.14)
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As anticipated, for the following discussion, we specialize to the case of semi-
infinite contacts, which perfectly model usual experimental configurations. For this
reason, the gate potentials are assumed to factorize as

VR/L(x, t) = Θ (∓x− d)VR/L(t), (B.15)

where x = ±d are position of the interfaces between reservoirs 1/4 and the edge
states. In the regions downstream of each contacts, namely x ≥ −d for right-movers
and x ≤ d for left-movers, the time-dependent bosonic fields read

ΦR/L(x, t) = φR/L(x, t)− e
√
ν

∫ t

−∞
dt′Θ

[(
t∓ x

v
− d

v

)
− t′

]
VR/L(t′) = (B.16)

= φR/L(x, t)− e
√
ν

∫ t∓x
v
− d
v

−∞
dt′VR/L(t′). (B.17)

The factor d
v is a simple constant shift that could be canceled out by re-setting the

origin of time axis. In the remainder of this thesis, we can safely neglect it, since it
would not play any significant role in our discussion.
Field operators for electrons and quasi-particles are

Ψ(el)
R/L(x, t) = ψ

(el)
R/L(x, t)eie

∫ t∓xv
−∞ dt′VR/L(t′)

, (B.18)

Ψ(qp)
R/L(x, t) = ψ

(qp)
R/L(x, t)eiνe

∫ t∓xv
−∞ dt′VR/L(t′)

. (B.19)

The electron density can be obtained as well from Eq. (B.17)

ρR/L(x, t) = ∓
√
ν

2π ∂xφR/L(x, t)− νe

2πVR/L
(
t∓ x

v

)
. (B.20)

The theta functions in the above equations preserve the causality of the emitted
signal. In the remainder of this thesis, we assume that they are always satisfied.
Let us comment that the the deformation induced in the densities with respect to
the equilibrium condition has the same shape of the applied voltages. Since edge
states are chiral, the charge current operators can be simply expressed in terms of
density operators as

JR/L(x, t) = ∓evρR/L(x, t) = e

√
ν

2π ∂xφR/L(x, t)± νe2

2π VR/L
(
t∓ x

v

)
. (B.21)

The average value over the equilibrium configuration is

〈JR/L(x, t)〉 = ±νe
2

2π VR/L
(
t∓ x

v

)
, (B.22)

since 〈∂xφR/L(x, t)〉 = 0.

Finally, let us comment that, for the filling factor ν = 1, according to Eq. (1.125),
one has that

ΨR/L(x, t) ≡ Ψ(el)
R/L(x, t) = Ψ(qp)

R/L(x, t) = ψR/L(x, t)eie
∫ t∓xv
−∞ dt′VR/L(t′)

, (B.23)

where ψR/L(x, t) is the time-evolution of fermionic fields in Eq. (1.127) in the absence
of external potentials and reads

ψR/L(x, t) = 1√
2πv

∫ +∞

−∞
dεe−iε(t∓

x
v )aR/L(ε). (B.24)
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B.2 Applying gauge transformations to the HOM setup

In the double-drive setup a voltage drive is applied both to right-moving and left-
moving excitations. We consider a situation in which the vector potentialsAR/L(x, t)
are absent. The Lagrangian density is

L = 1
4π

{
− ∂xΦR(x, t)

[
∂tΦR(x, t) + v∂xΦR(x, t)

]
+

+ ∂xΦL(x, t)
[
∂tΦL(x, t)− v∂xΦL(x, t)

]}
(B.25)

− e
√
ν

2π

[
∂xΦR(x, t)VR(x, t)− ∂xΦL(x, t)VL(x, t)

]
. (B.26)

The Euler-Lagrange equations

∂t
δL

δ∂tΦα
+ ∂x

δL
δ∂xΦα

− δL
δΦα

= 0 (B.27)

with α = R,L, give rise to the following equation of motions for the bosonic fields:

(∂t + v∂x)ΦR(x, t) = −e
√
νVR(x, t) (B.28)

(∂t − v∂x)ΦL(x, t) = −e
√
νVL(x, t). (B.29)

In order to model the system presented in B.1, the form for the voltage drives is

VR(x, t) = fR(x)VR(t), (B.30)
VL(x, t) = fL(x)VL(t), (B.31)

where fR/L(x) are time-independent, while VR/L(t) are space-independent. In this
case equation of motions for the double-drive setup are

(∂t + v∂x)ΦR(x, t) = −e
√
νfR(x)VR(t), (B.32a)

(∂t − v∂x)ΦL(x, t) = −e
√
νfL(x)VL(t). (B.32b)

We also consider a single-drive setup with an effective voltage drive VR(x, t) =
fR(x)[VR(t)−VL(t)] on the right side, and the left side grounded [VL(x, t) = 0]. We
still consider that the magnetic potential is zero on both edges. It is immediate to
show that the equation of motions are now

(∂t + v∂x)ΦR(x, t) = −e
√
νfR(x)[VR(t)− VL(t)], (B.33a)

(∂t − v∂x)ΦL(x, t) = 0. (B.33b)

Here we show that a gauge transformation that operates in the following way on the
voltage drives{

VR(x, t) = fR(x)VR(t),
VL(x, t) = fL(x)VL(t),

−→
{
V ′R(x, t) = fR(x)[VR(t)− VL(t)],
V ′L(x, t) = 0,

(B.34)

does not transform Eqs. (B.32) into Eqs. (B.33), but leaves them unchanged.
Since these equations involve spatial-dependent functions, we expect that non-zero
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magnetic potentials arise as a consequence of the gauge transformation. In particular
we have

V ′R(x, t) = fR(x)VR(x)− ∂tχR(x, t) = fR(x)[VR(t)− VL(t)], (B.35)
V ′L(x, t) = fL(x)VL(x)− ∂tχL(x, t) = 0 (B.36)

for the right-moving and left-moving sector respectively. The transformation is
evidently implemented by the choice

χR(x, t) = fR(x)
∫ t

0
dτVL(τ), (B.37a)

χL(x, t) = fL(x)
∫ t

0
dτVL(τ). (B.37b)

As expected, in the new gauge we get non-zero magnetic potentials given by

A′R(x, t) = ∂xfR(x)
∫ t

0
dτVL(τ), (B.38)

A′L(x, t) = ∂xfL(x)
∫ t

0
dτVL(τ), (B.39)

and the Lagrangian density now reads

L′ = 1
4π

{
− ∂xΦR(x, t)

[
∂tΦR(x, t) + v∂xΦR(x, t)

]
+

+ ∂xΦL(x, t)
[
∂tΦL(x, t)− v∂xΦL(x, t)

]}
+

− e
√
ν

2π

{
∂xΦR(x, t)fR(x)[VR(t)− VL(t)]+

+
[
∂tΦR(x, t)∂xfR(x)− ∂tΦL(x, t)∂xfL(x)

] ∫ t

t0
dτVL(τ)

}
, (B.40)

where the last term accounts for the presence of A′R(x, t) and A′L(x, t). We now
look for the equation of motions in this new configuration. From Euler-Lagrange
equations one gets

(∂t + v∂x)ΦR(x, t) =
= −e

√
νfR(x)[VR(t)− VL(t)] + e

√
νfR(x)VL(t) =

= −e
√
νfR(x)VR(t), (B.41)

(∂t − v∂x)ΦL(x, t) = e
√
νfL(x)VL(t). (B.42)

Note that we have not recovered the equation of motions for the single drive setup,
Eqs. (B.33), as one may naively expect. On the contrary, we have found the equa-
tions of motion for the double-drive setup, Eqs. (B.32).
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Appendix C

Photo-assisted coefficients

C.1 Single source

The application of a spatially homogeneous time-dependent voltage V (t) to quantum
Hall channels at filling factor ν is manifested in the phase (~ = 1)

eiνe
∫ t

0 dt
′V (t′) (C.1)

acquired by particle with charge νe.
For voltage periodic in time, it is convenient to separate dc and ac part of the signal,
as V (t) = Vdc + Vac(t), where Vac is a function with period T whose average over
one period is zero. The dc part is linked to the number of particle q emitted along
the edge state in a period, as

q = −νe
ω
Vdc. (C.2)

The total phase in Eq. (C.1) can be written as

eiνe
∫ t

0 dt
′V (t′) = eiφac(t)e−iqωt, (C.3)

where ω = 2π
T and

φac(t) = ν

∫ t

0
Vac(t′)dt′. (C.4)

The phase given by e−iφac(t) is a periodic function of time and can be written in
Fourier series as

eiφac(t) =
∑
l

ple
−ilωt, (C.5)

where we introduced the photo-assisted coefficient

pl =
∫ T

2

−T2

dt

T
eilωteiφac(t). (C.6)

C.1.1 Cosine drive

In the case of a cosine drive

Vsin(t) = Vdc(1− cos (ωt)), (C.7)
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one finds

pl =
∫ T

2

−T2

dt

T
eilωte−iνeVdc

∫ t
0 dt
′ cos(ωt′) =

∫ T
2

−T2

dt

T
eilωteiq sin(ωt) =

=
∫ π

−π
dτ {cos [q sin (τ) + lτ ] + i sin [q sin (τ) + lτ ]} =

= 1
π

∫ π

0
dτ cos [q sin (τ) + lτ ] = J−l(q), (C.8)

where in the last step we used the integral representation of the Bessel function of
the first kind J−l(q) [110].

C.1.2 Square drive

For a square drive, oscillating each period between 0 and 2Vdc

Vsqr(t) = 2Vdc
+∞∑

k=−∞
Θ(t− kT )Θ

(T
2 − t+ kT

)
, (C.9)

the photo-assisted coefficient is

pl =
∫ T

2

−T2

dt

T
eilωte−iqω|t| =

∫ 0

−T2

dt

T
ei(l+q)ωt +

∫ T
2

0

dt

T
ei(l−q)ωt =

= 1
2πi

[
1− e−iπ(l+q)

l + q
+ e−iπ(l+q)−1

l + q

]
=

= i

π

q

l2 − q2

[
1− (−1)le−iπq

]
. (C.10)

The corresponding probability to absorb or emit l photons is

Pl = |pl|2 =
(

q

l + q

sin
[
π
2 (l − q)

]
π
2 (l − q)

)2

. (C.11)

C.1.3 Lorentzian drive

A periodic train of Lorentzian pulses with a mid-height widthW and period T = 2π
ω

is described by the function

Vlor(t) = Vdc
π

+∞∑
k=−∞

W

W 2 + (t− kT )2 . (C.12)

The calculation for photo-assisted coefficient is a little more cumbersome for the
Lorentzian drive than for cosine and square drives. It is useful to recast the phase
φac as

φac(t) = νVdc

∫ t

0
dt′

 ∞∑
k=−∞

W

W 2 + (t− kT )2 − 1

 =

= −2q
∞∑

k=−∞

∫ t
W
− kT
W

− kT
W

dτ
1

1 + τ2 + qωt =

= −2q
∞∑

k=−∞

[
arctan

(
t

W
− kT
W

)
− arctan

(
−kT
W

)]
+ qωt. (C.13)
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Since arctan is an odd function of its argument, the second term in the bracket is
zero and one can rearrange the remaining terms as

φac(t)− qωt = −2q
∞∑

k=−∞

[
arctan

(
t

W
− kT
W

)
− arctan

(
−kT
W

)]
=

= −iq
∞∑

k=−∞
ln
(
i+ t

W −
kT
W

i− t
W + kT

W

)
=

= −iq

 ∞∑
k=−∞

ln
(
k − iW + t

T

)
−

∞∑
k=−∞

ln
(
k − iW − t

T

) =

= −iq ln

sin
(
iπW+t

T

)
sin
(
iπW−tT

)
 , (C.14)

where the following identities have been exploited

arctan(z) = i

2 ln
(
i+ z

i− z

)
, (C.15)

∞∑
k=−∞

ln (k + γ) = ln [sin(πγ)] +
∞∑

k=−∞
ln
(
k + 1

2

)
. (C.16)

It is convenient to switch to write pl as a complex integral with the substitution
z = eiωt

pl =
∫ T

2

−T2

dt

T
eilωteiφac(t) =

=
∫ T

2

−T2

dt

T
ei(l+q)ωt

sin
(
iπW+t

T

)
sin
(
iπW−tT

)
q =

= 1
2πi

∮
|z|=1

dz

z
zl+q

(1− γz
z − γ

)q
, (C.17)

where γ = e−2πη. In the disc |ξ| ≤ 1, the following generalized binomial series is
valid [188]

(1− ξ)β = 1− βξ + · · ·+ (−1)nβ(β − 1) . . . (β − n+ 1)
n! ξn + · · · =

=
∞∑
n=0

(−1)n Γ(β + 1)
Γ(β − n+ 1)

ξn

n! . (C.18)

Since |z| = 1 and γ < 1, one can exploit it to recast pl as

pl = 1
2πi

∮
|z|=1

dz
∞∑

n,m=0
(−1)n+m Γ(1 + q)

Γ(1− n+ q)
Γ(1− q)

Γ(1−m− q)
zl+n−m−1γn+m

n!m! (C.19)

By using the fact that Γ(m + 1) = m! for m ≥ 0 and 1
Γ(m+1) = 0 for m ≤ −1, the

two sums can be extended to include negative values of m [110] as

pl = 1
2πi

∮
|z|=1

dz
∞∑
n

∞∑
m=−∞

(−1)n+m Γ(1 + q)
Γ(1− n+ q)

Γ(1− q)
Γ(1−m− q)

zl+n−m−1γn+m

n!Γ(m+ 1) .

(C.20)
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According to Cauchy’s theorem, the only non-vanishing contribution to this integral
comes from l + n−m, thus obtaining

pl = 1
2πi

∮
|z|=1

dz
∞∑
n

∞∑
m=−∞

δm,l+n(−1)n+m Γ(1 + q)
Γ(1− n+ q)

Γ(1− q)
Γ(1−m− q)

γn+m

n!Γ(m+ 1) =

=
∞∑
n=0

(−1)l Γ(1 + q)
Γ(1− n+ q)

Γ(1− q)
Γ(1− n− l − q)

γ2n+l

n!Γ(n+ l + 1) =

=
∞∑
n=0

(−1)l Γ(1 + q)
Γ(l + n+ q)

Γ(1− q)
Γ(1− n− l − q)

Γ(l + n+ q)
Γ(1− n+ q)

γ2n+l

n!Γ(n+ l + 1) . (C.21)

The property Γ(ξ)Γ(1− ξ) = π
sin(πξ) , which is valid for ξ 6= 0,±1, ..., implies that

Γ(1 + q)Γ(1− q)
Γ(l + n+ q)Γ(1− n− l − q) = (−1)l+nq, (C.22)

which can be exploited to finally find

pl = qγl
∞∑
n=0

(−1)n Γ(l + n+ q)
Γ(1− n+ q)

γ2n

n!Γ(n+ l + 1) (C.23)

for non integer values of q. This last equation can be used for integer values of q as
well, given the fact that lim

q→i
pl with i ∈ N is well defined.

With the help of Eq. (C.17) one also realizes the uniqueness of the Lorentzian drive
with integer q. Under this assumption the integrand function in Eq. (C.17) does
not have any singularity outside the unit circle for l < q, even at infinity. This
automatically translates into pl = 0 for l < q.

C.1.4 Single leviton

In the following, we specialize to the case of q = 1, which is the simplest case that
allows to evaluate explicitly the sum in Eq. (C.23). By plugging q = 1 into Eq.
(C.23), one has

pl = 1
2πi

∮
|z|=1

dzzl
1− zγ
z − γ

. (C.24)

According to the value of l, there are three different cases.
1): l ≥ 0. In this case, the function

fl(z) = zl
1− zγ
z − γ

(C.25)

has a single pole of order 1 in z = γ. By using Cauchy’s theorem, we know that the
only residue contributing to the integral is inside the unit circle and gives

pl = Res [fl(z), γ] = zl(1− zγ)
∣∣∣
z=γ

= γl(1− γ2). (C.26)

2): l ≤ −2. The two poles z = γ and z = 0 lie inside the unit circle, thus implying
that the integrand is analytic everywhere outside the unit circle. For this reason,
pl = 0 for l ≤ −2.
3): l = −1. For this value of l, f−1(z) has two poles in z = γ and z = 0. According
to Cauchy’s theorem, one has

p−1 = Res [f−1(z), γ] + Res [f−1(z), 0] = 1
γ

(1− γ2)− 1
γ

= −γ. (C.27)
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Finally, the result for each value of l is

pl(q = 1) =
{ γl(1− γ2) ifl ≥ 0,

−γ ifl = −1,
0 ifl ≤ −2.

(C.28)

C.2 Hong-Ou-Mandel setup
Here, we consider the phase

eiνe
∫ t

0 dt
′V−(t′), (C.29)

with V−(t) = VR(t) − VL(t), which appears for charge noise and for a contribution
to heat noise in a double-drive setup. This can be written in terms of a series as

eiνe
∫ t

0 dt
′V−(t′) =

∞∑
l=−∞

p̃le
−i(l+qR−qL)ωt, (C.30)

where we defined

p̃l =
∫ T

2

−T2

dt

T
ei(l+qR−qL)ωteiνe

∫ t
0 dt
′VR(t′)e−iνe

∫ t
0 dt
′VL(t′) =

∞∑
m=−∞

pl+m+qR−qL,Rp
∗
m,L.

(C.31)
In a Hong-Ou-Mandel setup, one has that VR(t) = V (t) and VL(t) = V (t+ tD), such
that the photo-assisted coefficients become

p̃l(tD) = eiνe
∫ tD

0 dt′[V (t′)−V (t′+tD)]
∞∑

m=−∞
pl+m+qR−qLp

∗
mr

imωtD . (C.32)

Lorentzian drive

In the case of a periodic train of Lorentzian pulses in the HOM setup, one can find
a simpler expression for photo-assisted coefficients

p̃l = eiνe
∫ tD

0 dt′[VR(t′)−VR(t′+tD)]e−iqωt
∫ T

2

−T2

dt

T
ei2πl

t
T

sin
(
iπW+t

T

)
sin
(
iπW−tT

)
q sin

(
iπW−t−tDT

)
sin
(
iπW+t+tD

T

)
q =

= eiνe
∫ tD

0 dt′[VR(t′)−VR(t′+tD)] 1
2πi

∮
|z|=1

dz

z
zl+q

(1− γz
z − γ

)q (γφ− z
γz − φ

)q
, (C.33)

with φ = e−i2π
tD
T . For q = 1, one can simply use Cauchy theorem to evaluate p̃l.

One has to distinguish between three cases.
1): l ≥ 1. The integrand function

f̃l(z) = zl−1
(1− zγ)

(
φ− z

γ

)
(z − γ)

(
z − φ

γ

) (C.34)

has a pole at z = γ and another one at z = φ
γ Since |φ| = 1 and γ < 1, the only

contribution to p̃l is

p̃l = e−iνe
∫ tD

0 dt′[VR(t′)−VR(t′+tD)]φRes
[
f̃l(z), γ

]
=

= e−iνe
∫ tD

0 dt′[VR(t′)−VR(t′+tD)]φγl
(
1− γ2) (1− φ)

φ− γ2 . (C.35)
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2): l ≤ −1. Under this condition, we can either look for the residues at z = 0 and
z = γ inside the circle or evaluate the residue at z = φ

γ outside the circle, with a
change of sign. The latter gives

p̃l = −e−iνe
∫ tD

0 dt′[VR(t′)−VR(t′+tD)]φRes
[
f̃l(z),

φ

γ

]
=

= e−iνe
∫ tD

0 dt′[VR(t′)−VR(t′+tD)]φl+1γ−l
(
1− γ2) (1− φ)

φ− γ2 . (C.36)

3): l = 0. The function f̃0(z) has residues at z = 0 and at z = γ inside the unit
circle. Thus

p̃l = e−iνe
∫ tD

0 dt′[VR(t′)−VR(t′+tD)]φRes
[
f̃0(z), 0

]
+

+ e−iνe
∫ tD

0 dt′[VR(t′)−VR(t′+tD)]φRes
[
f̃0(z), γ

]
=

= e−iνe
∫ tD

0 dt′[VR(t′)−VR(t′+tD)]
[
1 +

(
1− γ2) (1− φ)

φ− γ2

]
. (C.37)

C.3 Multiple pulses
Finally, let us briefly discuss the case of multiple pulses of Sec. 4.3.3. The phase
accumulated for the periodic signal VN (t) = ∑N−1

j=0 Ṽ
(
t− j αN T

)
is given by

ϕN (t) = νe

∫ t

0
dt′

N−1∑
j=0

Ṽ

(
t′ − j α

N
T
)
− Ṽdc


=

N−1∑
j=0

[
ϕ̃

(
t− j α

N
T
)
− ϕ̃

(
−j α

N
T
)]

, (C.38)

where ϕ̃(t) = νe
∫ t

0 dt
′
[
Ṽ (t′)− Ṽdc

]
. Each phase factor e−iϕ̃(t) can be written as

eiϕ̃(t) =
∑
l

pl

(
q

N

)
e−ilωt, (C.39)

since each pulse Ṽ involves only a fraction of the total charge q. The corresponding
Fourier coefficients for e−iϕN (t) read

p
(N)
l (q) = e

[
i
∑N−1

j=0 ϕ̃(−j αN T )
] ∫ T

0

dt

T
eilωt

N−1∏
j=0

eiϕ̃(t−j αN T ) =

= e

[
i
∑N−1

j=0 ϕ̃(−j αN T )
] ∫ T

0

dt

T
e(ilωt)

+∞∑
m0=−∞

+∞∑
m1=−∞

· · ·
+∞∑

mN−1=−∞
e(−im0ωt)pm0

(
q

N

)

× e{−im1ω[t− α
N
T ]}pm1

(
q

N

)
. . . e{−imN−1ω[t−(N−1) α

N
T ]}pmN−1

(
q

N

)
=

= e

[
i
∑N−1

j=0 ϕ̃(−j αN T )
]

+∞∑
m1=−∞

· · ·
+∞∑

mN−1=−∞
exp

{
i
2π
N
α [m1 + · · ·+ (N − 1)mN−1]

}

× pl−m1−...−mN−1

(
q

N

)
pm1

(
q

N

)
· · · pmN−1

(
q

N

)
. (C.40)
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As an example, coefficients for N = 2 are given by

p
(2)
l (q) = e−iϕ̃(−αT2 )

+∞∑
m=−∞

eiπαmpl−m

(
q

2

)
pm

(
q

2

)
. (C.41)

Note that the time-independent phase eiϕ̃(−αT2 ) has been omitted in Eq. (4.67) of
the main text, as it is washed out as soon as we compute the squared modulus of
p

(2)
l . Finally it is worth remarking that in the case of Lorentzian pulses with q = N

one should require mi ≥ −1 to prevent the vanishing of p(N)
l .

C.4 Useful sum rule

In this section we prove the following sum rule for photo-assisted coefficients pl

∞∑
l=−∞

ls|pl|2 =
(
νe

ω

)s ∫ T
2

−T2

dt

T
V s
ac(t), (C.42)

where s is an integer number. Firstly, we recast the sum as

∞∑
l=−∞

ls|pl|2 =
∞∑

l=−∞
ls
∫ T

2

−T2

dt

T

∫ T
2

−T2

dt′

T
eilω(t−t′)eiφac(t

′)−iφac(t) =

=
∫ T

2

−T2

dt

T

∫ T
2

−T2

dt′

T

∞∑
l=−∞

lseilω(t−t′)eiφac(t
′)−iφac(t) =

=
∫ T

2

−T2

dt

T

∫ T
2

−T2

dt′

T

∞∑
l=−∞

(
i

ω

)s
∂st′e

ilω(t−t′)eiφac(t
′)−iφac(t) =

=
∫ T

2

−T2

dt

T

∫ T
2

−T2

dt′

T

∞∑
l=−∞

(
− i
ω

)s
δ(t− t′)e−iφac(t)∂st′eiφac(t

′) =

=
∫ T

2

−T2

dt

T

(
− i
ω

)s
e−iφac(t)∂st e

iφac(t). (C.43)

It is easy to verify that the s-th derivative of the phase factor has the following form

∂st e
iφac(t) = D[Vac(t)]eiφac(t) + (iνe)sV s

ac(t)eiφac(t), (C.44)

where D[Vac(t)] contains only first- and higher-order derivatives of Vac(t). Thus, it
is clear that ∫ T

2

−T2

dt

T
e−iφac(t)∂st e

iφac(t) = (iνe)sV s
ac(t)eiφac(t), (C.45)

which implies that
∞∑

l=−∞
ls|pl|2 =

(
νe

ω

)s ∫ T
2

−T2

dt

T
V s
ac(t). (C.46)
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Notice in particular that ∑l |pl|2 = 1 and ∑l l|pl|2 = 0. One can also add the dc
component q = νe

ω Vdc, in order to find that

+∞∑
l=−∞

|pl|2(q + l)2 =
∑
|pl|2

s∑
k=0

(
s
k

)
qs−klk =

=
s∑

k=0

(
s
k

)(
νeVdc
ω

)s−k (νe
ω

)k ∫ T
2

−T2

dt

T
V k
ac(t) =

=
(
νe

ω

)s ∫ T
2

−T2

dt

T

[
s∑

k=0

(
s
k

)
V s−k
dc V k

ac

]
=

=
(
νe

ω

)s ∫ T
2

−T2

dt

T
[Vdc + Vac] =

(
νe

ω

)s ∫ T
2

−T2

dt

T
V s(t). (C.47)

144



Appendix D

Second order expansion in
tunneling

In this Appendix, we deal with the description of tunneling processes in the presence
of a QPC in the FQH regime. In strongly correlated systems, we cannot rely on
scattering matrix approach, presented in Chapter 2, which is valid solely for non-
interacting electrons. In order to describe tunneling processes in the FQH regime,
we introduced in the main text the following tunneling hamiltonians [36, 116]

H
(qp)
T = ΛΨ(qp)

R
†(0)Ψ(qp)

L (0) + h.c., (D.1)

H
(el)
T = ΛΨ(el)

R
†(0)Ψ(el)

L (0) + h.c.. (D.2)

In the weak backscattering regime, tunneling amplitude Λ is assumed to be very
small. Therefore, tunneling hamiltonian can be treated as a small perturbation with
respect to the hamiltonian H0 + Hg (see Eqs. (3.1) and (3.2)). In the following,
we will construct the time evolution of a generic quantum operator O in terms of
perturbative series in the parameter Λ. This expansion is exploited in the main text
for the specific case of charge and heat transport properties (see Eqs. (D.16) and
(4.5)).
The time evolution for an operator O with respect to the total hamiltonian H0 +
Hg + H

(qp/el)
T can be written in terms of the time evolution operator UI(t,−∞) =

Te
−i
∫ t
−∞ dt′ H

(qp/el)
T (t′), with T time ordering operator, as

O(x, t) = U †I (t,−∞)OI(x, t)UI(t,−∞). (D.3)

Here, the operator OI(x, t) and the hamiltonians H(qp/el)
T (t) evolve in time in an

interaction picture according to H0 +Hg.
According to Eqs. (B.11) and (B.12), the time-dependent tunneling hamiltonians
are

H
(qp)
T = ΛΨ(qp)

R
†(0, t)Ψ(qp)

L (0, t) + h.c. =

= Λeiνe
∫ t

0 dτ(VR(τ)−VL(τ))ψ
(qp)
R
†(0, t)ψ(qp)

L (0, t) + h.c., (D.4)

and

H
(el)
T = ΛΨ(el)

R
†(0, t)Ψ(el)

L (0, t) + h.c. =

= Λeiνe
∫ t

0 dτ(VR(τ)−VL(τ))ψ
(el)
R
†(0, t)ψ(el)

L (0, t) + h.c.. (D.5)
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Time evolution operators in Eq. (D.3) can be expanded with respect to tunneling
hamiltonians. We truncate this perturbative expansion at second order, since it
corresponds to the lowest order for the transport properties we are interested in.
One finds for time evolution operator that

UI(t,−∞) = 1 + i

∫ t

−∞
dt′ H

(qp/el)
T (t′)+

−
∫ t

−∞
dt′′

∫ t

−∞
dt′ Θ(t′′ − t′)H(qp/el)

T (t′)H(qp/el)
T (t′′) +O(|Λ|3). (D.6)

By inserting this result into Eq. (D.3), the operator O(x, t) at second order in
tunneling amplitude is

O(x, t) =

=
(

1 + i

∫ t

−∞
dt′ H

(qp/el)
T (t′)+

−
∫ t

−∞
dt′′

∫ t

−∞
dt′ Θ(t′′ − t′)H(qp/el)

T (t′)H(qp/el)
T (t′′)

)
OI(x, t)×

×
(

1− i
∫ t

−∞
dt′ H

(qp/el)
T (t′)+

−
∫ t

−∞
dt′′

∫ t

−∞
dt′ Θ(t′ − t′′)H(qp/el)

T (t′)H(qp/el)
T (t′′)

)
+O

(
|Λ|3

)
=

= OI(x, t) + i

∫ t

−∞
dt′

[
H

(qp/el)
T (t′)OI(x, t)−OI(x, t)H(qp/el)

T (t′)
]

+

+
∫ t

−∞
dt′′

∫ t

−∞
dt′ H

(qp/el)
T (t′)OI(x, t)H(qp/el)

T (t′′)+

−
∫ t

−∞
dt′′

∫ t

−∞
dt′ Θ(t′′ − t′)H(qp/el)

T (t′)H(qp/el)
T (t′′)OI(x, t)+

−
∫ t

−∞
dt′′

∫ t

−∞
dt′ Θ(t′ − t′′)OI(x, t)H(qp/el)

T (t′)H(qp/el)
T (t′′) +O

(
|Λ|3

)
.

(D.7)

In the last two lines a tunneling hamiltonian can be commuted with the operator
OI , in order to write both of them in the same form of the fourth line of Eq. (D.7)
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In this way one obtains

O(x, t) = OI(x, t) + i

∫ t

−∞
dt′

[
H

(qp/el)
T (t′), OI(x, t)

]
+

+
∫ t

−∞
dt′′

∫ t

−∞
dt′ H

(qp/el)
T (t′)OI(x, t)H(qp/el)

T (t′′)+

−
∫ t

−∞
dt′′

∫ t

−∞
dt′ Θ(t′′ − t′)H(qp/el)

T (t′)OI(x, t)H(qp/el)
T (t′′)+

−
∫ t

−∞
dt′′

∫ t

−∞
dt′ Θ(t′ − t′′)H(qp/el)

T (t′)OI(x, t)H(qp/el)
T (t′′)+

−
∫ t

−∞
dt′′

∫ t

−∞
dt′ Θ(t′′ − t′)H(qp/el)

T (t′)
[
H

(qp/el)
T (t′′), OI(x, t)

]
+

−
∫ t

−∞
dt′′

∫ t

−∞
dt′ Θ(t′ − t′′)

[
OI(x, t), H(qp/el)

T (t′)
]
H

(qp/el)
T (t′′) +O

(
|Λ|3

)
.

(D.8)

We notice that when the addends in the third and fourth lines are summed up, they
cancel exactly the second line, thus finding

O(x, t) = OI(x, t) + i

∫ t

−∞
dt′

[
H

(qp/el)
T (t′), OI(x, t)

]
+

−
∫ t

−∞
dt′′

∫ t

−∞
dt′ Θ(t′′ − t′)H(qp/el)

T (t′)
[
H

(qp/el)
T (t′′), OI(x, t)

]
+

−
∫ t

−∞
dt′′

∫ t

−∞
dt′ Θ(t′ − t′′)

[
OI(x, t), H(qp/el)

T (t′)
]
H

(qp/el)
T (t′′) +O

(
|Λ|2

)
=

= OI(x, t) + i

∫ t

−∞
dt′

[
H

(qp/el)
T (t′), OI(x, t)

]
+

−
∫ t

−∞
dt′′

∫ t

−∞
dt′ Θ(t′ − t′′)H(qp/el)

T (t′′)
[
H

(qp/el)
T (t′), OI(x, t)

]
+

+
∫ t

−∞
dt′′

∫ t

−∞
dt′ Θ(t′ − t′′)

[
H

(qp/el)
T (t′), OI(x, t)

]
H

(qp/el)
T (t′′) +O

(
|Λ|3

)
,

(D.9)

where we exchanged times in the second line and the order of operators in the last
commutator. Finally, noticing that the terms in the last line add up to form a
commutator and using that −1 = i2, we get

O(x, t) = OI(x, t) + i

∫ t

−∞
dt′

[
H

(qp/el)
T (t′), OI(x, t)

]
+

+ i

∫ t

−∞
dt′
∫ t

−∞
dt′′ Θ(t′ − t′′)

[
H

(qp/el)
T (t′′), i

[
H

(qp/el)
T (t′), OI(x, t)

]]
+O(|Λ|3).

(D.10)

Finally, we can put this expression in the form of a perturbative series in powers of
Λ as

O(x, t) = O(x, t)(0) +O(x, t)(1) +O(x, t)(2) +O(Λ3), (D.11)
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where

O(0)(x, t) = OI(x, t), (D.12)

O(1)(x, t) = +i
∫ t

−∞
dt′

[
H

(qp/el)
T (t′), OI(x, t)

]
, (D.13)

O(2)(x, t) = +i
∫ t

−∞
dt′
∫ t

−∞
dt′′ Θ(t′ − t′′)

[
H

(qp/el)
T (t′′), i

[
H

(qp/el)
T (t′), OI(x, t)

]]
.

(D.14)

D.1 Perturbative expansion of charge current operators
Charge current operators for right- and left-moving modes are defined as (see Eq.
(3.7) of the main text)

JR/L(x, t) = ∓evρR/L(x, t), (D.15)
where ρR/L(x, t) are density operators evolving with respect to the whole hamilto-
nian H0 + Hg + H

(qp)
T . In order to treat perturbatively charge currents, one has

simply to write down the second order expansion of density operators in the param-
eter Λ, which can be obtained by considering Eq. (D.11) in the case of operators
ρR/L(x, t) and reads (see Eq. (D.11))

ρR/L(x, t) = ρ
(0)
R/L(x, t) + ρ

(1)
R/L(x, t) + ρ

(2)
R/L(x, t) +O(Λ3), (D.16)

where

ρ
(0)
R/L(x, t) = ∓

√
ν

2π ∂xΦR/L(x, t), (D.17)

ρ
(1)
R/L(x, t) = +i

∫ t

−∞
dt′

[
H

(qp)
T (t′), ρ(0)

R/L(x, t)
]
, (D.18)

ρ
(2)
R/L(x, t) = +i

∫ t

−∞
dt′
∫ t

−∞
dt′′ Θ(t′ − t′′)

[
H

(qp)
T (t′′), i

[
H

(qp)
T (t′), ρ(0)

R/L(x, t)
]]
.

(D.19)

It is extremely useful to further simplify the commutator in Eq. (D.18)[
H

(qp)
T (t′), ρ(0)

R/L(x, t)
]

= ∓
√
ν

2π
[
ΛΨ(qp)

R
†(0, t′)Ψ(qp)

L (0, t′) + h.c., ∂xΦR/L(x, t)
]
.

(D.20)
For the sake of simplicity, we consider only right-moving modes and we quote the
results for left-movers in the end. We should pay attention that the commutator in
Eq. (D.18) involves two different times t and t′ and, therefore, usual commutation
relations are not directly applicable. The trick is to exploit chirality of edge states
to recast it as[
H

(qp)
T (t′), ρ(0)

R (x, t)
]

=

= −Λ
√
ν

2π e
iνe
∫ t′

0 dτ(VR(τ)−VL(τ))
[
ψ

(qp)
R
†(−vt′, 0), ∂xΦR(x− vt, 0)

]
ψ

(qp)
L (−vt′, 0) + h.c..

(D.21)

Now, the commutator
[
ψ

(qp)
R
†(−vt′, 0), ∂xΦR(x− vt, 0)

]
can be evaluated by the help

of bosonization identity and Baker-Hausdorff theorem [36][
eA, B

]
= [A,B]eA (D.22)
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as[
ψ

(qp)
R
†(−vt′, 0), ∂xΦR(x− vt, 0)

]
= F†R√

2πa
eikF vt

′ [
ei
√
νΦR(−vt′,0), ∂xΦR(x− vt, 0)

]
=

= i
√
ν
[
ΦR(−vt′, 0), ∂xΦR(x− vt, 0)

]
ψ

(qp)
R
†(−vt′, 0) =

=
√
ν2πδ(x− v(t− t′))ψ(qp)

R
†(−vt′, 0), (D.23)

where in the intermediate step we used the relation[
ΦR/L(x), ∂yΦR/L(y)

]
= ∓i2πδ(x− y). (D.24)

By inserting Eq. (D.23) into Eq. (D.21) , one finds[
H

(qp)
T (t′), ρ(0)

R (x, t)
]

=

= −ΛeνΘ(x)Ψ(qp)
R
†
(

0, t− x

v

)
Ψ(qp)
L

(
0, t− x

v

)
δ
(
x− v(t− t′)

)
+ h.c.. (D.25)

Similarly for left-moving particle, one finds[
H

(qp)
T (t′), ρ(0)

L (x, t)
]

=

= −ΛeνvΘ(−x)Ψ(qp)
R
†
(

0, t+ x

v

)
Ψ(qp)
L (x− vt, 0) δ

(
x+ v(t− t′)

)
+ h.c.. (D.26)

By using the result for this commutator, the tunneling-dependent contributions to
current in Eq. (D.18) and Eq. (D.19) can be simplified to

ρ
(1)
R/L(x, t) = −iΘ(±x)Λν

v
Ψ(qp)
R
†
(

0, t∓ x

v

)
Ψ(qp)
L

(
0, t∓ x

v

)
+ h.c., (D.27)

ρ
(2)
R/L(x, t) = −iΘ(±x)

∫ t∓x
v

−∞
dt′′

[
H

(qp)
T (t′′),+iΛν

v
Ψ(qp)
R
†
(

0, t∓ x

v

)
Ψ(qp)
L

(
0, t∓ x

v

)
+ h.c.

]
.

(D.28)

Let us observe that this contribution exist only for x > 0, in accordance with the
fact that the effects of tunneling on right-moving particles exist solely downstream
of the QPC. A similar result holds true for left-moving particle, where, in that case,
tunneling affects transport only for x < 0.
Operators for charge current entering reservoir 2 and 3 are

J2/3(t) = JR/L(±d, t). (D.29)

The expansion of J2/3 in terms of the parameter Λ can be obtained from Eq. (D.16)

J2/3(t) = J
(0)
2/3(t) + J

(1)
2/3(t) + J

(2)
2/3(t) +O(Λ3), (D.30)

where

J
(0)
2/3(t) = ev

√
ν

2π
(
∂xΦR/L(x, t)

)
x=±d

, (D.31)

J
(1)
2/3(t) = ±iΛeνΨR

†
(

0, t− d

v

)
ΨL

(
0, t− d

v

)
+ h.c., (D.32)

J
(2)
2/3(t) = ±i

∫ t− d
v

−∞
dt′′

[
H

(qp)
T (t′′),+iΛeνΨ(qp)

R
†
(

0, t− d

v

)
Ψ(qp)
L

(
0, t− d

v

)
+ h.c.

]
.

(D.33)
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Appendix E

Bosonic correlator and Green’s
functions

In this Appendix, we evaluate the bosonic correlation function,

WR/L(x, t) =
〈
φR/L(x, t)φR/L(0, 0)

〉
−
〈
φ2
R/L(0, 0)

〉
, (E.1)

where the bosonic fields φR/L(x, t) evolve accordingly to the edge hamiltonian

H = v

4π

∫ +∞

−∞
dx
[
(∂xΦR(x))2 + (∂xΦL(x))2

]
, (E.2)

and their expression in terms of bosonic annihilation and creation operators bq,R/L
and b†q,R/L read

φR/L(x, t) = i

√
2π
L

∑
q>0

e−
aq
2

√
q

[
e−iq(vt∓x)bq,R/L − eiq(vt∓x)b†q,R/L

]
. (E.3)

The average in Eq. (E.1) is taken with respect to the equilibrium density matrix
ρeq = e−

H
θ , where θ is the system temperature and we assumed kB = 1. For the

evaluation of Eq. (E.1), it is useful to write down the following average values over
ρeq satisfied by bosonic annihilation and creation operators

〈bq,R/Lbq′,R/L〉 = 〈b†q,R/Lb
†
q′,R/L〉 = 0, (E.4)

〈b†q,R/Lbq′,R/L〉 = δq,q′
1

e
vq
θ − 1

, (E.5)

〈bq,R/Lb
†
q′,R/L〉 = δq,q′

e
vq
θ

e
vq
θ − 1

. (E.6)

By exploiting Eqs. (E.4),(E.5) and (E.6), one can obtain the following relation

〈
φR/L(x, t)φR/L(0, 0)

〉
= 2π

L

∑
q>0

e−aq

q

[
e−iq(vt∓x)

( 1
e
vq
θ

+ 1
)

+ eiq(vt∓x)

e
vq
θ

]
. (E.7)

By taking the continuous limit (L→ +∞)

2π
L

∑
q>0
→
∫ +∞

0
dq, (E.8)
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and plugging the result into Eq. (E.1), one finds

WR/L(x, t) =
∫ +∞

0
dq

e−aq

q

[
e
vq
θ

e
vq
θ − 1

(
e−iq(vt∓x) − 1

)
+ 1
e
vq
θ − 1

(
eiq(vt∓x) − 1

)]
.

(E.9)
It is convenient to recast this expression as a sum of a zero temperature and a finite
temperature contributions as

WR/L(x, t) =WR/L;0(x, t) +WR/L;θ(x, t), (E.10)

where

WR/L;0(x, t) = −
∫ +∞

0
dq

e−aq

q
[(1− cos q(vt∓ x))− iη sin q(vt∓ x)] , (E.11)

WR/L;θ(x, t) = −
∫ +∞

0
dq

e−aq

q
(1− cos q(vt∓ x))

(
coth vq2θ − 1

)
. (E.12)

Let us observe that the last term vanishes at θ = 0, since

lim
θ→0

(
coth vq2θ − 1

)
= lim

θ→0

(
e
vq
2θ − e−

vq
2θ

e
vq
2θ + e−

vq
2θ

)
= 0. (E.13)

E.1 Correlation function at θ = 0
The complex exponential in Eq. (E.11) can be written as a power series, thus finding

WR/L;0(x, t) = −
∫ +∞

0
dq

e−aq

q

(
1− eiq(x∓vt)

)
=

=
∫ +∞

0
dq e−aq

+∞∑
n=1

(±i (vt∓ x))n

n! qn−1, (E.14)

By defining y = aq, one can write

WR/L;0(x, t) =
+∞∑
n=1

(
iη (vt∓ x)

a

)n 1
n!

∫ +∞

0
dy e−yyn−1. (E.15)

Then, we use the integral representation of the Gamma function

Γ(n) =
∫ +∞

0
dy e−yyn−1 = (n− 1)!, (E.16)

in order to obtain

WR/L;0(x, t) =
+∞∑
n=1

1
n

(
iη (x∓ vt)

a

)n
. (E.17)

Finally, by recalling the identity

ln (1− x) = −
+∞∑
n=1

xn

n
, (E.18)

one has
WR/L;0(x, t) = ln 1

1 + i(vt∓x)
a

. (E.19)
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E.2 Correlation function at finite temperature

We recast Eq. (E.12) as

WR/L;θ(x, t) =
∫ +∞

0
dq

e
−aq

q

q

(
2− eiq(vt∓x) − e−iq(vt∓x)

) e−
vq
θ

1− e−
vq
θ

. (E.20)

By defining y = vq
θ and ωc = v

a , we can write the above equation in the following
form

WR/L;θ(x, t) = −
∫ +∞

0
dy

1
y (1− e−y)

(
2e−(1+ωc

θ )y − e−
(
1+ωc

θ
− iθ(vt∓x)

v

)
y

− e−
(
1+ωc

θ
+ iθ(vt∓x)

v

)
y

)
. (E.21)

Let us recall the definition of the Hurwitz Zeta function [110]

ζ(γ, δ) = 1
Γ(γ)

∫ +∞

0
dt

e−δt

t1−γ (1− e−t) , (E.22)

and let us write Eq. (E.20) as

WR/L;θ(x, t) = − lim
γ→0

Γ(γ)ζ̃(γ), (E.23)

where

ζ̃(γ) = 2ζ
(
γ, 1 + ωc

θ

)
− ζ

(
γ, 1 + ωc

θ
− iθ(vt∓ x)

v

)
− ζ

(
γ, 1 + ωc

θ
+ iθ(vt∓ x)

v

)
. (E.24)

In the limit γ → 0, the following asymptotic relations hold true [110]

Γ(γ) = 1
γ

+O

( 1
γ2

)
, (E.25)

ζ(γ, δ) = 1
2 − δ +

(
ln Γ(δ) + ln 2π

2

)
γ +O

(
γ2
)
. (E.26)

By exploiting Eqs. (E.25) and (E.26), the function in Eq. (E.23) becomes

WR/L;θ(x, t) = ln

∣∣∣Γ (1 + θ
ωc
− iθ(vt∓ x)

)∣∣∣2
Γ2
(
1 + θ

ωc

) . (E.27)

E.2.1 Correlation function at any temperature

Recasting together the two results according to Eq. (E.10), one obtains

WR/L(x, t) = ln


∣∣∣Γ (1 + θ

ωc
− iθ(t∓ x

v )
)∣∣∣2

Γ2
(
1 + θ

ωc

) (
1 + iωc

(
t∓ x

v

))
 . (E.28)
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In conclusion, let us observe that correlation function has the following dependence
on x and t

WR/L(x, t) =WR/L (x∓ vt, 0) . (E.29)

Therefore, one can define a function with a single argument z = t∓ x
v as

W (z) = ln


∣∣∣Γ (1 + θ

ωc
− iθz

)∣∣∣2
Γ2
(
1 + θ

ωc

)
(1 + iωcz)

 , (E.30)

which appears in the main text in Eq. (3.27).
Since ωc is the high-energy cut-off, we will always work in the limit ωc � θ. In this
regime, we can use the identity

|Γ(1 + iy)|2 = πy

sinh (πy) , y ∈ R, (E.31)

so that Eq. (E.30) becomes

W (z) = ln
[

πθz

sinh (πθz)
1

1 + iωcz

]
. (E.32)
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Appendix F

Fourier transform of Pg(t)

In this Appendix, we calculate the Fourier transform of Pg(t) = egW (t)

P̃g(E) =
∫ ∞
−∞

dteiEtPg(t) =
∫ ∞
−∞

dteiEtegW (t), (F.1)

where

W (t) = ln

∣∣∣Γ (1 + θ
ωc
− iθt

)∣∣∣
Γ
(
1 + θ

ωc

)
(1 + iωct)

. (F.2)

In addition, we derive some useful formulas that involve P̃g(E).
It is useful to recast the function W (t) in the limit ωc

θ � 1, as it appears in Eq.
(E.32). For completeness, we report its expression

W (t) = ln
[

πtθ

(1 + iωct) sinh (πtθ)

]
. (F.3)

By inserting Eq. (F.3) into (F.1), one finds

P̃g(E) =
∫ +∞

−∞
dteiEt

[
πt

1 + iωct

θ

sinh (πtθ)

]g
. (F.4)

First of all, let us switch variable of integration as t̃ = ωct− i

P̃g(E) = 1
ωc

∫ +∞−i

−∞−i
dt̃eiE

t̃+i
ωc

π t̃+iωc
it̃

θ

sinh
(
π t̃+iωc θ

)
g . (F.5)

In the approximation ωct� 1, t̃+ i ≈ t̃: then, by substituting t′ = t̃
ωc
, one obtains

P̃g(E) = e−
E
ωc

∫ +∞− i
ωc

−∞− i
ωc

dt′eiEt
′
[
πθ

ωc

1
i sinh (πt′θ)

]g
. (F.6)

Finally, let us substitute t′ = t− i
2T , thus finding

P̃g(ω) = e−
E
ωc e

E
2θ

∫ +∞− i
ωc

+ i
2θ

−∞− i
ωc

+ i
2θ

dteiEt
[
πθ

ωc

1
cosh (πtθ)

]g
, (F.7)
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since i sinh(x− iπ
2 ) = cosh(x).

Let us observe that, the integral can be restricted to the real axis: by calling F (t)
the integrand function in Eq. (F.7)

∫ ∞− i
ωc

+ i
2T

−∞− i
ωc

+ i
2T

dt F (t) =
∫ ∞
−∞

dt F (t). (F.8)

In order to check this formula, let us consider the left member of Eq. (F.8), assuming
that t is a complex variable. Let us choose as integral contour the rectangle R with
one side between (−r,+r) and (+r,−r), with r ∈ R, and with the others joining
the real axis <(z) to the line =t = + 1

ωc
− 1

2T , in correspondence of −r e r on the
imaginary axis =(z). In the limit r → +∞, the integration over the two vertical
lines gives a vanishing contribution. The integral over the contour R becomes∮

R
F (t)dt =

∫ −∞− i
ωc

+ i
2T

∞− i
ωc

+ i
2T

dt F (t) +
∫ ∞
−∞

dt F (t). (F.9)

Since the integrand function is analytical in R, the above integral is zero according
to Cauchy’s theorem ∫ −∞− i

ωc
+ i

2T

∞− i
ωc

+ i
2T

dt F (t) +
∫ ∞
−∞

dt F (t) = 0, (F.10)

thus proving the formula in Eq. (F.8).
According to this result, one can write P̃g(E)

P̃g(E) = e−
E
ωc e

E
2θ

∫ +∞

−∞
dt eiEt

[
πθ

ωc

1
cosh (πtθ)

]g
. (F.11)

Let us exploit the parity of the integrand function in order to write it as

P̃g(E) = 2e−
E
ωc e

E
2θ

∫ +∞

0
dt cos iEt

[
πθ

ωc

1
cosh πtθ

]g
. (F.12)

Let us substitute z = e−πtθ in the integral (F.12)

P̃g(E) = 2e−
E
ωc e

E
2θ

(2πθ
ωc

)g 1
2πθ

∫ 1

0
dz zg−1 z

iE
πT + z−

iE
πθ

(z2 + 1)g . (F.13)

By using s = z2

z2+1 , Eq. (F.13) becomes

P̃g(E) = e−
E
ωc e

E
2θ

(2πθ
ωc

)g 1
2πθ

∫ 1

0
ds s

g
2−1−i ω

2πT (1− s)
g
2−1+i ω

2πT . (F.14)

By introducing the definition of the Beta function[110]

B [x, y] =
∫ 1

0
ds sx−1 (1− s)y−1 , (F.15)

Eq. (F.14) becomes

P̃g(E) = e−
E
ωc e

E
2θ

(2πθ
ωc

)g 1
2πθB

[
g

2 − i
E

2πθ ,
g

2 + i
E

2πθ

]
. (F.16)
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Another representation of the Beta function is

B(z, w) = Γ(z)Γ(w)
Γ(z + w) , (F.17)

which can be used to write(F.16) as

P̃g(E) =
(2πθ
ωc

)g−1 e
E
2θ

Γ(g)ωc

∣∣∣∣Γ(g2 + iE

2πθ

)∣∣∣∣2 . (F.18)

In the limit of zero temperature, one can exploit the asymptotic form of the Gamma
function

|Γ(x+ iy)| ∼
√

2π|y|x−
1
2 e−

π|y|
2 , (F.19)

valid for |y| → +∞, to recast Eq. (F.18) as

P̃g(E) = 2π
Γ(g)ωgc

Eg−1Θ(E). (F.20)

Finally, let us observe that P̃g(E) is linked to the Fermi function f(E) = 1
e
E
θ

, since
P̃g(E) = Dg(E)f(−E), where

Dg(E) = (2π)g
Γ(g)ωc

(
θ

ωc

)g−1
∣∣∣Γ (g2 + iE

2πθ

)∣∣∣2∣∣∣Γ (1
2 + iE

2πθ

)∣∣∣2 . (F.21)
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Appendix G

Complements to the calculation
of charge, mixed and heat noises

In this Appendix, we present some complementary details of the perturbative calcu-
lations of charge, mixed and heat noises in Chapter 3 and Chapter 4. In particular,
we derive the useful formulas employed for evaluating heat noise in the double-drive
configuration in Sec. 4.4.

G.1 Charge noise
In the main text charge noise ( α and β refer to reservoirs 2 or 3)

Sαβ =
∫ T

0

dt

T

∫ +∞

−∞
dt′
[〈
Jα(t)Jβ(t′)

〉
− 〈Jα(t)〉

〈
Jβ(t′)

〉]
, (G.1)

has been written as a perturbative series in powers of Λ, as

Sαβ = S(02)
αβ + S(11)

αβ + S(20)
αβ +O

(
Λ3
)
, (G.2)

with
S(ij)
αβ =

∫ T
0

dt

T

∫ +∞

−∞
dt′
〈
J (i)
α (t)J (j)

β (t′)
〉
−
〈
J (i)
α

〉〈
(t)J (j)

β (t′)
〉
. (G.3)

Here, the perturbative contribution to charge current operator are

J
(0)
2/3(t) = ev

√
ν

2π
(
∂xΦR/L(x, t)

)
x=±d

, (G.4)

J
(1)
2/3(t) = ±iΛeνΨR

†
(

0, t− d

v

)
ΨL

(
0, t− d

v

)
+ h.c., (G.5)

J
(2)
2/3(t) = ±i

∫ t− d
v

−∞
dt′′

[
H

(qp)
T (t′′),+iΛeνΨ(qp)

R
†
(

0, t− d

v

)
Ψ(qp)
L

(
0, t− d

v

)
+ h.c.

]
.

(G.6)

Let us observe that, since J (2)
2 (t) = −J (2)

3 (t) , auto-correlators and cross-correlators
are connected as [104, 112]

S22 = S33 = −S23 = −S32. (G.7)
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For this relation, we can focus on the auto-correlator of reservoirs 2, namely S22,
and we use the shorthand notation SC ≡ S22. In Chapter 3, the contribution with
S(11)
C has been already evaluated. Here, we show that it is the only non-vanishing

contribution. Let us start by writing explicitly the two contributions S(02)
C and S(20)

C .
They read

S(02)
C = −e

2ν
√
ν

2π

∫ T
2

−T2

dt

T

∫ +∞

−∞
dt′
∫ t′

−∞
dt′′×

×
[ 〈
∂tΦR(0, t)

[
ΛΨ(qp)

R
† (0, t′′)Ψ(qp)

L

(
0, t′′

)
+ h.c.,+iΛΨ(qp)

R
† (0, t′)Ψ(qp)

L

(
0, t′

)
+ h.c.

]〉
+

− 〈∂tΦR(0, t)〉
〈[

ΛΨ(qp)
R
† (0, t′′)Ψ(qp)

L

(
0, t′′

)
+ h.c.,+iΛΨ(qp)

R
† (0, t′)Ψ(qp)

L

(
0, t′

)
+ h.c.

]〉 ]
=

= −e
2ν
√
ν

2π

∫ T
2

−T2

dt

T

∫ +∞

−∞
dt′
∫ t′

−∞
dt′′×

×
〈
∂tφR(0, t)

[
ΛΨ(qp)

R
† (0, t′′)Ψ(qp)

L

(
0, t′′

)
+ h.c.,+iΛΨ(qp)

R
† (0, t′)Ψ(qp)

L

(
0, t′

)
+ h.c.

]〉
,

(G.8)

S(20)
C = −e

2ν
√
ν

2π

∫ T
2

−T2

dt

T

∫ +∞

−∞
dt′
∫ t

−∞
dt′′×

×
[ 〈[

ΛΨ(qp)
R
† (0, t′′)Ψ(qp)

L

(
0, t′′

)
+ h.c.,+iΛΨ(qp)

R
† (0, t) Ψ(qp)

L (0, t) + h.c.
]
∂t′ΦR(0, t′)

〉
+

−
〈[

ΛΨ(qp)
R
† (0, t′′)Ψ(qp)

L

(
0, t′′

)
+ h.c.,+iΛΨ(qp)

R
† (0, t) Ψ(qp)

L (0, t) + h.c.
]〉 〈

∂t′ΦR(0, t′)
〉 ]

=

= −e
2ν
√
ν

2π

∫ T
2

−T2

dt

T

∫ +∞

−∞
dt′
∫ t

−∞
dt′′×

×
〈[

ΛΨ(qp)
R
† (0, t′′)Ψ(qp)

L

(
0, t′′

)
+ h.c.,+iΛΨ(qp)

R
† (0, t) Ψ(qp)

L (0, t) + h.c.
]
∂t′φR(0, t′)

〉
.

(G.9)

Notice that the factor d
v has been canceled out by a shift over t or t′.

In order to evaluate these contributions, we have to perform the following averages〈
∂t1φR(0, t1)Ψ†R(0, t2)ΨR(0, t3)

〉
, (G.10)〈

∂t1φR(0, t1)ΨR(0, t2)Ψ†R(0, t3)
〉
, (G.11)〈

Ψ†R(0, t1)ΨR(0, t2)∂t3φR(0, t3)
〉
, (G.12)〈

ΨR(0, t1)Ψ†R(0, t2)∂t3φR(0, t3)
〉
. (G.13)

We recall the bosonized expression for the fermionic field

Ψ(qp)
R/L(x, t) = ψ

(qp)
R/L(x, t) exp

{
−iνe

∫ t

0
dt′VR/L(x∓ v(t− t′), t′)

}
, (G.14)

where we introduced time-dependent electronic and quasi-particle field operators at
the equilibrium, i.e. VR = VL = 0

ψ
(qp)
R (x, t) = F

(qp)
R√
2πa

eikF xe−i
√
νφR(x,t). (G.15)
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By using looking at the bosonization identity, it is clear that we can simply focus
on the following quantities

C±1 (t1, t2, t3) = 〈∂t1φ(0, t1)e±i
√
νφ(0,t2)e∓i

√
νφ(0,t3)〉, (G.16)

C±2 (t1, t2, t3) = 〈e±i
√
νφ(0,t1)e∓i

√
νφ(0,t2)∂t3φ(0, t3)〉. (G.17)

For simplicity, we drop the chirality index R.
In order to evaluate C1 and C2, we start by considering the following general

average value

E1(ε1, ε2, ε3; t1, t2, t3) = 〈e−iε1φ(0,t1)e−iε2φ(0,t2)e−iε3φ(0,t3)〉, (G.18)

which is connected to C1 and C2 by this relation

C±1 (t1, t2, t3) = i∂t1

{
lim
ε1→0

∂ε1E1(ε1, ε2, ε3; t1, t2, t3)
}
ε2=−ε3∓

√
ν

, (G.19)

C±2 (t1, t2, t3) = i∂t3

{
lim
ε3→0

∂ε3E1(ε1, ε2, ε3; t1, t2, t3)
}
ε1=−ε2=∓

√
ν

. (G.20)

By using [36]

〈eχ(0,t1)eχ(0,t2)eχ(0,t3)〉 = e
1
2
∑3

i=1〈χ(0,ti)2〉e
∑

i<j
〈χ(0,ti)χ(0,tj)〉, (G.21)

we obtain from Eq. (G.18)

E1(ε1, ε2, ε3; t1, t2, t3) = e−
1
2
∑3

i=1〈ε
2
iφ

2(0,ti)〉×
× e−{ε1ε2〈φ(0,t1)φ(0,t2)〉+ε1ε3〈φ(0,t1)φ(0,t3)〉+ε2ε3〈φ(0,t2)φ(0,t3)〉}. (G.22)

Finally, we use Eqs. (G.19) and (G.20) to find C±1 and C±2

C±1 (t1, t2, t3) = ∓i
√
νK(t1, t2, t3)Pν(t2 − t3), (G.23)

C±2 (t1, t2, t3) = ∓i
√
νK(−t3,−t1,−t2)Pν(t1 − t2), (G.24)

where we defined (see Eq. (G.25) in the main text)

Pg(t′ − t) = 〈ei
√
gφR/L(0,t′)e−i

√
gφR/L(0,t)〉 =

=
[

πθ(t′ − t)
sinh (πθ(t′ − t)) (1 + iωc(t′ − t))

]g
, (G.25)

and

K(t1, t2, t3) = ∂t1 {〈φ(0, t1)φ(0, t3)〉 − 〈φ(0, t1)φ(0, t2)〉} =

=
∫
dτP2(t1 − τ) (Θ(τ − t3)−Θ(τ − t2)) . (G.26)

Therefore, the averages we were interested in reads〈
∂t1φR(0, t1)Ψ†R(0, t2)ΨR(0, t3)

〉
= i
√
νK(t1, t2, t3)G<R(t2, t3), (G.27)〈

∂t1φR(0, t1)ΨR(0, t2)Ψ†R(0, t3)
〉

= −i
√
νK(t1, t2, t3)G<R(t2, t3), (G.28)〈

Ψ†R(0, t1)ΨR(0, t2)∂t3φR(0, t3)
〉

= i
√
νK(t1, t2, t3)G>R(t1, t2), (G.29)〈

ΨR(0, t1)Ψ†R(0, t2)∂t3φR(0, t3)
〉

= −i
√
νK(t1, t2, t3)G>R(t1, t2). (G.30)
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Let us observe that one could find similar relation for left-movers〈
∂t1φL(0, t1)Ψ†L(0, t2)ΨL(0, t3)

〉
= i
√
νK(t1, t2, t3)G<L (t2, t3), (G.31)〈

∂t1φL(0, t1)ΨL(0, t2)Ψ†L(0, t3)
〉

= −i
√
νK(t1, t2, t3)G<L (t2, t3), (G.32)〈

Ψ†L(0, t1)ΨL(0, t2)∂t3φL(0, t3)
〉

= i
√
νK(t1, t2, t3)G>L (t1, t2), (G.33)〈

ΨL(0, t1)Ψ†L(0, t2)∂t3φL(0, t3)
〉

= −i
√
νK(t1, t2, t3)G>L (t1, t2). (G.34)

Exploiting the following average

〈∂t1φ(0, t1)∂tφ(0, t)〉 = − π2θ2

v2 sinh2 (πθ(t1 − t))
(G.35)

the function K can be further evaluated by using

∂t1〈φ(0, t1)φ(0, t2)〉 =
∫ t2

−∞
dt〈∂t1φ(0, t1)∂tφ(0, t)〉 =

= πθ

v
[coth (πθ(t1 − t2))− 1] . (G.36)

By using this result, one finds

K(t1, t2, t3) = πθ

v
(coth (πθ(t1 − t3))− coth (πθ(t1 − t2))) =

=πθ

v

sinh (πθ(t2 − t3))
sinh (πθ(t1 − t3)) sinh (πθ(t1 − t2)) . (G.37)

The contributions to charge noise in Eqs. (G.8) and (G.9) become

S(02)
C = − |Λ|2 e

2ν
√
ν

2π

∫ T
2

−T2

dt

T

∫ +∞

−∞
dt′
∫ t′

−∞
dt′′K(t, t′′, t′)×

×
[
G<R(t′′, t′)G>L (t′′, t′) +G>R(t′′, t′)G<L (t′′, t′)+

+G<R(t′, t′′)G>L (t′, t′′) +G>R(t′, t′′)G<L (t′, t′′)
]
, (G.38)

S(20)
C = − |Λ|2 e

2ν
√
ν

2π

∫ T
2

−T2

dt

T

∫ +∞

−∞
dt′
∫ t′

−∞
dt′′K(−t,−t′′,−t′)×

×
[
G<R(t′′, t′)G>L (t′′, t′) +G>R(t′′, t′)G<L (t′′, t′)+

+G<R(t′, t′′)G>L (t′, t′′) +G>R(t′, t′′)G<L (t′, t′′)
]
. (G.39)

Notice that we exchanged t and t′ in S(20). Since K(−t,−t′′,−t′) = −K(t, t′′, t′), it
easy to see that S(02)

C +S(20)
C = 0, thus implying that S(11)

C is the only non-vanishing
contribution at lowest order to charge noise.
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G.2 Mixed and heat noise in the HBT configuration

In this Section, we focus on charge-heat mixed and heat noises

SX,αβ =
∫ T

0

dt

T

∫ +∞

−∞
dt′

[
〈Jα(t′)Jβ(t)〉 − 〈Jα(t′)〉 〈Jβ(t)〉

]
, (G.40)

SQ,αβ =
∫ T

0

dt

T

∫ +∞

−∞
dt′

[
〈Jα(t′)Jβ(t)〉 − 〈Jα(t′)〉 〈Jβ(t)〉

]
, (G.41)

in the HBT configuration and at zero temperature, as discussed in Sec. 4.3. By
assuming that the QPC is working in the weak-backscattering regime, noises can be
expressed in terms of a perturbative series in powers of tunneling amplitude Λ as

SX,αβ = S(02)
X,αβ + S(20)

X,αβ + S(11)
X,αβ +O

(
|Λ|3

)
, (G.42)

SQ,αβ = S(02)
Q,αβ + S(20)

Q,αβ + S(11)
Q,αβ +O

(
|Λ|3

)
, (G.43)

where

S(ij)
X,αβ =

∫ T
0

dt

T

∫ +∞

−∞
dt′
{
〈J (i)
α (t′)J (j)

β (t)〉 − 〈J (i)
α (t′)〉〈J (j)

β (t)〉
}
, (G.44)

S(ij)
Q,αβ =

∫ T
0

dt

T

∫ +∞

−∞
dt′
{
〈J (i)

α (t′)J (j)
β (t)〉 − 〈J (i)

α (t′)〉〈J (j)
β (t)〉

}
. (G.45)

The perturbative expansion for heat current operator reads

J (0)
2/3(t) = ±vQ(0)

R/L(±d, t), (G.46)

J (1)
2/3(t) = ±Q̇R/L (±d, t) , (G.47)

J (2)
2/3(t) = ±i

∫ t− d
v

−∞
dt′′

[
Ht(t′′), Q̇R/L (±d, t)

]
, (G.48)

where

Q(0)
R (x, t) = v

4π
[

(∂xφR(x, t))2 ± 2e
√
ν∂xφR(x, t)VR

(
t∓ x

v

)
+ e2ν

v
V 2
R

(
t∓ x

v

) ]
,

(G.49)

Q(0)
L (x, t) = v

4π (∂xφL(x, t))2 , (G.50)

Q̇R (x, t) = vΛ (∂x + ikF ) Ψ(qp)
R
†(x, t)Ψ(qp)

L (x, t) + H.c., (G.51)

Q̇L (x, t) = −vΛΨ(qp)
R
†(x, t) (∂x + ikF ) Ψ(qp)

L (x, t) + H.c.. (G.52)

As in the main text, we consider the auto-correlators of terminals 3, namely SX ≡
SX,33 and SQ ≡ SQ,33. In Chapter 4, we have already evaluated S(11)

X/Q. Here, we
will show that these are the only non-vanishing contribution in our perturbative
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approach. Indeed, the other contributions read

S(02)
X = −e

√
ν

2π

∫ T
2

−T2

dt

T

∫ +∞

−∞
dt′
∫ t′

−∞
dt′′×

×
[
〈∂tφL(0, t)

[
ΛΨ(qp)

R
† (0, t′′)Ψ(qp)

L

(
0, t′′

)
+ h.c.,

+ iΛΨ(qp)
R
† (0, t′) (∂t′ + ikF v) Ψ(qp)

L

(
0, t′

)
+ h.c.

]
〉
]
, (G.53)

S(20)
X = eν

4πv

∫ T
2

−T2

dt

T

∫ +∞

−∞
dt′
∫ t

−∞
dt′′×

×
[〈[

ΛΨ(qp)
R
† (0, t′′)Ψ(qp)

L

(
0, t′′

)
+ h.c.,

+ iΛΨ(qp)
R
† (0, t) Ψ(qp)

L (0, t) + h.c.
] (
∂t′φL(0, t′)

)2 〉+

−
〈[

ΛΨ(qp)
R
† (0, t′′)Ψ(qp)

L

(
0, t′′

)
+ h.c.,

+ iΛΨ(qp)
R
† (0, t) Ψ(qp)

L (0, t) + h.c.
]〉 〈

∂t′
(
φL(0, t′)

)2〉 ]
, (G.54)

S(02)
Q = 1

4π

∫ T
2

−T2

dt

T

∫ +∞

−∞
dt′
∫ t

−∞
dt′′×

×
[〈

(∂tφL(0, t))2
[
ΛΨ(qp)

R
† (0, t′′)Ψ(qp)

L

(
0, t′′

)
+ h.c.,

+ iΛΨ(qp)
R
† (0, t′) (∂t′ + ikF v) Ψ(qp)

L

(
0, t′

)
+ h.c.

]〉
+

−
〈
∂t (φL(0, t))2

〉〈[
ΛΨ(qp)

R
† (0, t′′) (∂t′ + ikF v) Ψ(qp)

L

(
0, t′′

)
+ h.c.,

+ iΛΨ(qp)
R
† (0, t′)Ψ(qp)

L

(
0, t′

)
+ h.c.

]〉]
, (G.55)

S(20)
Q = 1

4π

∫ T
2

−T2

dt

T

∫ +∞

−∞
dt′
∫ t

−∞
dt′′×

×
[〈[

ΛΨ(qp)
R
† (0, t′′)Ψ(qp)

L

(
0, t′′

)
+ h.c.,

+ iΛΨ(qp)
R
† (0, t) (∂t + ikF v) Ψ(qp)

L (0, t) + h.c.
] (
∂t′φL(0, t′)

)2 〉+

−
〈[

ΛΨ(qp)
R
† (0, t′′) (∂t′ + ikF v) Ψ(qp)

L

(
0, t′′

)
+ h.c.,

+ iΛΨ(qp)
R
† (0, t) Ψ(qp)

L (0, t) + h.c.
]〉 〈

∂t′
(
φL(0, t′)

)2〉 ]
, (G.56)
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for mixed and heat noises.
In order to evaluate these expression, we need the values of the following averages〈

(∂t1φL(0, t1))2 Ψ†L(0, t2)ΨL(0, t3)
〉
, (G.57)〈

(∂t1φL(0, t1))2 ΨL(0, t2)Ψ†L(0, t3)
〉
, (G.58)〈

Ψ†L(0, t1)ΨL(0, t2) (∂t3φL(0, t3))2
〉
, (G.59)〈

ΨL(0, t1)Ψ†L(0, t2) (∂t3φL(0, t3))2
〉
. (G.60)

(G.61)

As for charge, the above equations are linked through bosonization identity to the
following quantities (we drop the chirality index L)

D±1 (t1, t2, t3) = 〈(∂t1φ(0, t1))2 e±i
√
νφ(0,t2)e∓i

√
νφ(0,t3)〉, (G.62)

D±2 (t1, t2, t3) = 〈e±i
√
νφ(0,t1)e∓i

√
νφ(0,t2) (∂t3φ(0, t3))2〉, (G.63)

where the thermal average is performed over the initial equilibrium density matrix,
in absence of tunneling and driving voltage and bosonic fields evolve according to
the edge Hamiltonian H0. In order to evaluate D±1 and D±2 , we start by considering
the following general average value

E2(ε1, ε2, ε3, ε4; t1, t2, t3, t4) =
= 〈e−iε1φ(0,t1)e−iε2φ(0,t2)e−iε3φ(0,t3)e−iε4φ(0,t4)〉, (G.64)

which is connected to D±1 and D±2 by these relations

D±1 (t1, t2, t3) = −∂t1∂t′1
{

lim
ε1→0,ε2→0

∂ε1∂ε2E2(ε1, ε2, ε3, ε4; t1, t2, t3, t′3)
}
ε1=−ε2=∓

√
ν

t′1=t1

,

(G.65)

D±2 (t1, t2, t3) = −∂t3∂t′3
{

lim
ε1→0,ε2→0

∂ε3∂ε4E2(ε1, ε2, ε3, ε4; t1, t′1, t2, t3)
}
ε4=−ε3=±

√
ν

t′3=t3

.

(G.66)
(G.67)

By using Eq. (G.21), we obtain from Eq. (G.18)

E2(ε1, ε2, ε3, ε4; t1, t2, t3, t4) = e−
1
2
∑4

i=1 ε
2
i 〈φ

2(0,ti)〉× (G.68)
× e−{ε1ε2〈φ(0,t1)φ(0,t2)〉+ε1ε3〈φ(0,t1)φ(0,t3)〉+ε1ε4〈φ(0,t1)φ(0,t4)〉}×
×e−{ε2ε3〈φ(0,t2)φ(0,t3)〉+ε2ε4〈φ(0,t2)φ(0,t4)〉+ε3ε4〈φ(0,t3)φ(0,t4)〉}. (G.69)

Finally, we use Eq. (G.65) and (G.66) to find D±1 and D±2

D±1 (t1, t2, t3) =
{
〈(∂t1φ(t1))2〉 − ν (K(t1, t2, t3))2

}
Pν(t2 − t3), (G.70)

D±2 (t1, t2, t3) =
{
〈(∂t3φ(t3))2〉 − ν (K(−t3,−t1,−t2))2

}
Pν(t1 − t2). (G.71)
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The average values we were looking for become

〈
(∂t1φL(0, t1))2 Ψ†L(0, t2)ΨL(0, t3)

〉
=
{
〈(∂t1φ(t1))2〉 − ν (K(t1, t2, t3))2

}
G<L (t2, t3),

(G.72)〈
(∂t1φL(0, t1))2 ΨL(0, t2)Ψ†L(0, t3)

〉
=
{
〈(∂t1φ(t1))2〉 − ν (K(t1, t2, t3))2

}
G<L (t2, t3),

(G.73)〈
Ψ†L(0, t1)ΨL(0, t2) (∂t3φL(0, t3))2

〉
=
{
〈(∂t1φ(t1))2〉 − ν (K(t1, t2, t3))2

}
G>L (t1, t2),

(G.74)〈
ΨL(0, t1)Ψ†L(0, t2) (∂t3φL(0, t3))2

〉
=
{
〈(∂t1φ(t1))2〉 − ν (K(t1, t2, t3))2

}
G>L (t1, t2).

(G.75)

The expression for contributions to mixed and heat noises in Eqs. (G.53),(G.54),(G.56)
and (G.56) become, respectively,

S(02)
X = |Λ|2 e

√
ν

2π

∫ T
2

−T2

dt

T

∫ +∞

−∞
dt′
∫ t′

−∞
dt′′×

×
[
(∂t + ikF v)

(
K(t′, t′′, t)G>L (t′′, t)

)
G<R(t′′, t)+

+ (∂t + ikF v)
(
K(t′, t′′, t)G<L (t′′, t)

)
G>R(t′′, t)+

− (∂t + ikF v)
(
K(t′, t, t′′)G>L (t, t′′)

)
G<R(t, t′′)+

− (∂t + ikF v)
(
K(t′, t, t′′)G<L (t, t′′)

)
G>R(t, t′′)

]
, (G.76)

S(20)
X = |Λ|2 eν

4πv

∫ T
2

−T2

dt

T

∫ +∞

−∞
dt′
∫ t

−∞
dt′′×

×
[ (
K2(t′, t′′, t)G>L (t′′, t)

)
G<R(t′′, t)+

+
(
K2(t′, t′′, t)G<L (t′′, t)

)
G>R(t′′, t)+

−
(
K2(t′, t, t′′)G>L (t, t′′)

)
G<R(t, t′′)+

−
(
K2(t′, t, t′′)G<L (t, t′′)

)
G>R(t, t′′)

]
, (G.77)
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and

S(02)
Q = |Λ|2 1

4π

∫ T
2

−T2

dt

T

∫ +∞

−∞
dt′
∫ t

−∞
dt′′×

×
[
(∂t′ + ikF v)

(
K2(t′, t′′, t)G>L (t′′, t)

)
G<R(t′′, t)+

+ (∂t + ikF v)
(
K2(t′, t′′, t)G<L (t′′, t)

)
G>R(t′′, t)+

− (∂t + ikF v)
(
K2(t′, t, t′′)G>L (t, t′′)

)
G<R(t, t′′)+

− (∂t + ikF v)
(
K2(t′, t, t′′)G<L (t, t′′)

)
G>R(t, t′′)

]
, (G.78)

S(20)
Q = |Λ|2 1

4π

∫ T
2

−T2

dt

T

∫ +∞

−∞
dt′
∫ t′

−∞
dt′′×

×
[
(∂t + ikF v)

(
K2(t′, t′′, t)G>L (t′′, t)

)
G<R(t′′, t)+

+ (∂t + ikF v)
(
K2(t′, t′′, t)G<L (t′′, t)

)
G>R(t′′, t)+

− (∂t + ikF v)
(
K2(t′, t, t′′)G>L (t, t′′)

)
G<R(t, t′′)+

− (∂t + ikF v)
(
K2(t′, t, t′′)G<L (t, t′′)

)
G>R(t, t′′)

]
. (G.79)

All these contributions vanish at zero temperature, according to the relations∫ +∞

−∞
dt1K(t1, t2, t3) = 0, (G.80)∫ +∞

−∞
dt1K2(t1, t2, t3) = 0, (G.81)

that we will prove in the following.
Let us start by the first one: using the expression of K in Eq. (G.26), one finds∫ +∞

−∞
dt1K(t1, t2, t3) =

∫ T
2

−T2

dt1
T

∫ +∞

−∞
dτP2(t1 − τ) (Θ(τ − t3)−Θ(τ − t2)) =

=
∫ +∞

−∞
dτ

(∫ +∞

−∞
dt1P2(t1 − τ)Θ(τ)−

∫ +∞

−∞
dt1P2(t1 − τ)Θ(τ)

)
= 0. (G.82)

For the second relation, let us notice that at zero temperature one has

K(t1, t2, t3) = ∂t1 {〈φ(0, t1)φ(0, t3)〉 − 〈φ(0, t1)φ(0, t2)〉} =
= −iωc (P1(t1 − t3)− P1(t1 − t2)) . (G.83)

Using this expression for K, Eq. (G.81) becomes∫ +∞

−∞
dt1K2(t1, t2, t3) = 2

∫ +∞

−∞
dt1

{
P2

1 (t1)− P1(t1 − t2)P1(t1 − t3)
}

=

= 2
∫ +∞

−∞
dt1

{∫ +∞

−∞

dE

2π e
−iEt1P̃2(E)+

−
∫ +∞

−∞

dE1
2π e−iE1(t1−t3)P̃1(E1)

∫ +∞

−∞

dE2
2π e−iE2(t1−t2)P̃1(E2)

}
=

= 2
{∫ +∞

−∞

dE

2π δ(E)P̃2(E)−
∫ +∞

−∞

dE

2π e
−iE(t2−t3)P̃1(E)P̃1(−E)

}
= 0, (G.84)
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where we introduced the Fourier transform of P1/2(t)

P̃g(E) = 2π
Γ(g)ωc

∣∣∣∣Eωc

∣∣∣∣g−1
Θ(E). (G.85)

In conclusion, we observe that similar average values hold true for right-movers〈
(∂t1φR(0, t1))2 Ψ†R(0, t2)ΨR(0, t3)

〉
=
{
〈(∂t1φ(t1))2〉 − ν (K(t1, t2, t3))2

}
G<R(t2, t3),

(G.86)〈
(∂t1φR(0, t1))2 ΨR(0, t2)Ψ†R(0, t3)

〉
=
{
〈(∂t1φ(t1))2〉 − ν (K(t1, t2, t3))2

}
G<R(t2, t3),

(G.87)〈
Ψ†R(0, t1)ΨR(0, t2) (∂t3φR(0, t3))2

〉
=
{
〈(∂t1φ(t1))2〉 − ν (K(t1, t2, t3))2

}
G>R(t1, t2),

(G.88)〈
ΨR(0, t1)Ψ†R(0, t2) (∂t3φR(0, t3))2

〉
=
{
〈(∂t1φ(t1))2〉 − ν (K(t1, t2, t3))2

}
G>R(t1, t2).

(G.89)

G.3 Noise in the double-drive configuration
In the following, we evaluate explicitly heat cross-correlator between reservoir 2 and
3 at lowest order in tunneling for the double-drive configuration considered in Sec.
4.4. Its perturbative expansion read

SQ,23 = S(02)
Q,23 + S(20)

Q,23 + S(11)
Q,23 +O

(
|Λ|2

)
, (G.90)

where the different terms are given in Eqs. (G.4), (G.5) and (G.6).
Firstly, we start by deriving the term S(11)

Q,23, which reads

S(11)
Q,23 =

∫ T
0

dt

T

∫ +∞

−∞
dt′
{
〈(∂t′ − ikF v)Ψ†R(0, t′)ΨL(0, t′)(∂t + ikF v)Ψ†L(0, t)ΨR(0, t)〉+

+ 〈Ψ†L(0, t′)(∂t′ + ikF v)ΨR(0, t′)Ψ†R(0, t)(∂t − ikF v)ΨL(0, t)〉
}
, (G.91)

since 〈J (1)
2/3(t)〉 = 0 (see Eq. (4.15)). By performing the thermal averages in the

above equation, one can express it in terms of Green’s functions in Eqs. (3.28) and
(3.29). One has that

S(11)
Q,23 =

∫ T
0

dt

T

∫ +∞

−∞
dt′
{
〈(∂t′ − ikF v)G<R(t′, t)(∂t + ikF v)G>L (t′, t)〉+

+ 〈(∂t′ + ikF v)G>R(t′, t)(∂t − ikF v)G<L (t′, t)〉
}
. (G.92)

The relation between Green’s functions and the correlators Pg in the double-drive
configuration is

G
</>
R (t′, t) = e±ikF v(t′−t)

2πa e∓iνe
∫ t′
t
dτVR(τ)Pν(t′ − t), (G.93)

G
</>
L (t′, t) = e±ikF v(t′−t)

2πa e∓iνe
∫ t′
t
dτVL(τ)Pν(t′ − t). (G.94)
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By inserting these equations into (G.92), one finds

S(11)
Q,23 = 2 |λ|2

∫ T
0

dt

T

∫ +∞

−∞
dt′
{

cos
(
νe

∫ t

t′
dt′′VR(t′′)− VL(t′′)

)
∂′tPν(t′ − t)∂tPν(t′ − t)+

(G.95)

+ νeVR(t′) sin
(
νe

∫ t

t′
dt′′VR(t′′)− VL(t′′)

)1
2∂tP2ν(t′ − t)+

+ νeVL(t) sin
(
νe

∫ t

t′
dt′′VR(t′′)− VL(t′′)

)1
2∂t

′P2ν(t′ − t)+

− ν2e2VR(t′)VL(t) cos
(
νe

∫ t

t′
dt′′VR(t′′)− VL(t′′)

)
P2ν(t′ − t)

}
,

where the contributions involving kF have been canceled out as in the calculations
in Sec. 4.3. The integration by parts of second and third line of Eq. (G.95) provides
some useful eliminations, providing the final expression

S(11)
Q,23 = 2 |λ|2

∫ T
0

dt

T

∫ +∞

−∞
dt′
{

cos
(
νe

∫ t

t′
dt′′

(
VR(t′′)− VL(t′′)

))
∂′tPν(t′ − t)∂tPν(t′ − t)+

(G.96)

− 1
2ν

2e2 (VR(t′)VR(t) + VL(t′)VL(t)
)

cos
(
νe

∫ t

t′
dt′′

(
VR(t′′)− VL(t′′)

))
P2ν(t′ − t)

}
.

(G.97)

We focus on the remaining contributions, starting from S(02)
Q,23: the calculations for

the other term would be analogous. By plugging Eqs. (4.6) and (4.8) in the definition
of S(02)

Q,23, one finds

S(02)
Q,23 = −i |λ|

2

4π

∫ +∞

−∞
dt

∫ T
0

dt′

T

∫ +∞

−∞
dt′′θ(t′ − t′′)×

×
{
〈(∂tφR(0, t))2

[
Ψ†R(0, t′′)ΨL(0, t′′), (∂t′ + ikF v)Ψ†L(0, t′)ΨR(0, t′)

]
〉+

− 2νeVR(t)〈∂tφ†R(0, t)
[
ΨR(0, t′′)ΨL(0, t′′), (∂t′ + ikF v)Ψ†L(0, t′)ΨR(0, t′)

]
〉+

− 〈(∂tφR(0, t))2〉〈
[
ΨR(0, t′′)ΨL(0, t′′), (∂t′ + ikF v)Ψ†L(0, t′)ΨR(0, t′)

]
〉
}
.

(G.98)

The averages involving the commutators are a bit more complicated that those in
S(11)
Q,23, which simply corresponded to quasi-particle Green’s functions. Here, we quote

the results for some useful formulas, derived in Appendix G, which allow to further
evaluate Eq. (G.98). They read〈

(∂t1φR(0, t1))2 Ψ†R(0, t2)ΨR(0, t3)
〉

=
{〈

(∂t1ΦR(0, t1))2
〉
− νK2(t1, t2, t3)

}
G<R(t2, t3),

(G.99)〈
(∂t1φR(0, t1))2 ΨR(0, t2)Ψ†R(0, t3)

〉
=
{〈

(∂t1ΦR(0, t1))2
〉
− νK2(t1, t2, t3)

}
G>R(t2, t3),
(G.100)〈

∂t1φR(0, t1)Ψ†R(0, t2)ΨR(0, t3)
〉

= −i
√
νK(t1, t2, t3)G<R(t2, t3), (G.101)〈

∂t1φR(0, t1)ΨR(0, t2)Ψ†R(0, t3)
〉

= i
√
νK(t1, t2, t3)G>R(t2, t3), (G.102)
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where we defined

K(t′, t, t′′) =
∫ +∞

−∞
dτP2(t′ − τ)

(
Θ(τ − t′′)−Θ(τ − t)

)
=

= πθ

v

sinh (πθ(t− t′′))
sinh (πθ(t′ − t)) sinh (πθ(t′ − t′′)) . (G.103)

By inserting these expressions into Eq. (G.98), one finds

S(02)
Q,23 = −i |λ|

2

4π

∫ +∞

−∞
dt

∫ T
0

dt′

T

∫ +∞

−∞
dt′′ Θ

(
t′ − t′′

) {
−
[
ν∂t′K2(t, t′, t′′) cos

(
νe

∫ t′

t′′
dτV−(τ)

)
+

+ νeVL(t′)K2(t, t′, t′′) sin
(
νe

∫ t′

t′′
dτV−(τ)

)] (
P2ν(t′′ − t′)− P2ν(t′ − t′′)

)
+

+K(t, t′, t′′)
[
2νeVR(t) sin

(
νe

∫ t′

t′′
dτV−(τ)

)
∂t′
[
P2ν

(
t′′ − t′

)
− P2ν

(
t′ − t′′

)]
+

− 4ν2e2VR(t)VL(t′) cos
(
νe

∫ t′

t′′
dτV−(τ)

) [
P2ν

(
t′′ − t′

)
− P2ν

(
t′ − t′′

)] ]}
.

(G.104)

A similar calculation can be performed for the last contribution, given by

S(20)
Q,23 = −i |λ|

2

4π

∫ +∞

−∞
dt

∫ T
0

dt′

T

∫ +∞

−∞
dt′′θ(t′ − t′′)×

×
{
〈
[
Ψ†R(0, t′′)ΨL(0, t′′), (∂t′ + ikF v)Ψ†L(0, t′)ΨL(0, t′)

]
(∂tφR(0, t))2〉+

− 2νeVR(t)
[
ΨR(0, t′′)ΨL(0, t′′), (∂t′ + ikF v)Ψ†L(0, t′)ΨR(0, t′)

]
〈∂tφ†L(0, t)〉+

− 〈
[
ΨR(0, t′′)ΨL(0, t′′), (∂t′ + ikF v)Ψ†L(0, t′)ΨR(0, t′)

]
〉〈(∂tφL(0, t))2〉

}
.

(G.105)

Analogously to S(02)
Q,23, in Appendix G, we derived some formulas which allow to

evaluate the average values in the above equation. Here, we report their expressions

〈
Ψ†L(0, t1)ΨL(0, t2) (∂t3φL(0, t3))2

〉
=
{〈

(∂t3φL(0, t3))2
〉
− νK2(−t3,−t2,−t1)

}
G<L (t1, t2),

(G.106)〈
ΨL(0, t1)Ψ†L(0, t2) (∂t3φL(0, t3))2

〉
=
{〈

(∂t3φL(0, t3))2
〉
− νK2(−t3,−t2,−t1)

}
G<L (t1, t2),

(G.107)〈
Ψ†L(0, t1)ΨL(0, t2)∂t3φL(0, t3)

〉
= i
√
νK(−t3,−t2,−t1)G<L (t1, t2), (G.108)〈

ΨL(0, t1)Ψ†L(0, t2)∂t3φL(0, t3)
〉

= −i
√
νK(−t3,−t2,−t1)G<L (t1, t2), (G.109)
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which can be exploited to recast Eq. (G.105) as

S(20)
Q,23 = −i |λ|

2

4π

∫ +∞

−∞
dt

∫ T
0

dt′

T

∫ +∞

−∞
dt′′ Θ

(
t′ − t′′

) {[
ν∂t′K2(t, t′, t′′) cos

(
νe

∫ t′

t′′
dτV−(τ)

)
+

+ νeVL(t′)K2(t, t′, t′′) sin
(
νe

∫ t′

t′′
dτV−(τ)

)] (
P2ν(t′′ − t′)− P2ν(t′ − t′′)

)
+

+K(t, t′′, t′)
[
2νeVL(t) sin

(
νe

∫ t′′

t′
dτV−(τ)

)
∂t′
[
P2ν

(
t′′ − t′

)
− P2ν

(
t′ − t′′

)]
+

− 4ν2e2VR(t)VL(t′′) cos
(
νe

∫ t′

t′′
dτV−(τ)

) [
P2ν

(
t′ − t′′

)
− P2ν

(
t′′ − t′

)] ]}
.
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