
AIX-MARSEILLE UNIVERSITÉ
École Doctorale de Mathématiques et Informatiques de Marseille
UFR Sciences et techniques
I2M, UMR 7373

Thèse présentée pour obtenir le grade universitaire de docteur

Discipline: MATHEMATIQUES ET INFORMATIQUE
Spécialité: Mathématiques

Noémie COMBE

On a new cell decomposition of a complement of the
discriminant variety:

application to the cohomology of braid groups
——————-

Sur une nouvelle décomposition cellulaire de l’espace
des polynômes a racines simples:

application à la cohomologie des groupes de tresses.

Soutenue le 25/05/2018 devant le jury composé de:

Leila SCHNEPS Université Pierre-et-Marie-Curie Rapporteur
Athanase Papadopoulos Université de Strasbourg Rapporteur
Erwan ROUSSEAU Université Aix-Marseille Examinateur
Louis PARIS Université de Bourgogne Examinateur
Bernard COUPET Université Aix-Marseille Directeur de thèse



Cette oeuvre est mise à disposition selon les termes de la Licence Creative
Commons Attribution - Pas d’Utilisation Commerciale - Pas de Modification 4.0
International.



2

Entrelacs by Christian Jaccard



3



4



5

Remerciements
Je tiens à remercier chaleureusement toutes les personnes qui m’ont aidée

durant ma thèse et notamment mon directeur de thèse, Monsieur le Professeur
Bernard Coupet, pour m’avoir donnée la possibilité d’effectuer cette thèse en
mathématiques ainsi que pour tout son intérêt et son soutien. Je remercie aussi
Monsieur le Professeur Norbert A’Campo avec qui nous avons eu de nombreuses
discussions au cours des conférences à Strasbourg, Montpellier, Marseille et Cluj-
Napocca (Roumanie) et qui est l’auteur de ce sujet de thèse.

Je remercie infiniment la Professeure Leila Schneps et le Professeur Athanase
Papadopoulos pour m’avoir fait l’honneur de rapporter ma thèse. Je remercie
également le Professeur Louis Paris et le Professeur Erwan Rousseau pour leur
acceptation à être membre de mon jury de thèse.

Ce travail n’aurait pas été possible à l’université d’Aix-Marseille sans le sou-
tien du Labex Archimède. C’est grâce à cette bourse d’excellence que j’ai pu me
consacrer à mon travail de thèse dans le cadre de l’école doctorale 184 d’Aix-
Marseille, dont je remercie chaleureusement l’équipe dirigente: Nadia Creignou
et Thierry Gallouet.

Mes remerciements vont également à Yolande Tinel, responsable du bureau
des thèses, qui m’a toujours soutenue.

Au cours de ma dernière année de doctorat j’ai eu la chance de travailler
au sein de l’équipe d’Analyse Algébrique de l’université Pierre-et-Marie-Curie
(depuis peu Sorbonne université) avec les professeurs Pierre Lochak et Leila
Schneps sur les algèbres de Lie de tresses. Le développement de mon travail de
recherche n’aurait pas pu être mené à bien sans l’intérêt qu’ils m’ont témoignée.
Je ne pourrais jamais assez les remercier pour toute leur aide et leur soutien;
pour nos discussions fascinantes et pour les progrès que j’ai pu faire à leurs côtés,
aussi bien sur le plan scientifique que personnel. Cette année à Paris a été une
grande source de bonheur et de motivation pour moi. J’ai été particulièrement
bien accueilli par les membres de l’équipe d’Analyse Algébrique. Je remercie
beaucoup Nicolas Bergeron, directeur adjoint de l’IMJ-PRG, pour son accueil et
son intérêt envers ma personne ainsi que les directeurs de l’équipe Viviane Baladi
et Alexandru Oancea pour leur bienveillance et leur intêret. Je remercie les mem-
bres de l’ équipe AA avec qui j’ai eu un contact scientifique et amical: Frédéric
Le Roux pour sa grande gentillesse et pour nos discussions intéressantes sur
les tresses, Pierre-Antoine Guihéneuf pour ses excellents conseils et son amitié,
Marco Robalo (mon co-bureau) pour nos discussions passionnantes, ses conseils
et son amitié, Jacques Faraut (mon deuxième co-bureau) pour m’avoir permis
d’emprunter ses livres dans sa bibliothèque personnelle, pour sa gentillesse et
son intérêt, Vincent Humilière, Gregory Ginot, Maxime Zavidovique, Antonin
Guilloux pour leurs aides durant mon installation et intégration à Paris, Sob-
han Seyfaddini et Frédéric Paugam pour nos discussions intéressantes, Shu Shen



6

pour son amitié et ses recettes de plats chinois, Sophie Chemla pour son sou-
tien, Penka Georgieva pour sa gentillesse, Pierre-Vincent Koseleff et Jean-Pierre
Marco pour les discussions. J’ai une pensé spéciale pour Pierre Schapira qui est
le fondateur de cette équipe avec qui nous avons eu des discussions passion-
nantes. De l’autre côté du couloir d’Analyse Algébrique j’ai pu aussi rencontrer
Julien Marché et puis un peu plus loin à l’université Diderot Catherine Gille à
qui je remercie pour leur accueil chaleureux, et pour leur invitation à donner un
séminaire. Je n’oublierais jamais l’ambiance fantastique de Jussieu.

Une petite partie de ma thèse est consacrée à des problèmes de “comptages
des diagrammes”. Ce travail a pu être mené à bien grâce à la disponibilité et
les nombreuses discussions avec les informaticiens Régis Barbanchon et Vincent
Jugé. Ainsi, j’ai pu générer géométriquement les diagrammes et les compter à
l’aide d’un programme informatique.

Étant une enthousiaste d’art, je remercie Christian Jaccard l’auteur du con-
cept supranodal, de m’avoir invitée à donner un séminaire sur ma thèse à Paris
Sorbonne soulignant le lien entre mes mathématiques et l’art, et je le remercie
d’avoir accepté que je mette une de ses oeuvres sur ma page de garde. Je remer-
cie les organisateurs des séminaires “Art & Maths” pour leur très sympathique
accueil: Yann Toma et Antoine Mandel pour la Sorbonne et Claude Bruter pour
la“ European Society for Mathematics and the Arts” à l’Institut Henri Poincaré,
ainsi qu’à Victor Rabiet qui a monté une vidéo sur ma conférence Art & Maths et
pour nos échanges cordiaux.

Durant mon séjour à Marseille, mon bureau s’est trouvé à l’étage des logi-
ciens. Ainsi, j’ai noué des liens sympathiques avec Lionel Vaux, Laurent Régnier,
Dimitri Ara, Myriam Quatrini. Un peu plus haut sur la colline du campus de
Luminy, c’est -à-dire à “Polytech’ Marseille”, j’ai fait la connaissance d’Alexandra
Bac que je remercie beaucoup pour ses conseils et son soutien.

J’ai aussi une pensée pour Jean Cachia, amoureux des orgues et professeur de
“philo” au lycée Thiers pour m’avoir fait découvir cette discipline et pour m’avoir
offert la possibilité de faire des concerts orgue-violon avec Claire Bachmann.

Au terme de ce parcours, je voudrais remercier enfin celles et ceux que j’ai
appréciés et dont leurs attentions et encouragements m’ont toujours accompag-
née.

Je pense à mes professeurs de l’université de Genève qui ont joué rôle dé-
cisif dans mon choix de faire un doctorat. Ainsi, de manière un peu nostal-
gique je repense à ceux qui m’ont inspiré: Stansilas Smirnov, Tatiana Smirnova-
Nagnibeda, Rinat Kashaev, Anton Alexeev, Ernst Hairer, Martin Gander Hugo
Duminil-Copin, Grigory Mikhalkin, Michelle Bucher-Karlsson. Ils m’ont permit
d’acquérir une certaine culture et curiosité mathématique, une autonomie de
travail et de nombreux outils nécessaires pour faire une thèse.

Mes pensées vont plus particulièrement à mon très regretté Professeur de
Master, Daniel Coray, qui m’a ouvert les portes de la géométrie-algébrique. Son



7

aide à développer mon intuition mathématique et son enthousiasme m’a guidé
tout au long de mon travail. J’aurais aimé pouvoir poursuivre mes recherches
sous son aile.

Un grand merci va aussi à mes trois meilleurs amis physiciens genevois qui
m’ont appris tant de choses et tellement motivée: Matteo - la Tomate, Vincent -
le Lambda-guy , Titouan que j’ai (très secrètement) rebaptisée “le moustique” à
cause de sa petite taille et de ses multiples piques!

Je remercie tous les amis que j’ai pu rencontrer au cours de cette thèse. À
Marseille: Diogo mon ami portugais, Pierro le breton surfeur, Joel et tou(te)s
les italien(ne)s. Je remercie Pepe pour les sorties à la plage, Vincent 1, Vin-
cent 2 pour les moments drôles; Natacha et Olivier pour les moments sympa-
thiques lors des activités proposées par l’École doctorale; les postdoctorants Filip,
Gilberto, Alexandra pour les “Marseille trips”; les amis du lycée pour le soutien
et la bonne humeur: Adam et Thomas. À Paris je remercie Jean-Michel pour
tout son soutien et les moments fantastiques passés ensemble; les copains des
jeux d’échecs, de la cantine et de la vie au laboratoire: Hugo, Vincent, Amiel -
les champions du jeux d’échecs, Louis (qui pose toujours les bonnes questions),
Thomas-le calme, Justin-l’Aixois parisien, Xavier (qui n’aime pas l’escalade),
Benoit (qui aime l’escalade), Malik (qui aime un peu l’escalade), Arnaud-le navi-
gateur, Mathieu et Malo-les sérieux, Martin-le compositeur, Nicolina, ...; les amis
musiciens pianistes et interprètes avec qui nous avons joués et échangé: Sylvain,
Manuel, Leon.

Je remercie mes les connaissances et ami(e)s polonais(es): Eryk Mistewicz,
Jolka Pawnik et sa famille, Maciej Borodzik pour son amitié et Marek Demianski
qui s’est toujours considéré comme mon “papy” depuis que je suis née.

Enfin, je remercie de tout coeur mes parents pour leur grand soutien et leur
aide dans les moments difficiles.

Merci pour tout.





Contents

Part 1. Introduction et sommaire 1

Chapter 1. Introduction de la thèse de doctorat 3
1. Signatures 4
2. Stratification de DPold 4
3. Bon recouvrement de DPold 5
4. Complexe dual à la stratification 7

Part 2. The decomposition of the space of complex polynomials and
the polyhedral structure 9

Chapter 2. The cell decomposition of the space of complex polynomials 11
1. Polynomials and their signatures 11
2. Combinatorics of signatures 16

Chapter 3. The geometric properties of the dual complex 25
1. Construction of the dual complex 25
2. Symmetries of the dual complex 34

Chapter 4. Explicit construction of the dual complex for d = 2, 3, 4 49
1. Dual complex for d = 2, 3 49
2. Dual complex for d = 4 52
3. Subcomplexes for d = 4 and tables of intersections of open sets 57

Chapter 5. Signatures, invariants of polynomials and monodromy 67
1. Monodromy 69
2. The σ-sequences 71

Part 3. Method for the computation of the Čech cohomology groups 75
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Part 1

Introduction et sommaire



Cette thèse, est rédigée en anglais et comporte une introduction en français qui
résume le travail effectué.



CHAPTER 1

Introduction de la thèse de doctorat

Noémie Cécile Combe

Sur une nouvelle décomposition de l’espace des polynômes à racines simples
avec application au calcul de la cohomologie des groupes de tresses

Cette thèse concerne principalement deux objets classiques étroitement liés:
d’une part la variété DPold des polynômes complexes unitaires, de degré d ≥ 1
à une variable, et à racines simples (donc de discriminant différent de zéro), et
d’autre part, les groupes de tresses d’Artin Bd avec d brins. La richesse de leurs
interactions a depuis longtemps été reconnue comme apportant des informations
sur ces deux objets, l’information de base étant que l’espace DPold est un espace
K(π, 1) de groupe fondamental Bd. Ainsi l’espace DPold peut être utilisé pour le
calcul de la cohomologie des groupes de tresses non colorées.

Ce thème a inspiré de nombreux travaux, à commencer par ceux de V. Arnold
dans les années 1970. Celui-ci utilise une suite spectrale pour calculer la co-
homologie intégrale du groupe de tresses non colorées. Une autre version est
apportée par D.B. Fuks, celle-ci permettant d’avoir la cohomologie du groupe de
tresses à valeurs dans Z2. Enfin, F.V. Vainshtein propose un résultat plus général,
reposant sur la decomposition de D.B. Fuks et sur les homomorphismes de Bock-
stein. Indépendamment, P. Deligne s’est également penché à cette époque là sur
ce sujet, en introduisant sa fameuse notion d’immeubles de groupes de tresses.
Plus récemment d’autres résultats ont suivis, notamment donnés par V. Lin, F.
Cohen et A. Goryunov. Dans des thématiques proches on peut également noter
des travaux de De Concini, C. Procesi, M. Salvetti.

Le travail présenté dans cette thèse propose une nouvelle approche permet-
tant des calculs cohomologiques explicites à coefficients dans n’importe quel fais-
ceau. On montre, entre autres choses, qu’à partir de la nouvelle stratification
de l’espace des polynômes introduite dans cette thèse, la monodromie se lit de
manière transparente.

En vue de calculs cohomologiques explicites, il est souhaitable d’avoir à sa
disposition un bon recouvrement au sens de Čech. L’un des principaux objectifs
de cette thèse est de construire un tel recouvrement basé sur des graphes qui
sont associés à des polynômes complexes.classifiés par l’espace DPold.
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4 1. INTRODUCTION DE LA THÈSE DE DOCTORAT

1. Signatures
Si on note P ∈ DPold un tel polynôme, le graphe correspondant est défini

comme l’image inverse de la réunion R ∪ iR des axes réels et imaginaires. On
définit ainsi, pour tout polynôme P de degré d à racines simples, un système de
d courbes colorées en rouge et d courbes colorées en bleu, proprement plongées
dans le plan. Les courbes rouges et bleues s’intersectent aux racines de P et ces
intersections sont orthogonales du fait que P définit une application conforme.

On vérifie facilement que les graphes ainsi obtenus sont des forêts, autrement
dit des réunions d’arbres. Les arêtes sont colorées en rouge ou bleu, et portent
une orientation naturelle. Les 2-cellules, complémentaires du graphe dans le
plan, se partitionnent naturellement en quatre couleurs respectivement notées
A,B,C et D, correspondant aux images inverses par P des quatres quadrants
du plan complexe. On appellera signature d’un tel graphe sa classe d’isotopie
relativement aux 4d directions asymptotiques de P−1(R ∪ iR). Ces directions
asymptotiques expriment que tout polynôme de degré d se comporte à l’infini
comme une ‘perturbation’ du polynôme zd (à constante multiplicative près).

2. Stratification de DPold
Definition 1.1. (Chapitre 2, Définition 2.3) [1] La partition A de Dpold con-

siste en la réunion des sous-ensembles disjoints, notés Aσ, formés de tous les
polynômes d’une signature donnée σ.

Nous montrons que la décomposition A de DPold fournit une stratification
semi-algébrique 6.21, chapitre 61

L’union des strates de dimension maximale, dites génériques, est formée de
l’ensemble des polynômes complexes n’ayant aucune valeur critique sur les axes
réel et imaginaire. Les composantes connexes de cette réunion sont en bijection
avec les signatures comportant exactement d arbres. Les sommets internes de ces
arbres sont tous de valence 4, avec localement une courbe bleue et une rouge se
coupant transversalement (et même orthogonalement pour la métrique usuelle).
L’union des strates de codimension 1 est formée de l’ensemble des polynômes
ayant exactement un point critique z, dont la valeur critique associée P (z) est
sur l’union des deux axes et tel que P ′′(z) 6= 0.

Soit Bd le groupe des tresses d’Artin sur d brins, muni des générateurs usuels
σi, i = 1, ..., d − 1, avec les relations σiσjσi = σjσiσj si |i − j| = 1 et σiσj = σjσi
si |i − j| > 1. Dans leur article de 1997 [8], J. Birman, K. Ko and S. Lee ont
introduit de nouveaux générateurs ai,j pour 1 ≤ i < j ≤ d connus sous le nom
de générateurs de Birman-Ko-Lee (BKL), donnés par:

ai,j = (σi−1σi−2 . . . σj+1)σj(σ−1
j+1 . . . σ

−1
i−2σ

−1
i−1).

1Notons en passant que cette stratification semi-algébrique fournit un bon exemple de décomposition semi-
algébrique d’une variété algébrique dans laquelle les strates sont indexées par des objets topologico-combinatoires,
à savoir ici les signatures des polynômes complexes à racines simples.
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Un mot de Birman-Ko-Lee est un monôme en ces générateurs (à équivalence
prés donnée par les relations entre les générateurs BKL, que nous rappelons
explicitement au chapitre 3).

On établit une relation entre strates génériques et couples de mots de BKL.

Proposition 1.1. (Chapitre 3, Proposition 3.7) Il existe un morphisme injectif
de l’ensemble des signatures de codimension 0 vers les couples de mots de Birman-
Ko-Lee, un mot correspondant à la configuration des diagonales rouges, le deuxième
à la configuration des diagonales bleues.

Dans le chapitre 8 on se donne pour but de calculer le nombre de strates de
degré et de codimension fixés. Nous donnons ce résulat sous la forme d’une série
génératrice.

Theorem 1.2. (Chapitre 8, Théorème 8.5) Il existe deux séries en deux vari-
ables N1(x, y) and N2(x, y), vérifiant les propriétés suivantes:

• la série N2 est définie par l’équation
(1−N2 + yN 4

2 )(1 + yN 4
2 − x2yN 5

2 ) + xyN 6
2 = 0,

• la série N1 est définie par:
N1 = 1 + yN 4

2 ,

• le coefficient de xcyd dans N1 est égal au nombre de signatures de degré d
et de codimension c,
• la série N1 est algébrique et on peut calculer explicitement son polynôme
minimal.

On démontre comme corollaire de ce théorème le résultat suivant, qui appa-
raît aussi dans [1] (section 3).

Corollary 1.3. (Chapitre 8, section 3) Le nombre de strates génériques de
la strate ouverte (codimension nulle) est donné par le nombre dit de Fuss-Catalan.

3. Bon recouvrement de DPold
La partition en strates ne fournit pas immédiatement un recouvrement adapté

au calcul de la cohomologie de Čech (avec n’importe quels coefficients) pour
deux raisons liées et évidentes: d’une part les sous-ensembles du recouvrement
ne sont pas tous ouverts, et de plus ils sont disjoints puisqu’ils correspondent
à différentes signatures. Pour remédier à ce problème, nous construisons (es-
sentiellement au chapitre 6) un recouvrement à partir des strates Aσ en les
épaississant. Nous disposons pour commencer du résultat suivant prouvé par
N. A’Campo dans [1].

Theorem 1.4. (Chapitre 6, Théorème 6.1) Les composantes connexes Aσ de
la partition A sont contractiles.
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Dans le but de construire un recouvrement convenable pour le calcul de la
cohomologie de Čech, il faut toutefois beaucoup plus. Comme l’épaississement
d’une strate Aσ contient son adhérence Aσ, nous devons d’abord montrer que
celle-ci reste contractile, puis étudier également la contractilité des intersections.

Pour étudier l’adhérence, nous commençons par en donner une description
précise en utilisant les notions suivantes.

Definition 1.2. (Chapitre 2, Définition 2.20) Deux signatures de même codi-
mension sont dites adjacentes s’il existe une déformation élémentaire de l’une à
l’autre, représentée par un mouvement de Whitehead (définition 2.18) sur un en-
semble de courbes de même couleur appartenant toutes au bord d’une 2-cellule du
plan complexe privé du premier graphe.

Pour effectuer un mouvement de Whitehead, on commence par déformer ces
courbes jusqu’à ce qu’elles se rencontrent en un seul point critique; les deux sig-
natures correspondantes sont alors dites incidentes. On appelle cette opération
un demi-mouvement de Whitehead contractant. On ouvre ensuite ce noeud dans
l’autre sens; on appelle ce mouvement un demi-mouvement de Whitehead lissant.

δ : ←→ ←→ .

Nous démontrons le résultat suivant qui décrit combinatoirement l’adhérence
topologique d’une strate ouverte.

Lemma 1.5. (Chapitre 6, Lemme 6.12) Soit σ une signature. Alors l’adhérence
topologique Aσ de la strate Aσ est la réunion disjointe de Aσ avec les strates Aτ
pour tout τ incidente à σ.

Nous utilisons ensuite ce résultat pour montrer que les adhérences sont aussi
contractiles.

Theorem 1.6. (Chapitre 6, Lemme 6.14) Soient σ une signature générique.
Alors, Aσ est contractile.

Finalement, nous montrons que les intersections des adhérences restent con-
tractiles.

Theorem 1.7. (Chapitre 6, Lemme 6.19) Soient σ1, . . . , σr des signatures
génériques distinctes. Alors, l’intersection multiple

∩ri=1Aσi

est soit vide soit contractile.
Nous terminons la construction du bon recouvrement en épaississant les Aσ

pour obtenir des ouverts. Les principaux outils sont le théorème de triangulation
de Łojasiewicz et la double subdivision barycentrique.

Theorem 1.8. (Chapitre 6, Théorème 6.23) Il existe un recouvrement ouvert
U = {A+

σ }σ∈Σd où les σ sont génériques et sont tels que:
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(1) les éléments du recouvrement A+
σi
, où σi est générique, sont ouverts et

contractiles;
(2) les intersections multiples ∩pi=1A

+
σi

sont soit vides ou contractiles.

Dans le chapitre 7 nous montrons comment calculer explicitement des groupes
de cohomologie de Čech à valeurs dans un faisceau quelconque par une méth-
ode qui repose sur la construction du bon recouvrement et l’étude détaillée du
complexe dual (voir plus bas). On détaille des exemples en basses dimensions
des groupes de cohomologie à valeur dans Z. Nous nous sommes restreints à ce
cas car les calculs ont été faits à la main. L’utilisation d’un ordinateur permettrait
certainement d’aller beaucoup plus loin.

4. Complexe dual à la stratification
L’étude de la combinatoire des signatures, essentielle dans le calcul de la

cohomologie, nous a mèné à une analyse détaillée du complexe dual W de la
stratification par les Aσ, contenue dans le chapitre 3 et 4. Les k-faces deW sont
en bijection avec les signatures de codimension k, et les relations correspondent
aux mouvements de Whitehead. Le chapitre 3 est consacré à étude de W, qui
définira le nerf associé au bon recouvrement.

Les cas de petites dimensions sont explicitement construits et illustrés. Le
complexe W possède de belles propriétées; par exemple on montre le résultat
suivant.

Theorem 1.9. (Chapitre 3, Théorème 3.15 et Corollaire 3.16) Le complexe
dual W admet un groupe de symétries diédral Z2 o Z2.

On utilise également la notion de partitions d’ensembles non-croisées.
Une partition est dite non-croisée si pour chaque i < j < k < l la partition

de {i, j, k, l} en blocs {i, k} ∪ {j, l} n’existe pas. L’ensemble de ces partitions non
croisées forme un ensemble partiellement ordonné.

Comme il existe une bijection entre les partitions non-croisées d’un ensemble
à d éléments et les mots de Birman-Ko-Lee pour d brins, on remarque que dans
la structure du complexe dual pour les faces de dimension 0 et 1 il existe quatre
sous-structures isomorphes au diagramme de Hasse de l’ensemble partiellement
ordonné des partitions non-croisés d’un ensemble à d éléments, noté NC(d).
Cette structure est un invariant du complexe dual. On met aussi en évidence
deux autres structures invariantes : la première, dite structure en pont, reliant
deux NC(d) opposés; la seconde est la structure dite en livre ouvert reliant un
NC(d) avec une structure en pont. En particulier on montre que:

Proposition 1.10. (Chapitre 3, Proposition 3.9) Pour tout d > 1, il existe
quatre structures NC(d) formant une structure en collier dans le complexe dual.

Ici, le terme de collier indique qu’il existe un ensemble de m simplexes con-
nectés entre eux de sorte à ce que le sommet terminal du i-ème simplexe se
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trouve relié au sommet initial du (i + 1)-ème simplexe avec i ∈ Zm. Ces ré-
sultats sont exploités dans la suite, d’une part afin de simplifier les calculs co-
homologiques, d’autre part pour illustrer la représentation de monodromie, ex-
pliquée au chapitre 5.
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The decomposition of the space of complex
polynomials and the polyhedral structure





CHAPTER 2

The cell decomposition of the space of complex polynomials

We investigate a new decomposition of the d-th unordered configuration
space of the complex plane space, introduced by N. A’Campo [1], using its nat-
ural relation with the space of complex monic degree d > 0 polynomials in one
variable with simple roots and by introducing for each such polynomial, a topo-
logical object called its signature. A signature of a polynomial is an embedded
decorated graph. Those signatures are the essence of this decomposition.

The aim of this chapter is to show the existence of signatures, its properties
and prove the existing relations between different signatures.
• Let DPold denote the space of complex monic degree d > 0 polynomials

having one variable and simple roots with sum equal to zero (i.e. Tschirnhausen
polynomials). The complex dimension of DPold is d− 1.

1. Polynomials and their signatures
Let us introduce in this part the notion of picture and signature of a polyno-

mial ( signature in short when no confusion is possible).

1.1. Pictures.

Definition 2.1 (Picture). Let P be a polynomial in DPold. The inverse image
under P of the union of R and ıR, is called the picture of the polynomial P . We
denote a picture of a polynomial P by CP .

Remark 2.1. One could of course consider the pre-image of R and ıR under
any complex polynomial P . If P has multiple roots, multiple intersections of red
and blue diagonals may appear. The reason for which we avoid this situation
throughout the thesis is because our goal is to apply the cell decomposition to the
study of the fundamental group of DPold (the d-strand Artin braid group). A cell
decomposition of Cd, while combinatorially rich, would obviously not have any
such application.

Definition 2.2 (Codimension). Let P be a polynomial in DPold.
• A polynomial P with no critical values on R ∪ ıR is called biregular or
generic; such a polynomial is of codimension 0.
• The special critical points of P are the critical points z such that P (z) ∈
R∪ ıR. The local index at a special critical point z ∈ R (resp. ıR) is equal
to 2m− 3 where m is the number of red (or blue) diagonals crossing at the

11
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point z. The real codimension of P is the sum of the local indices of all
the special critical points.

As a convention, we shall color the curves P−1(R) in red and the curves
P−1(ıR) in blue. Intersections of red and blue curves correspond to the roots of
the polynomial P . Those curves intersect orthogonally, since P is a conformal
map. At infinity, there exist 4d asymptotic directions at rays 4d

√
r, r > 0, the colors

of the rays alternating from red to blue.

Example 2.1. An example for the picture of the generic polynomial
P (z) = z6 − 0.71z4 + 0.0063z2 − ı0.38z4 + ı0.0048z2 − 0.0284− ı0.0076.

Figure 1. Example of a generic picture

We color the four regions of P1 \ R ∪ ıR (resp. C \ R ∪ ıR) in the colors
A,B,C,D. The regions A and B lie in the upper half plane and the region of
color A is bounded by both positive axis, as in the figure 2.

Re

Im

AB

C D

Figure 2. Partition of the complex plane

Remark 2.2. Note that the pictures are represented as diagrams, without the
point at infinity.

Definition 2.3. Two pictures C1 and C2 are equivalent if and only if there
exists an isotopy of C (a continuous family of homeomorphisms of C) u : C1 → C2
which preserves the labels of the 4d asymptotic directions and the colors. Moreover,
the restriction of u on C1 is a graph isomorphism between C1 and C2.
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1.2. Signatures and properties of signatures. Let us also recall the no-
tion of topological map from [43].

Definition 2.4. [43] A topological map σ is a graph Γ embedded into a surface
X (considered as Γ ⊂ X) such that:

• vertices are distinct points on X;
• edges are curves which intersect only at vertices;
• if we cut long the graph we get a disjoint union of connected components
(faces) each homeomorphic to an open disk.

If the topological space X is the sphere then we qualify those topological
graphs of “planar”.

Remark 2.3. Using definition 2.3 leads directly to the topological map as-
sociated to a picture. However, a supplementary structure needs to be added to
those topological maps: the embedded graphs are decorated (since edges carry a
red or blue coloring and an orientation. The 2-faces carry a coloring in four colors:
A,B,C,D).

Definition 2.5. A decorated topological map is a topological map such that:
(1) the edges of the embedded graph carry a coloring and an orientation;
(2) the 2-faces carry a coloring.
This leads to the notion of signature.

Definition 2.6. A signature is the equivalence class of pictures in the equiva-
lence relation from definition 2.3. A signature is a decorated topological map. We
shall denote a signature by σ and by CP a representative of the class σ. We denote
by Σ the set of signatures and by Σd the set of signatures corresponding to degree
d polynomials.

Recall that isotopy relations are also equivalence relations. Let R′ be the
equivalence relation on the space of pictures, given by the isotopy relation in
definition 2.3.

Lemma 2.1. There exists an equivalence relation R on the space DPold, in-
duced from the equivalence relation R′ on C. Two polynomials P0, P1 ∈ DPold are
equivalent for the equivalence relation R if their pictures C0 and C1 belong to the
same isotopy class.

Proof. The proof follows from the definition of an equivalence class. �

Proposition 2.2. The number of signatures is finite.
Proof. Consider at first the generic case (i.e. graphs in the codimension 0

strata). There exist d inner vertices incident to edges of both red and blue colors
and which are connected to the 4d terminal vertices. The number of different
possible combinations follows from Hall’s matching theorem. Thus it is a finite
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number of possibilities. In a signature, the distinct intersection points between
curves of the same color correspond in DPold to the critical points of the polyno-
mials. There are at most d−1 distinct critical points for a polynomial P . So, there
exist at most d − 1 inner vertices in a signature with adjacent edges of the same
color. Now, we show that the number of graphs of higher codimension than 0 is
finite. Such a graph is obtained by adding k new vertices (where 1 ≤ k ≤ d−1) in
the complementary regions of the graph and by collapsing the edges of the same
color lying in the boundary of this region to this point. The number of those new
possible graphs is finite. �

The main result concerning the properties of a signature and the relations
between signatures and pictures of polynomials are the following two theorems
due to N. A’Campo. Theorem 2.3 appears as theorem 1.1 in [1] with a brief
proof. We give complete details here using embedded graphs.

Theorem 2.3. If a decorated topological map is a signature, it satisfies the
following combinatorial properties:

(1) In P1 the topological map is a connected set.
(2) In C the decorated topological map is a bicolored forest (i.e. a union of

bicolored trees)
(3) The 2-faces in C \ σ are colored A,B,C or D.
(4) The edges in the signature are oriented and carry a coloring red or blue.

By convention the edge is colored red if it is adjacent to a couple of regions
colored respectively D and A or B and C. The edge is colored blue if the
it is adjacent to a couple of regions colored respectively A and B or C and
D. The orientation of the red (resp. blue) edges goes towards infinity if
one crosses the arc from the region D to A (resp. A to B). It comes from
infinity if one crosses the region A to B (resp. C to D).

(5) At infinity the signature has 4d edges asymptotic to the rays rekπi/4d, r >
0, k = 0, 1, · · · , 4d − 1, the red and blue colors alternate as well as their
orientations. In the neighborhood of this point the incident regions are
colored in the counterclockwise orientation by the 4-periodic sequence of
symbols A,B,C,D.

(6) In the neighborhood of the valency four vertices incident to the blue and
red edges there exist four incident 2-faces colored A,B,C,D. In the neigh-
borhood of the vertices which are incident to an even number of edges of
the same color the adjacent regions are colored {A,B}, {B,C}, {C,D} or
{D,A}.

Proof. Using the conventions we shall color P−1(R) in red and P−1(ıR) in
blue and partition the complex plane into four regions A,B,C,D as in figure 2. We
shall study the properties of the pictures and use systematically the definition 2.3
to obtain the signature.



1. POLYNOMIALS AND THEIR SIGNATURES 15

(2) First observe that the function Re(P ) ∗ Im(P ) : C → R is harmonic (this
statement follows from the fact that Re(P )∗Im(P ) = 1

2Im(P 2) and the imaginary
part of the holomorphic map P 2 is harmonic). Suppose by contradiction that
there exists a cycle Z in the picture bounding an open region U of the complex
plane. Since the function Re(P ) ∗ Im(P ) vanishes along Z, we would have by
the maximum principle that the function Re(P ) ∗ Im(P ) = 0 on U . It follows
that the image P (U) of P is inside the union of the real and imaginary axis in C,
contradicting the openness of the mapping P .

Let us prove the statements (3) and (4). The complement of the picture CP0

(given by C \ CP0) decomposes the plane C into polygonal regions. The regions
have piece-wise smooth curves as boundaries. The coloring of the regions and the
orientation of the curves follows from the pull-back by the degree d map of C (we
have d copies of the regions colored A,B,C,D and the orientation of the curves is
induced from the one on the real and imaginary axis in the complex plane).

(5) Near infinity, P−1(R) and P−1(ıR) have d branches each, and the branches
are smooth curves, asymptotic to the rays d

√
±r, and d

√
±ır, r ∈ R+ (all complex

roots of order d). The edges of the picture carry orientation induced by the natural
orientation of R and ıR.

(6) Since P has distinct roots, the roots are not critical points. Near the root, P
is holomorphic, conformal, invertible and P−1(R∪ ıR) is locally given by two small
curves intersecting transversally, orthogonally. the incident regions are colored
respectively A,B,C,D. Near a critical point z0 where P ′(z0) = 0, . . . , P k(z0) =
0, P k+1(z0) 6= 0, after a smooth holomorphic change of the local coordinates, P
is locally smoothly conjugated to the germ z 7→ zk+1. So, if P (z0) ∈ R (resp.
P (z0) ∈ ıR) then, near the point z0, P−1(R) is locally smoothly conjugated to k

√
r

(k distinct complex roots of r ), r ∈ R (resp. r ∈ ıR). The point z0 on CP is said
to be of multiplicity k+ 1, where k ≥ 1. This gives a vertex of even valency which
is incident to edges of the same color. The critical value belongs either to the real
axis or to the imaginary axis. Therefore there are only two possible colors for the
incident regions: {A,B}, {B,C}, {C,D} or {D,A}.

Finally statement (1) follows from the previous ones and from the fact that we
compactify C by adding the point at infinity. �

The next theorem, again due to A’Campo, gives the converse.

Theorem 2.4. (Theorem 1.3 in [1]) Let σ be a signature. Then there exists a
polynomial P whose picture is isotopic to σ.

1.3. Diagrams of signatures.
We replace signatures by diagrams consisting of a unit disk D with roots 4d

√
1

replacing asymptotic rays. We contract pictures so that the roots of P and P ′ all
lie inside the disk. A signature becomes an embedded graph in the disk.
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Definition 2.7. Two signature diagrams are in the same equivalence class if
there exists a homeomorphism of D fixed on the terminal vertices which takes one
diagram to the other.

Definition 2.8. The set of diagrams corresponding to the signatures Σd is a
set of decorated forests embedded in the unit disk.

Those diagrams verify the following extra structure:
(1) There exist 4d terminal vertices at the roots of order 4d of 1, ordered in

counterclockwise order.
(2) There exist d inner nodes, of valency 4, being adjacent to two edges of

color red and two edges of color blue.
(3) The inner vertices with edges of one color will be called meeting points.
(4) The edges emerging from odd terminal vertices are colored blue, the orien-

tation is from vertex number 3 mod 4 to vertex number 1 mod 4.
(5) The edges emerging from even terminal vertices are colored red, the orien-

tation is from vertex number 0 mod 4 to vertex number 2 mod 4.
(6) The set of polygonal regions defined in C \ CP are labelled periodically

A,B,C,D. The labels are inherited from the labels A,B,C,D on figure 2.
Each region has one arc lying on the boundary of the disc. If the edge

on the boundary is an arc from vertex number 1 to vertex number 2 then
it is colored A; if the edge is 2, 3 then the region is D; if the edge is 3, 0
then the region is C, if the edge is 0, 1 then the region is B. If the region
has many edges on the boundary they are all of the same type.

In the following parts we shall keep confusing a signature with its diagram,
diagrams being convenient tools for the description a given signature.

2. Combinatorics of signatures
2.1. Ordering signatures.

Definition 2.9. We denote by Aσ the set of polynomials with pictures in the
isotopy class σ. The family (Aσ)σ∈Σ of subsets of DPol d partitions the set DPol d.
The partition of DPold into classes will be called stratification and the sets Aσ will
be called strata, cells or classes.

Here, on the basis of the notion of pictures and signatures we introduce in-
cidence relations and adjacence relations between the connected components of
the partition of DPold. This part is a stepping stone towards the Čech cohomology.

Definition 2.10 (Arc). Let σ0 be a signature. By arc E, we mean an arc in
a polygonal region C \ σ0, connecting two boundary points such that:

(1) the graph σ0 ∪ E is a forest;
(2) the endpoints of E are smooth points of distinct edges, of the same color.
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The new graph σ0 ∪ E obtained by adding E to σ0 does not satisfy the prop-
erties of a picture. In particular two vertices are of degree 3. If we contract E to
a point then we obtain a correct picture.

Incidence relations between two classes of polynomials are defined below.

Definition 2.11 (Incidence relation between signatures). The signature σ1
is incident to the signature σ2 if σ2 is obtained from σ1 by one of the following
operations.

(1) We add an arc E in σ1 and contract it getting a new vertex. We get a new
picture equivalent to σ2.

(2) There is an edge in σ1 connecting two vertices of the same color. We
contract the edge and get a new vertex of higher multiplicity and a new
signature equivalent to σ2.

If the class Aσ1 is incident to Aσ2 then we denote this relation by Aσ1 ≺ Aσ2.

Proposition 2.5. There exists P2 ∈ Aσ2 in every neighborhood of every poly-
nomial P1 ∈ Aσ1.

Proof. Let us consider the classes Aσ1 , Aσ2 which are subsets of Cd. In par-
ticular those subsets inherit the induced standard metric. If Aσ1 ≺ Aσ2 then for
every ε > 0 there exists a couple (Bε, γ) where Bε is a ball having non empty in-
tersections with Aσ1 , Aσ2 , of radius ε and γ is a continuous path in Bε, connecting
a ∈ Aσ1 , to a′ ∈ Aσ2 . The picture Ca′ in the class σ1 contains additional critical
points, which do not exist on Ca. �

We now introduce the notion of biregular (i.e. generic) polynomials. These
polynomials play an important role in the decomposition of the space DPold as
will be seen in the next chapters.

Theorem 2.6. Let us consider the set of signatures for degree d > 1 polyno-
mials. The incidence relation induces a partial order � on the set of signatures.
We say that σ � τ if there exists a sequence σ = σ1 � σ2... � σn = τ .

Proof. Transitivity and reflexivity relations are obvious. We prove that the
relation is antisymmetric. If one has σ � τ then codim(τ) ≥ codim(σ). So, if σ � τ
and τ � σ then σ and τ have same codimension, and the equality of codimension
is possible only if n = 1 in the sequence σ1 � σ2... � σn, so σ = σ1 = σn = τ . �

Notation: We shall extend the name incidence to the relation � and we shall
denote it �. Also a notation A ≺ B is equivalent to B � A.

2.2. Combinatorial presentation of diagrams. In order to describe
rigorously the diagrams, we introduce some combinatorial definitions and tools.
Let Σd be the set of all diagrams with 4d terminal vertices. A diagram in Σd is
called of degree d.
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2.2.1. Families of trees in a diagram.
Recall that the forests in the previous diagrams are composed of trees.

Definition 2.12. A graph G is defined by two finite sets: one non-empty set V
of elements called vertices and one set E (E can be empty) of elements called edges,
with two vertices x, y in V associated to each edge e and called the extremities of
the edge. We denote the graph by G = (V,E).

Definition 2.13. A tree is a connected, undirected, acyclic graph.
A tree has two types of vertices:
• the inner nodes (the inner vertices) which are of valency strictly greater

than 1,
• the external vertices (also called leafs) which are of valency equal to 1.

Definition 2.14. Let G = (V,E) and G′ = (V ′, E ′) be two graphs. Two graphs
G = (V,E) and G′ = (V ′, E ′) are isomorphic if and only if there exists a bijection
β : V → V ′ mapping each couple of end vertices x, y in V of a given edge e ∈ E
to an edge e′ ∈ E ′ of end vertices β(x), β(y) in V ′.
Let T = {Ti}i∈J be the set of planar trees of a diagram.

In T , we distinguish two families of trees:
(1) simple trees consisting of a couple of red and blue diagonals crossing at

a point,
(2) non-simple trees.

Definition 2.15 (Short and long diagonals). Let σ be a signature. By diago-
nal in a diagram we mean a coupling of two terminal vertices i, j which are of the
same parity, denoted by (i, j). This coupling (i, j) is represented in the diagram
as a 1-dimensional connected component of a given color (red or blue) joining two
terminal vertices i and j.

• A diagonal is short if |i− j| = 2.
• A diagonal is long if it is not short.

Figure 3. A long blue diagonal (i, j), with red short diagonals.

Let us present the properties of biregular diagrams. Biregular diagrams are
composed of simple trees. There are three different types of simple trees.



2. COMBINATORICS OF SIGNATURES 19

• Trees consisting of two short (red and blue) diagonals are of type M .
• Trees consisting of one short and one long diagonal are of type F .
• Trees consisting of two long diagonals are of type S.

The M diagrams have only M trees. Some notation is introduced concerning
these trees.

(1) An M tree is denoted by | i
i+2 |, where the number on the first line indi-

cates that there exists a short diagonal (i+ 1, i+ 3) crossing the diagonal
(i, i+ 2).

(2) An F tree is denoted by
∣∣∣ ji ∣∣∣ where j and i are labels of the terminal

vertices of the long diagonal; the number j, indicates that there exists
a short diagonal of the opposite color joining the vertex j − 1 to j + 1.
Two F diagrams are of opposite F trees if the indexes are switched, for
instance

∣∣∣ ji ∣∣∣ and
∣∣∣ ij ∣∣∣ have opposite orientation.

(3) An S tree is denoted by
[
i,j
k,l

]
, where the first line gives the coordinates of

a long diagonal (i, j), the second line gives the coordinates of the second
long diagonal (k, l).

Example 2.2. An example of M,F, and S trees in biregular diagrams.

Definition 2.16. We call combinatorial presentation of a generic signature
the collection of the d matrices

[
i,j
k,l

]
and

∣∣∣ ji ∣∣∣ corresponding to the d trees of the
signature.

Lemma 2.7. The map from the set of generic signatures to the set of all
combinatorial presentations is a bijection.

Proof. Let us show that this map is injective. Suppose that there exist two
combinatorial presentations which are equal. These combinatorial presentations
are equal if the elements in the matrices are equal: in other words the terminal
vertices of the diagonals in the signature are equal. This defines a unique signature.
The surjection follows from the construction of the diagrams. �

2.2.2. Digression on trees in a diagram.
Trees in T inherit properties from the diagrams above, since the trees in T

satisfy a subset of the conditions in definition 2.8.
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Definition 2.17. Let σ be a diagram.
• A tree bounds a 2-cell of D \ σ if a couple of edges of the tree lies in the
boundary of this 2-cell.
• Two trees of a signature σ are called adjacent if they bound a common
region in D \ σ.
• A couple of diagonals (i, j)(k, l) in a generic diagram σ are called successive
if the terminal vertices satisfy one of the following conditions: |i− k| = 2
or |i− l| = 2 or |j − k| = 2 or |j − l| = 2.

We shall define an operation on trees of different degrees.
Let Tn denote all signatures of degree n consisting of one tree. Then there

exists an operation
⊗ : Σm × Tn → Σm+n,

not uniquely defined such that

⊗ : (σm, Tn) 7→ σm ⊗ Tn.

Proposition 2.8. The operation ⊗ : Σm × Tn → Σm+n is non-commutative,
except for finitely many cases.

Proof. Suppose that for any m,n ∈ N the union of trees Tm⊗Tn and Tn⊗Tm
define the same signature σ in Σm+n. This statement is possible if and only if
Tn = Tm. This contradicts that the statement holds for any m,n ∈ N. �

Corollary 2.9. Let Tm, Tn ∈ T ∪ {∅} and consider Tm ⊗ Tn ∈ Σm+n. Then
the trees Tm and Tn which are components of a given signature in Σm+n share a
common region in C \ (Tm ∪ Tn).

2.3. Whitehead moves.

We introduce a topological operation called Whitehead move, on the signatures.
This operation allows a modification of one signature σ to another one σ′, in such
a way that their codimensions remain equal. This operation is naturally related
to the deformation of the coefficients of a given polynomial P ∈ Aσ to another
one belonging to the class Aσ′. If we deform the coefficients of a polynomial
P ∈ Aσ, then this deformation is illustrated on the signature as a Whitehead
move; reciprocally, if a Whitehead move is applied onto a signature σ giving
in this way a new signature σ′, then this corresponds to a deformation of the
coefficients of a polynomial in the class Aσ into a second polynomial in the class
Aσ′.

Using the Whitehead moves, we show that the space DPold is simply-connected.

Definition 2.18 (Half-Whitehead move of the first type).
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(1) Contraction step A half-Whitehead move of the first type on a signature
σ0 is a modification of the signature as follows: choose m diagonals of the
same color which occur as part of the boundary of a given cell R, add a
polygon within the cell joining their centers, and contract this polygon to a
point. This new vertex is called a meeting point. This gives a non-generic
signature τ .

(2) Expansion step A smoothing half-Whitehead move of the first type on
the signature τ is a modification applied to the meeting point, which is
obtained by ungluing those m diagonals, giving m disjoint diagonals. The
new signature may differ from σ0.

For two diagonals inR, let us illustrate below a composition of a half-Whitehead
move with a smoothing half-Whitehead move.

δ : ←→ ←→ .

Definition 2.19 (Half-Whitehead move of the second type).
(1) Edge contraction step- Consider a non-simple tree in a signature σ0

with at least two inner nodes, one arc joining them. All the edges (and
arc) of the tree are of the same color. A half-Whitehead move of the second
type on a signature σ0 consists in contracting this arc to a point, glueing
the two inner nodes together.

(2) Partial expansion step- Suppose that in a non-generic signature τ there
exists a non-simple tree. Suppose without loss of generality that there exists
one inner node of valency 2m. A smoothing half-Whitehead move of the
second type on the signature τ is obtained by un-glueing k (where k > 0)
diagonals from the inner node along an edge of the tree, giving a non-
simple tree with two inner nodes, one of valency 2(m − k) and the other
one of valency 2(k + 1).

Definition 2.20. Let σ0 and σ1 be signatures of the same codimension. A
Whitehead move δ is a modification from σ0 to σ1 obtained from the composition
of a half-Whitehead move and a smoothing half-Whitehead move on a set of m
diagonals of the same color, occuring as part of the boundary of a given cell R.
Two classes Aσ0 and Aσ1 differing by a Whitehead move are called adjacent and
are denoted by Aσ0 ↔ Aσ1.

Remark 2.4. Notice that in order to satisfy the theorem 2.3, the arcs with
end-vertices on the centers of the couples of diagonal can not cross each-other.

Remark 2.5. Two classes Aσ0 , Aσ2 of bi-regular polynomials are adjacent if
they are incident to one unique class of codimension 1. We have the relations
Aσ0 ≺ Aσ1 and Aσ2 ≺ Aσ1 .

Example 2.3. • For d = 2, we illustrate a Whitehead move (c.f.
definition 2.20) on a couple red diagonals. The two generic signatures,
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illustrated as diagrams on the right and on the left of the figure below,
are incident to a codimension 1 class. This latter signature is illustrated
as the diagram in the middle of the figure:

• We illustrate the natural relation between the Whitehead move (which is
a topological operation) and the deformation on the set of coefficients of
the a given polynomial. In this following example, we consider Im(P ) = 0:

⇐⇒ ⇐⇒ .

Figure 4. Whitehead move of Im(P ) = 0 of monic polynomials, P1 = (z +
0.5− 0.5ı)(z + 0.5 + 0.5ı)(z− 0.2− 0.6ı), P2 = (z + 0.5− 0.5ı)(z + 0.5 + 0.5ı)(z +
0.6− 0.4ı), P3 = (z + 0.5− 0.5ı)(z + 0.5 + 0.5ı)(z + 0.5− 0.1ı)

2.4. Transitivity of Whitehead moves; connectedness of DPold.

Lemma 2.10. Let σ be a generic diagram such that all its red (resp. blue)
diagonals are short. Let i, j, k be terminal vertices, i (resp.j, k) ∈ Z4d . Then,
applying a Whitehead move onto the couple of adjacent blue (resp. red) diagonals
(i, j) and (j+2, k) increases by one the number of blue (resp. red) short diagonals,
if k 6= i− 2 and by two if k = i− 2.

Proof. Let us consider two cases:
(1) the case k = i− 2,
(2) the case k 6= i− 2.

Concerning the first case, by hypothesis the two adjacent long blue (resp. red)
diagonals are given by (i, j) and (j + 2, i− 1). Applying a Whitehead move onto
this couple of diagonals induces the couple of diagonals (i, i−2)(j, j+2), which are
both short in the sense of the definition 2.15. So, the number of short blue (resp.
red) diagonals is increased by two. Concerning the second case, the Whitehead
move applied to the couple of diagonals (i, j)(i−2, k) induces (i, i−2)(j, k), where
(i, i− 2) is a short diagonal. So, the number of short blue (resp. red) diagonals is
increased by one. �
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Remark 2.6. Suppose that the generic diagram σ has only short red (resp.
blue) diagonals. Then, iterating successively lemma 2.10 onto couples of blue
diagonals induces, in a finite number of steps, an M diagram.

Lemma 2.11. Let σ be a generic diagram such that all its red (resp. blue)
diagonals are short. Let i, j, k, l be terminal vertices, i (resp.j, k, l) ∈ Z4d. Let
(i, j) and (l, k) be a couple of non-successive blue diagonals in σ, which both occur
as part of the boundary of a given 2-cell. Then, applying a Whitehead move onto
the couple of diagonals (i, j) and (k, l):

(1) increases by two the number of long blue (resp. red) diagonals, if both
diagonals are short,

(2) increases by one the number of long blue (resp. red) diagonals, if one of
the diagonals is short,

(3) gives a new couple of long diagonals (i, l)(j, k), if both diagonals are long.
Proof. Concerning the first statement, by hypothesis both diagonals are short

and non-successive. Without loss of generality, suppose that i < j < k < l.
The hypothesis implies that |i − j| = |l − k| = 2, where k 6= j + 2 mod 4d,
and l 6= i − 2 mod 4d (using definition 2.15 and definition 2.17). So, applying
the Whitehead move onto the couple (i, j) and (k, l) induces the new couple of
diagonals (i, k)(j, l), where |i − l| 6= 2 and |l − j| 6= 2. Concerning the second
statement, let us suppose, without loss of generality, that if (k, l) is short, then
l = k + 2. Applying the Whitehead move onto (i, j) and (k, k + 2) gives the
couple of diagonals (i, k + 2)(j, k). Since (i, j) and (k, l) are non-successive, then
l 6= i − 2 and k 6= j + 2. Therefore, |i − k − 2| 6= 2 and |j − k| 6= 2. Since both
diagonals are long, the number of long blue (resp. red) diagonals, is increased by
one. Concerning the third statement, let us apply the definition of a Whitehead
move (defintion 2.20) onto a couple of diagonals (i, j) and (k, l). In particular,
this definition states that the codimension of the modified signatures must remain
invariant, after the Whitehead move operation. Since (i, j) and (k, l) are disjoint
and belong to a given signature σ, their terminal vertices verify k ≡ i ≡ 1 mod 4
and j ≡ l ≡ 3 mod 4 (see definition 2.8). This couple is first modified by a
half-Whitehead move into a couple of diagonals meeting at one point: (i, k)(j, l).
This couple is then modified by a smoothing Whitehead move, which induces the
unique possible couple of diagonals (i, l)(j, k). �

Theorem 2.12. Let σ ∈ Σd be a biregular diagram. Then, there exists a
sequence of Whitehead move operations δ which lead from a generic diagram σ to
an M-diagram.

Proof. The proof is by induction on the number of long blue diagonals. Let
σ be biregular signature such that on the left side of a long blue diagonal there
exist only short diagonals of red and blue color.

(1) Base case. Let σ have only one long blue diagonal. Then two cases are
discussed:
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(a) the red diagonals are all short.
(b) Not all red diagonals are short.
Consider the first case. Let us apply one of the lemma 2.10 onto the long
blue diagonal and the blue short diagonals on its right side. Since each
deformation step increases by one the number of short blue diagonals, so
proceeding until there are d short diagonals in the diagram we obtain a
diagram having only short blue diagonals. Hence, we have an M diagram.
Consider the second case where we have k red long diagonals. Then this
long blue diagonal and these k long red diagonals compartment the dia-
gram into q disjoint adjacent polygonal regions. Each polygonal region can
be interpreted as anM -diagram, locally. So, we have q adjacent locallyM
diagrams. We apply lemma 2.10 to the long blue diagonal in one compart-
ment. Then, after a finite number of deformations using lemma 2.10 to the
long blue diagonal, we have a local M -diagram in this compartment. The
new long blue diagonal is now common to the adjacent compartment. We
continue to apply lemma 2.10 to the new blue diagonal in this adjacent
compartment until we obtain locally an M -diagram in this adjacent com-
partment. We continue in this way in all adjacent compartments. This
gives in final all blue diagonals short. Now we apply the same procedure
to the red long diagonals. We obtain after a finite number of deformations
all red diagonals short. This is an M diagram.

(2) Induction case. Suppose that for a signature with m long diagonals there
exists a path from the signature to an M diagram. Let us show that for
m+ 1 long diagonals this statement is also true. Take a block of adjacent
m long diagonals and apply the induction hypothesis to it. Then there
exists a finite number of deformations such that these m long blue and red
diagonals are all short, leaving only one long blue diagonal in the diagram.
We can thus apply the case (1) from this discussion.

Remark 2.7. In the following chapters we will show that Whitehead moves
correspond to isotopy classes of paths between strata. Thus the theorem 2.12 above
can be interpreted as the path connectedness of DPold, from which we recover the
fact that DPold is connected since, as the complement of a hyperplane arrangement
it is a open subset of Cd.

�



CHAPTER 3

The geometric properties of the dual complex

The aim of this chapter is to represent geometrically the relations (incidence
and adjacence) of the poset (Aσ,≺), these relations are illustrated by construct-
ing the dual complex in such a way that each vertex of the dual complex cor-
responds to a biregular class, each edge of the dual complex corresponds to a
codimension 1 class. In final, the construction of the dual complex corresponds
to the nerve of the decomposition in the sense of Čech, which is essential for the
calculation of Čech cohomology.

1. Construction of the dual complex
1.1. Vertices of the dual complex. We classify the generic diagrams into

families. These generic diagrams are in bijection with the set of vertices in the
dual complex.

(1) Type M diagram. The type M is a diagram which has only trees of type
M . There are 4 such diagrams which we enumerate using the previous
notations:

(a) M1 ↔ | 31 | | 75 | ...
∣∣∣ 4d−1

4d−3

∣∣∣.
(b) M2 ↔ | 13 | | 57 | ...

∣∣∣ 4d−3
4d−1

∣∣∣.
(c) M3 ↔ | 35 | | 79 | ... | 1

4d−1 |.

(d) M4 ↔ | 53 | | 97 | ... | 4d−1
1 |.

(2) Type F diagram.The F diagram, has only trees of type M and trees of
type F .

A diagram of type F⊗m has exactly m trees of type F (and other of
type M).

(3) Type S diagram. The S diagram has only M trees and S trees. As for
the previous family of diagrams, a diagram is of type S⊗m if there exists
m trees of type S, the other are M trees. We focus on S trees given by
couples of diagonals (i, j) and (i+ 1, j + 1) or (i, j) and (i− 1, j − 1) and

25
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call the narrow S trees.

(4) Type FS diagram.The fourth type of diagrams is given by a combination
of F and S simple trees.

In an S diagram (resp. F diagram) the maximal number of S trees (resp. F
trees) is d− 2. We call “Q" diagrams the S⊗d−2 (resp. F⊗d−2) diagram. All the S
trees in a “Q” diagram are of type (i, j)(i+ 1, j + 1) or (i, j)(i− 1, j − 1).

1.2. Edges of the dual complex. Recall from chapter 2 that two generic
signatures which are both incident to a codimension 1 signature are adjacent. A
codimension 1 signature, incident to two generic diagrams is represented by an
edge with two vertices in its boundary. Those vertices correspond to the generic
signatures.

A few examples of adjacent generic diagrams are proposed below.

Example 3.1 (Adjacence relations between different kinds of diagrams). • For
degree 4, a sequence of deformations from the M diagram to an F diagram.

• For degree 3, a sequence of deformations from the S diagram to an F diagram
:

• For degree 5 a sequence of deformations from the S diagram to an F diagram:
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• For degree 6, a sequence of deformations from an SS diagram to an S dia-
gram:

This can be written using the notation of chapter 2 as:
[ 16 18

6 4 ]←→ [ 16
6 ] | 18

4 | | 21
3 | ←→ [ 16

6 ] | 18
4 | ←→ [ 16

6 ] | 22
4 | ←→ [ 16

6 ] .

1.3. Geometric properties of dual complex.

Definition 3.1 (Dual complex). Let (Aσ)σ∈Σd be a cover of DPold. Let � be
the incidence relation between two classes. The dual complex (W ,⊂) to (Aσ∈Σd ,≺)
is the complex such that:

• an i-face in Wσ is in one-to-one correspondence with a codimension i-class
Aσ;
• a couple of faces Wτ ,Wσ of the dual complex verifying Wτ ⊂ Wσ are
incident in the dual complex if and only if the corresponding classes Aτ , Aσ
of (Aσ)σ∈Σd verify the incidence relation: Aτ ≺ Aσ.

Lemma 3.1 (Edges and 2-faces of the dual complex). Let (W ,⊂) be the dual
complex associated to (Aσ)σ∈Σd.

(1) Each 1-dimensional face in W is bounded by 2 vertices.
(2) Each 2-dimensional face in W is a quadrangle.

Proof. Let us prove the first statement. Consider a codimension 1 signature
β. Then, by definition 2.2 there exists one couple of diagonals of the same color,
meeting at a point. Suppose that the set of terminal vertices of those diagonals
is {i, j, k, l} where i < j < k < l and the numbers i, j, k, l are of the same parity.
Moreover, from definition 2.8 we have the following relations between the terminal
vertices: i ≡ k ≡ 1 mod 4 and j ≡ l ≡ 3 mod 4 (resp. i ≡ k ≡ 2 mod 4
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and j ≡ l ≡ 0 mod 4 ). Again, from definition 2.8 we know that in a generic
diagram each terminal vertex congruent to 1 mod 4 (resp. 2 mod 4) is attached
by an edge to a terminal vertex which is congruent to 3 mod 4 (resp. 0 mod 4
). So, using a smoothing half-Whitehead move the meeting point is smoothed
and we obtain two different possible couples of diagonals: (i, j)(k, l) or (i, l)(j, k),
with all the other diagonals of the signature remaining invariant. So, applying the
definition 3.1 to construct the dual complex, we have that each 1-dimensional face
(corresponding to a codimension 1 signature) in W is bounded by only 2 vertices
(corresponding to the signatures obtained by smoothing the meeting point in β).

Let us prove the second statement. Consider a codimension 2 signature ω. By
definition 2.2, there exist two critical points. Applying the half-Whitehead move
onto one of the critical points gives two different possible codimension 1 signatures.
This last statement follows from the first point above. So, applying the same to
the second critical point, implies that there exist four codimension 1 signatures
which are incident to ω. In other words: {β0, β1, β2, β3} ≺ ω where codim(βi) = 1
and i ∈ {0, ..., 3}. The deformation operations applied simultaneously to both
critical points, defines four codimension 0 signatures which are all incident to ω:
{σ0, σ1, σ2, σ3} ≺ ω. Applying (1) to every codimension 1 signature implies that
there exist two codimension 0 signatures, which are incident to each codimension
1 signature. So, we obtain the following relations:

{σ0, σ1} ≺ β0,

{σ1, σ2} ≺ β1,

{σ2, σ3} ≺ β2,

{σ3, σ0} ≺ β3

The construction of the dual complex W from definition 3.1, implies that we have
a quadrangle. �

Corollary 3.2.
• Let σ0 and σ1 be two generic signatures. If σ0 and σ1 are both incident to
a signature of codimension 1, then this codimension 1 signature is unique.
• Let σ0, σ1, σ2, σ3 be four generic signatures. Then, if they are incident to a
signature of codimension 2 , then this codimension 2 signature is unique.

Example 3.2. See figure F:2-face for an example of a 2-face in W along with
its incident faces of smaller codimenison.

1.4. Non-crossing subcomplex. Let us consider the set [d] := {1, 2, . . . , d}.
A partition of [d] := {1, 2, . . . , d} is a collection of (pairwise) disjoint subsets,
called blocks, whose union is [d]. A non-crossing partition of [d] is a partition of
the vertices of a regular d-gon (labelled by the set [d] in clockwise order) with
the property that the convex hulls of its blocks are pairwise disjoint.
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1 2

34

Figure 1. A 2-face of W

Definition 3.2. Consider an ordered finite set {1, ..., n}. Consider partitions
of this set into disjoint subsets called blocks. We say that two blocks E,F of a
partition cross if there exists i < j < k < l such that i, k belong to one of the
blocks and j, l belong to the other block. A partition is non-crossing if no two
blocks of the partition cross.

Remark 3.1. One can interpret the non-crossing condition pictorially. Sup-
pose that we partition the set {1, 2, . . . , n}. Let us place the numbers of {1, 2, . . . , n}
on a circle, in order (such that n is adjacent to 1). By convex polygon, we mean
either a point (if the number of vertices is 1), a segment (if the number of vertices
is 2), or (if the number of vertices is 3 or more) a non degenerate convex polygon,
i.e., such that three vertices never lie on the same line. The notion of non crossing
extends as follows.

A finite nonempty subset is said to be convex if and only if it is the set of
vertices of a convex polygon in C. A partition π of {1, 2, . . . , n} is said to be
non-crossing if and only if convex hulls of any two blocks do not intersect.

Lemma 3.3. Consider the set of all generic signatures having all their red di-
agonals short. Then, this set of generic signatures is in one-to-one correspondence
with the non-crossing partitions of the set {1, 2, ..., d}.

Proof. Consider the set of terminal vertices with number verifying 0 mod 4.
Those terminal vertices are colored red, according to the definition 2.8. To a
number i of the set {1, 2, ..., d} we assign a vertex number 4i. Two such vertices
belong to the same block if and only if they lie on the boundary of the same
complementary region of the blue diagonals. Each such point belongs to exactly
one region but there may be regions without such points on the boundary. It is
easy to see that a partition uniquely determines the signature. �

Theorem 3.4. Let σ be a diagram. Let R be a polygonal region in D\σ having
in its boundary m sides of the boundary of the disk, m red arcs and m blue arcs.
Consider the set of signatures which are obtained by applying a Whitehead move
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on pairs of blue (resp. red) arcs bounding R in σ. Then, the set of those signatures
is in bijection with the set of non-crossing partitions {1, 2, ...m}.

Proof. Let us show the bijection between the set of non-crossing partitions of
{1, ..,m} and the set of signatures obtained by deforming couples of blue diagonals
in R. To show this bijection, we proceed similarly as in the proof of lemma 3.3
and consider R in σ as an M diagram of degree m (i.e. with only m couples of
short blue and red diagonals). Being only concerned with the region R, we use the
cyclic notation from {1, ..., 4m} on the 4m terminal vertices vertices lying in R.
The same argument is used as previously: consider all the terminal red vertices in
R with number equal 0 mod 4. To a number i of {1, 2, ...,m} we assign a vertex
number 4i. Two such vertices are in the same block if and only if they lie on
the boundary of the same complementary region of the blue diagonals. Each such
point belongs to exactly one region but there may be regions without such points
on the boundary. We can see that a non-crossing partition of {1, ...,m} determines
uniquely the R polygonal region in the signature σ. �

Let Cat(d) = 1
d+1

(
2d
d

)
be the d-th Catalan number.

Lemma 3.5. Let σ be a signature of codimension 2d − 3 in Σd having one
unique meeting point of multiplicity d. Then, there exist Cat(d) generic signatures
incident to σ.

Proof. To prove this statement, we use the bijection which maps a diagonal
connecting two vertices i and j to a couple of left and right parenthesis “(i, j)′′.

Assume without loss of generality that the short diagonals are colored red. The
blue vertices labeled {1, 3, 5, ..., 4d−1} are drawn in order on a circle so that 4d−1
is adjacent to 1. From definition 2.8 it follows that any blue diagonal connects one
odd vertex i, congruent to 1 mod 4 with one odd vertex j, congruent to 3 mod 4.
Since the diagonals in codimension 0 diagrams are non-crossing by lemma 3.3, we
can apply the non-crossing condition to the vertex integers, from definition 3.2.
In particular, if one has vertex integers i < j < k < l belonging to the set
{1, 3, 5, ..., 4d − 1}, the couple of diagonals (i, k)(j, l) can not exist in the same
diagram since the non crossing condition is not satisfied, whereas (i, j)(k, l) and
(i(j, k)l) can exist. Since there exist d diagonals, we count the number of possible
combinations of those d couples of left and right parenthesis. These parenthesis are
such that we insert d left parenthesis and d right parenthesis that define d binary
operations. The d couples of left and right parenthesis verify (i, j) where i ≡ 1
mod 4 and j ≡ 3 mod 4 and i, j ∈ {1, 3, 5, ..., 4d − 1}. Applying theorem 1.5.1
in Catalan numbers by Richard Stanley [50], the number of those combinations is
the Catalan number Cat(d). �

Remark 3.2. We showed that to each biregular signature having all short red
fixed diagonals one can associate a non crossing partition of a set of d integers.
The number of such non crossing partitions is the number of Catalan.
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Let us give an example of the subcomplex ofW connecting two M diagrams
sharing a common set of short red diagonals for d = 3. There is one face of

M3

a c d

M1

codimension 3 which is incident to all the faces in this subcomplex, there are
three codimension 2 sets, six codimension 1sets and Cat(3) = 5 codimension 0
signatures. This figure is called a“ diamond" structure.

1.5. Digression on the composition of Whitehead moves applied to
couples of diagonals.

Lemma 3.6. Consider three diagonals labeled {1},{2} and {3} of the same
color in an M diagram. Let δ(k,m) be the deformation operation acting on the
diagonals {k} and {m} and giving a couple of diagonals. Then, the composition
of two deformations operations verifies:

δ(δ(1, 2), 3) = δ(δ(1, 3), 2) = δ(δ(2, 3), 1).
Proof. Let the diagonal {1} be defined by (i, j), the diagonal {2} by (k, l)

and the diagonal {3} by (m,n). Applying the deformation operation δ(1, 2) gives
a new couple of curves (i, l)(j, k). Suppose with non loss of generality that i <
j < k < l < m < n. Then δ(δ(1, 2), 3) gives a deformation between (i, l) and
(m,n). So δ(δ(1, 2), 3) = (l,m)(i, n)(j, k). Apply the deformation operation δ(1, 3)
to the curves {1} and {3}. Then, δ(1, 3) = (i, n)(j,m). Applying δ(δ(1, 3), 2) we
deform (i, n)(j,m) with (k, l). By the inequality above we deform (k, l) with (j,m).
This gives (j, k)(l,m), so δ(δ(1, 3), 2) = (j, k)(l,m)(i, n). Hence δ(δ(1, 3), 2) =
δ(δ(1, 2), 3). Consider δ(2, 3). This deforms (k, l) and (m,n) to the couple of
diagonals (l,m)(k, n). Deform the curve {1} with (l,m)(k, n). This deforms (k, n)
with (i, j). Therefore δ(δ(2, 3), 1) is (l,m)(n, i)(j, k). �

Remark 3.3. Consider the family of biregular diagrams with d red short diago-
nals (resp. blue). Then, to each such biregular diagram one assigns a non-crossing
partition of [d].

To each short blue diagonal we associate a vertex on a circle. Recall that each
blue diagonal (which is not short) is obtained by deformation operation applied
to a couple of blue diagonals. Let us explain the relation to the non-crossing
partition of [d]. Suppose that we apply a deformation operation to a couple of
short blue diagonals, numbered by {k} and {m}. Then according to definition
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5, we draw an arc between the diagonals {k} and {m}. We can interpret this
deformation operation as a chord between the vertices k and m in the d-gon.

Then, this operation gives at most two long blue diagonals and at least one
long blue diagonal. This operation corresponds to drawing a chord between
the vertices k and m in the d-gon. Let us deform δ(m, k) with a short diag-
onal {i}, which is different from k and m. By the previous lemma we have
δ(δ(m, k), i) = δ(δ(i,m), k) = δ(δ(i, k),m). So this is drawn in the d-gon, as three
chord diagrams connecting pairwise vertices (i,m), (m, k), (k, i) and so defines a
3-gon.

Then, if we suppose that those diagonals are successive, then the deformation
induces a new long diagonal. This composition of two deformation operations
corresponds to drawing a 3-gon with vertices i,m, k.

Suppose, by induction, that an element of the partition of [d], say {i1, .., ik},
is defined by a composition of k − 1 deformations applied to the k short diag-
onals δ(...(δ(i1, i2)...ik))︸ ︷︷ ︸

k−1

. This composition of k − 1 deformations on the curves

{i1, .., ik} is interpreted as a convex hull of a k-gon of vertices {i1, .., ik}. Let us
show that for k + 1 short diagonals this statement is still true. Consider the set
{i1, .., ik} ∪ {ik+1}. Let us apply the deformation operation onto the couple of di-
agonals {ik+1} and δ(...(δ(i1, i2)...ik))︸ ︷︷ ︸

k−1

sharing a common region. Then we obtain

the diagonals given by δ(δ(...(δ(i1, i2)...ik))ik+1)︸ ︷︷ ︸
k

. We interpret this operation by

drawing a k + 1-gon in the d-gon of vertices {i1, .., ik} ∪ {ik+1}.

Remark 3.4. Consider a couple of M diagrams having fixed d short diagonals
of the same color. Then the biregular diagrams which are adjacent to the M
diagrams are F diagrams. In particular, M and S diagrams have no common
codimension 1 diagrams, smaller than both in the partial order. Indeed, to obtain
an M -diagram from an S-diagram, two deformation operations on a coulpe of red
and blue diagonals are necessary.

1.6. Biregular signatures using Birman-Ko-Lee generators.
In this part we state results concerning a deep relation between Birman-Ko-

Lee words and signatures of complex polynomials in DPold. These new results
appear in our article [16].

Recall that the braid groups Bd with d strings, enjoy a presentation in terms
of Artin generators σ1, ..., σd−1. J. Birman, K. Ko and S. Lee introduced new
generators for the braid group in their paper [8]. These generators are now
known as the Birman-Ko-Lee (BKL) generators. The BKL generators, ai,j for
1 ≤ i < j ≤ d, and Artin generators verify:

ai,j = (σi−1σi−2 . . . σj+1)σj(σ−1
j+1 . . . σ

−1
i−2σ

−1
i−1),
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where σi are the Artin generators of Bd. In the next proposition, we recall the
relations between the BKL generators.

Proposition 3.7 (Birman-Ko-Lee [8]). The braid group Bd has a presentation
with generators {ats; d ≥ t > s ≥ 1} and with defining relations:

atsarq = arqats if (t− r)(t− q)(s− r)(s− q) > 0
atsasr = atrats = asratr for all t, s, r with n ≥ t > s > r ≥ 1.

Let the fundamental word ∆∗d be generated by Artin Braid generators σi as
follows ∆∗d = σ1 ∗ · · · ∗ σd−1 which is the new fundamental word in the sense
of Birman-Ko-Lee, see [8]. We show the relation between degree d biregular
signatures and a pairing of Birman-Ko-Lee words which are divisors of ∆∗d and
verifying a non-crossing condition.

We use the following proposition due to Bessis-Digne-Michel.

Proposition 3.8 (Bessis-Digne-Michel [6]). Let ∆∗d = ad(d−1)a(d−1)(d−2) . . . a21.
Then the BKL words which are the divisors of ∆∗d are in one-to-one correspondence
with the non-crossing partitions of {1, .., d}.

In the following construction, the main ingredient is to introduce a new no-
tation on the terminal vertex numbers of the diagrams. For the even terminal
vertices:

σ1 : {4, .., 4d} → {1, .., d}
4i 7→ i

Similarly for the odd terminal vertices:

σ2 : {3, .., 4d− 1} → {1, .., d}
4j − 3 7→ j

Proposition 3.9. Each biregular signature is assigned a couple of words (as, bt)
where as and bt are both Birman-Ko-Lee words, which are the left divisors of ∆∗d
and such that the indexes s and t satisfy a non-crossing condition.

Proof. Consider the set of red diagonals in the signature. Notice that the red
diagonals compartment the diagram into disjoint polygonal regions. Each of the
polygonal regions contain a given number of blue vertices lying in the boundary
of the same complementary region of the red diagonals. Only the blue terminal
vertices numbered by the σ2 map are taken under account and blue vertices be-
longing to a common polygonal region define a block of the non-crossing partition
of {1, ..., d}. By the lemma 3.8, we assign a BKL word to each of these polygonal
regions, indexed by the blue terminal vertices having the notation of σ2. This
gives one component of the couple of BKL words. Since these polygonal regions
are disjoint, we have a product of BKL words given by (∗, bP1bP2 ...bPk) where the
Pi are disjoint and define the adjacent vertices of each polygon and k is the number
of non degenerated polygons (i.e. polygons consisting of more than one vertex).
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Consider now the set of blue diagonals in the signature. We proceed similarly
as previously. The set of long blue diagonals partitions the diagram into disjoint
polygonal regions P ′i . Each polygonal region contains red vertices. we consider
the vertex numbers numbers obtained by σ1. This defines a partition of the set
of red vertices {1, .., d} into disjoint non-crossing blocks. These disjoint blocks
are each assigned to a BKL words by the lemma 3.8. Their product induces a
component of the couple of BKL words: (aP ′1 ...aP ′k′ , bP1bP2 ...bPk), where k, k′ are
the numbers of the non-degenerated polygons (i.e. polygons consisting of more
than one vertex). �

Corollary 3.10. Each biregular diagram with all red (resp. blue) diagonals
being short is assigned to a Birman-Ko-Lee word, which is a left divisor of ∆∗d.

Proof. It was proven in lemma 3.3 that each biregular diagram with all red
(or blue) diagonals being short is assigned to a non-crossing partition of a set
[d]. We apply a result due to Bessis-Digne-Michel 3.8 [6] stating that non-crossing
partitions of [d] are in bijection with the divisors of ∆∗d. Therefore to each biregular
diagram with all red (or blue) diagonals being short one can assign a divisor of
∆∗d. �

Example 3.3. A unique meeting point of multiplicity 3 corresponds to a face
of dimension 3 inW which has 3 faces of dimension 2; 6 edges and 5 vertices. The
faces are quadrangles.

Let us recall that a necklace structure is a collection of simplicial objects
(called the beads) glued along there initial and end vertices such that the initial
vertex of a i-th simplex is glued to the terminal vertex of the next i+1-th simplex
where i ∈ Zm.

Proposition 3.11. For all d > 1, there exist four structures NC(d) forming
a necklace structure in W.

Proof. There exist four NC(d) structures inW . The end vertices (initial and
final vertex) of each NC(d) is an M diagram. Since there exist four M diagrams,
for any d > 0, therefore the union of those four NC(d) structures forms a necklace
of four beads. �

2. Symmetries of the dual complex
In the remaining part, we decompose the dual complex into different families

of geometric structures and study how these parts are disposed one towards
another. This investigation is interesting, because firstly one can construct from
it the nerve (in the sense of the Čech cohomology), useful for the calculations
of the Čech cohomology. Secondly, the number of faces in the dual complex is
exponential (the counting is presented in chapter 8). This makes it impossible to
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draw, for higher degrees than 3. However, we solve this problem, by introducing
a new method outlining a draft of this dual complex. Thirdly, the aim being
the Čech cohomology groups, and because their calculation is very complicated,
we are interested in a simplification. So, we look for symmetries and prove the
existence of symmetries in this dual complex. These results are the object of our
article [17].

Definition 3.3 (Lego piece). Let Q = S⊗d−2 be a diagram of type S⊗d−2. Let
γ be one of its four shortest long diagonals. Consider all diagrams having only long
diagonals parallel to the ones of Q and which are obtained from Q by a sequence of
deformations such that γ is kept fixed. Do it for all four shortest long diagonals.
We get the lego piece determined by Q which is a sub-graph in the dual complex.

Example 3.4. We present a detail of a lego piece.

Figure 2. Lego detail for d = 4

Remark 3.5. There exists 2d lego pieces, since there exist 2d rotations of Q.
Definition 3.4 (Tower). Consider two lego pieces and their respective Q dia-

grams. If these Q diagrams have a common set of red (resp. blue) diagonals, then
these lego pieces are consecutive. The 2d consecutive lego pieces forms a subgraph
of the dual complex Y ⊂ W called tower.

Definition 3.5 (Joints). The sub-graph of the dual complex is called joint if
it connects a couple of consecutive lego pieces.
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Remark 3.6. The dual complexW contains two main parts: the disjoint union
of the four NC(d) lattices and the subpart ofW containing the tower Y .The tower
Y is constituted from three subparts:

• lego pieces,
• joints,
• sub-graphs of W connecting non consecutive lego pieces.

All types of diagrams do not appear in the lego pieces and joins. Those dia-
grams which do not belong to any lego pieces or join belong to the sub-graph of
W establishing the connection between two non consecutive lego pieces.

Let us describe the diagrams of the tower using an algebraic method.
A “Q” diagram is associated to a matrix [ L0

L1
] where L0 contains all the couples

of terminal vertices connected by long diagonals of one color, L1 contains all the
couples of terminal vertices connected by long diagonals of the other color. The
order in which the colors of L0 or L1 are taken does not matter. The couple of
terminal vertices of two crossing diagonals lie in the same column of the matrix.
The first and the last columns of the matrix contains the couple of terminal ver-
tices of the shortest long diagonals. Two adjacent columns contain the terminal
vertices of diagonals sharing a common region.

Using this approach we describe consecutive lego pieces.

Lemma 3.12. Let Q1 and Q2 be two consecutive “Q” diagrams. Then their
associated matrices verify

Q1 =
[
L0
L1

]
, Q2 =

[
L1

L2:=L1−1

]
,

where L1 − 1 means that all the indexes of the terminal vertices of the diagonals
in L2 are those of L1 minus one, modulo 4d.

Proof. Suppose, with no loss of generality that in Q1 =
[
L0
L1

]
:

• L0 consists of the collection of long diagonals
(2, 8)(4d, 10)...(4d− 2(d− 4), 8 + 2(d− 3)),

• L1 consists of the collection of long diagonals
(1, 7)(4d− 1, 9)...(4d− 1− 2(d− 4), 7 + 2(d− 3)).

In particular the S trees in the diagram Q1 are all narrow, i.e. defined by couples
of long diagonals of type (i+ 1, j + 1)(i, j), where

• the couple (i, j) belongs to L0
• the couple (i − 1, j − 1) belongs to L1 and where i, j are odd numbers
modulo 4d.

By definition, since Q1 and Q2 are consecutive, their matrices share a common
line, say L1. Consider the second line of Q2. Since Q2 is different from Q1, their
matrices are different. The Q2 diagram is by definition of type S⊗d−2. The S trees
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are narrow and thus of type (i, j)(i − 1, j − 1). In particular L2 is (4d, 6)(4d −
2, 8)...(4d− 2(d− 3), 8 + 2(d− 4)). So, we have L2 := L1 − 1. One generalizes by
adding a number q to L0: (2+q, 8+q)(4d+q, 10+q)...(4d−2(d−4)+q, 8+2(d−3)+q)
mod 4d and to L1. �

Example 3.5. For d = 4 one has the following consecutive Q diagrams:[
1,11 3,9
0,10 2,8

]
l[

0,10 2,8
15,9 1,7

]
l[

15,9 1,7
14,8 0,6

]
.

Example 3.6. Example of lego tower d = 3.

| 17 |

| 28 |

| 39 |

| 4
10 |

| 5
11 |

| 60 |

| 71 |

[
1,7
2,8

]
[

2,8
3,9

]
[

3,9
4,10

]
[

4,10
5,11

]
[

5,11
6,0

]
[

6,0
7,1

]

| 71 |

| 82 |

| 93 |

| 10
4 |

| 11
5 |

| 06 |

| 17 |

Figure 3. Lego tower for d=3

The example 4 of a entire lego tower is given at the end of this chapter for
d = 4. For d = 6, the lego tower is given in the appendix B.

Lemma 3.13. A rotation by an angle of kπ
2d of a diagonal (i, j) in a diagram

corresponds to adding +2k to its terminal vertices, so we have (i+ 2k, j + 2k).
Proof. Le us proceed by induction on the angle kπ

2d .
(1) Base case Let k = 1. Let us rotate by kπ

2d the diagonal (i, j). Since
i, j ∈ {1, 3, .., 4d− 1} are the vertices of a regular 2d-gon, then rotating by
an angle kπ

2d a diagonal (i, j), sends it to the diagonal (i+ 2, j + 2).

(2) induction case Suppose that for k the statement, the diagonal (i, j) is sent
to (i + 2k, j + 2k). Let us show that for k + 1 lemma is true. We rotate
about an angle kπ

2d
π
2d the diagonal (i, j). By induction hypothesis rotating

by kπ
2d sends (i, j) to (i+ 2k, j + 2k). Rotating (i+ 2k, j + 2k) by an angle

of π
2d sends it to (i+ 2k+ 2, j + 2k+ 2) that is (i+ 2(k+ 1), j + 2(k+ 1)).
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�

Remark 3.7. In particular rotating all the diagonals in a diagram [ L0
L0−1 ] by

an angle of kπ
2d is equivalent to adding +2k to all of the terminal vertices of the

rotated diagonals, so we have [ L0+2k
L0−1+2k ]. Rotating all the diagonals [ L0

L0−1 ] by an
angle of π is equivalent to adding +4d to all of the terminal vertices of the rotated
diagonals, so in the rotated diagram by an angle of π we have [ L0+4d

L0−1+4d ].

Lemma 3.14. Let Q1 and Q2 be two consecutive “Q” diagrams. Then there
exists a sequence of deformations of only one color from Q1 to Q2 containing a
diagram F⊗d−2.

Proof. We induct on d, where d > 3. Lower degrees are irrelevant since the
Q diagrams do not exist.

• Base case d = 4. The Q diagram [ L0
L1

] has two long blue diagonals and two
long red diagonals. Suppose that one of the S is given by [ ij ]. The couples
of red and blue long diagonals share a common region, which implies that
the deformation operation can be applied to one couple of diagonals of a
given color, say red. The other couple of blue long diagonals remains fixed.
Deforming the couple of long red diagonals induces a couple of short red
diagonals. This gives a new diagram of type F⊗2. We have thus showed
the existence of a sequence connecting a Q diagram to a F⊗2. Now, we
show that starting from F⊗2 there exists a sequence of deformations giv-
ing the consecutive Q diagram of matrix [ L1

L1−1 ]. Consider the couple of
short red diagonals, sharing a region and different from the previous one.
Deform it: one obtains a diagram SF , where the S is given by [ ji ]. Deform
the remaining couple of red short diagonals. This gives a diagram SS with
matrix [ L1

L1−1 ].

• Induction case. Assume that the lemma works for two consecutive S⊗d−2

diagrams. We will prove that for two consecutive S⊗d−1 diagrams with
d− 1 couples of S trees there exists a sequence of deformations containing
a diagram of type F⊗d−1. Consider the degree d+ 1 diagram S⊗d−1. Since
the assumption of the lemma is true for S⊗d−2, then there exists a sequence
of deformations from S⊗d−1 to a diagram SF⊗d−2, where S is a tree given
by the crossing of the shortest long diagonals in the diagram. It remains
to deform the couple of diagonals (one long, the other one short) sharing
a region, so as to obtain F⊗d−1. Now starting from F⊗d−1, there exists
by induction hypothesis a sequence of deformations giving the diagram
S⊗d−2F . Finally, one more deformation induces the passage from F to S.
This gives the S⊗d−1 diagram.

�
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Remark 3.8. Let X be a lego piece of the dual complex. Then, one defor-
mation in X of the Q diagram gives an SF diagram. A second deformation step
gives an S diagram with narrow S trees.

Indeed, let us enumerate all the three possible cases. Notice that a Q diagram
has two S trees made of the shortest long diagonals in the diagram.

(1) S⊗d−2 is deformed in one deformation step to S⊗d−3F (or to FS⊗d−3).
This is obtained by deforming a couple diagonals (one in M and one in
adjoining S, both being of the same color). From this diagram, by deform-
ing the long diagonal in F with the diagonal in M of the corresponding
color, we obtain S⊗d−3M , all the S being aligned.

(2) S⊗d−2 is deformed in one deformation step to S⊗d−4FF (or to FFS⊗d−4).
This is obtained by deforming a couple of long diagonals: one being the
shortest long diagonal of the diagram, the other one being adjoining to it.
Deforming once more the couple of long diagonals in FF reduces to the
trees two MM . So the resulting diagram is S⊗d−4MM .

(3) S⊗d−2 is deformed in one deformation step to S...SFFS...S where the
number of S is d− 4. This is obtained by deforming a couple of adjoining
long diagonals (which are not the shortest long diagonals of the diagram).
Deforming the remaining long diagonals in FF gives a couple of treesMM .
This gives the diagram S...SMMS...S.

All the other diagrams are obtained iterating the procedure described above
onto each of the remaining collection of narrow S trees in the diagram. Applying
this method continuously, we obtain diagrams with only one narrow S tree and
in particular we can obtain the F diagrams constructed from the shortest long
diagonals (the γ diagrams).

The joins connect one lego to its consecutive one. The diagrams in a join have
a set of parallel long diagonals of a given color. These long diagonals are com-
mon to the diagrams of the two consecutive lego pieces. Each diagram of S type
in one lego is connected to its corresponding S diagram in the consecutive lego
piece. These two diagrams have in common a fixed set of diagonals of a given
color. In the join, the sequence of deformations between those two diagrams
contains an F diagram. This F diagram has the common set of long diagonals
in the S diagrams. For instance let us discuss the subgraph of a join, between
two Q diagrams. Take S⊗d−2deform it to S⊗d−3F , deform it to S⊗d−5FFF . Con-
tinue deforming it to F⊗d−2. Now we deform the short diagonals differently than
previously. A finite sequence of deformations gives the second Q diagram.

Lemma 3.15. Let X be a lego piece and G1, G2 be two subgraphs of X. Then
there exists a decomposition of the graph X such that :

• X = G1 ∪G2,
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• G1, G2 are isomorphic,
• the vertex corresponding to the Q diagram is contained in G1 ∩G2 .

Proof. Let us describe the construction of X.
Take the Q diagram, numerate its long diagonals of a given color from 1 to

d − 2 (starting from one of its shortest long diagonals and ending on the second
shortest long diagonal).

• Let G1 be the subgraph of the lego connecting a Q diagram to all diagrams
containing only one narrow S tree, consisting of long diagonals among the
set {d−2

2 + 1, ..., d− 2}.
• Let G2 be the subgraph of the lego connecting a Q diagram to all diagrams
containing only one narrow S tree consisting of long diagonals among the
set {1, ..., d−2

2 }.
We show using induction on the number of deformations which start from the Q
diagram that G1 and G2 are isomorphic.

Let A(n) be the hypothesis that after n deformations of the diagram Q respec-
tively in G1 and G2 these subgraphs are isomorphic. Let us verify that for one
deformation, A(1) is true.

(1) Deforming Q induces two families of diagrams:
(a) S⊗d−3F and FS⊗d−3

(b) S⊗d−4FF or S..SFFS...S
(Without loss of generality we assume that the deformation concerns

only one fixed color of diagonals, the result being independent of this re-
mark.)

(2) We partition this set of vertices into those belonging to the graph G1 and
those belonging to the graph G2 according to the following criterion:
• diagrams having a couple of trees FF (or only one F tree) among the
set of long diagonals {1, ..., d−2

2 } belong to G1;
• diagrams having a couple of FF (or only one F tree) among the set
of long diagonals {d−2

2 + 1, ..., d− 2} belong to G2;
• the diagram which verifies FF in {1, ..., d−2

2 } and{
d−2

2 + 1, ..., d− 2} is
a vertex belonging to G1 ∩G2.

The number of couples of FF in the diagram is d− 3 and one diagram is
common to G1 and G2. So, for the first step there exist d−4

2 vertices in G1
and G2, each being connected to the Q diagram. Thus A(1) is true.

We deform the couple of FF or FM into a couple of MM trees and
repeat this step each time that a new couple FF is obtained. This induces
a new S diagram with a number of long diagonals strictly less than d− 2.

(3) Let us show that A(2) is true. Iterate the previous procedure on each of
the S diagrams having d − 4 S trees, obtained in G1 and G2 from the
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first step. As previously, diagrams in G1 are those having a deformation
among the set of diagonals {1, ..., d−2

2 }; diagrams in G2 are those having a
deformation among diagonals in {d−2

2 + 1, ..., d− 2}. The diagrams having
deformations in both sets {1, ..., d−2

2 } and {d−2
2 + 1, ..., d − 2} belong to

the common set of vertices of G1 and G2. The number of diagrams ob-
tained by a second deformation in G1 and G2 are the same (the number
of long diagonals for diagrams in G1 and G2 after a second deformation
are the same: d−2

2 − 6). Considering only the diagonals of the color that
is deformed, the diagrams in G1 and G2 are equivalent up to a rotation of
π. Therefore, for each couple of diagrams connected by an edge in G1, we
have in G2 this couple of connected diagrams rotated by an angle π. So,
A(2) is verified.

(4) Suppose that for a certain number n of deformations A(n) is true. Let us
show that A(n+1) is true. For each diagram obtained after n deformations,
we split diagrams from the n+ 1-th deformation step into those belonging
to G1 and those belonging to G2 according to the previous criterion. Each
diagram at the nth step in G1 has an equivalent diagram in G2, considering
only the diagonals of the color we deform, rotated by an angle π. We apply
the deformation procedure to the long diagonals of each diagram in G1 and
G2, obtained by the n-th step of deformations. Two diagrams in G1 of the
nth and n+1th step are connected by an edge implies that the diagrams in
G2 equivalent by some rotation of π are also connected (considering only
the color of deformed diagonals). Proceeding this way for all the diagrams
in G1 and G2 we show that A(n+ 1) is true.

�

Proposition 3.16. Let Z be a couple of consecutive lego pieces and let Y be
the tower. Then p : Y → Z is a Galois covering, with Galois group of order d.

Proof. Let us define p : Y → Z where Y = ∪ρ∈GZρ and G is a cyclic
group of finite order d. From above it follows that Y is connected. Each inverse
image p−1(Aσ) of Aσ ∈ Z is constituted from classes, having diagrams which are
equivalent up to a rotation of σ. So, any action ρ ∈ AutZ(Y ) on σ gives a diagram
σ′ which belongs to p−1(Aσ). We show that for Y ×Z Y = {(z, z′) ∈ Y ×Y,p(z) =
p(z′)}, the map

φ : G× Y → Y ×Z Y,
(g, z) 7→ (z, gz)

is a homeomorphism.
• The map is a bijection. First let us show that the map is injective. Con-
sider φ(g, z) = φ(g′, z′) i.e. (z, gz) = (z′, g′z′) ∈ Y ×Z Y . Then, z = z′ and
g′ = g and in particular (g, z) = (g′, z′) in G× Y , so the map is injective.
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The map is surjective since for every (z, gz) ∈ Y ×Z Y , there exists at least
one element in (g, z) ∈ G× Y such that φ((g, z)) = (z, gz).
• The map is bicontinuous because the group G continuously acts on Y .

So the map p : Y → Z satisfies the definition of a Galois covering for an order d
Galois group. �

Lemma 3.17. Let S1 = [ L0+2d
L0+2d−1 ] and S2 = [ L0−2d

L0−2d−1 ] be two S diagrams. Then
S1 = S2.

Proof. Consider any diagonal (i, j) ∈ L0, where i, j are integers if the same
parity modulo 4d. We have i ≡ i mod 4d ⇐⇒ i+4d ≡ i mod 4d ⇐⇒ i+2d ≡
i− 2d mod 4d. Proceeding similarly for j we have that S1 = S2. �

Theorem 3.18. The tower is invariant under the group H = Zd o Z2.
Proof. We discuss the second term in H, the first term Z2 following from the

proposition 3.16. Let us recall from lemma 3.15 that:
• the subgraphs G1 and G2 of a lego X are isomorphic;
• the diagrams in G2 are those in G1 rotated by an angle of π.

We attribute the matrices to each diagram of the lego piece. We follow the con-
struction from lemma 3.12 and use the lemma 3.13. In particular, each couple of
distinct S diagrams in S1 ∈ G1 in S2 ∈ G2 equivalent by a rotation of π are given
by the matrices S1 = [ L0

L0−1 ], S2 = [ L0+2d
L0−1+2d ]. Let us discuss the matrix relations

between each couple of consecutive lego piece.
(1) Take any diagram in the subgraph G1 of the first lego piece, associated to

[ L0
L0−1 ] and its rotated diagram by an angle π which is [ L0+2d

L0−1+2d ], in G2.
Then, applying lemma 3.12, the consecutive diagrams are respectively of
type [ L0−1

L0−2 ] and [ L0+2d−1
L0−1+2d−2 ]

(2) Take any diagram in the subgraph G1 of the i-th lego piece, associated to
[ L0−i+1
L0−i ] and its rotated diagram by an angle π which is [ L0−i+1+2d

L0−i+2d ], in G2.
Then, applying lemma 3.12, the consecutive diagrams are respectively of
type [ L0−i

L0−(i+1) ] and [ L0−i+2d
L0−(i+1)+2d ].

(3) For the 2d− 1-th lego piece, we have [ L0−(2d−1)
L0−2d ] and [ L0+2d−(2d−2)

L0+2d−1−(2d−1) ]. The
consecutive diagrams are respectively [ L0−(2d−1)

L0−2d ] and [ L0+2d−2d
L0+2d−1−2d ]. By

Lemma 3.17 we have L0 − 2d = L0 + 2d mod 4d. So, diagrams in the G1
subgraph of the 2d−1-th lego piece are connected by a join to the subgraph
G2, of the first (2d th ) lego piece. This switches the positions of the two
subgraphs of G1 and G2 in the lego pieces numbered from to 2d to 4d− 1,
compared to the positions of G1 and G2 in the lego pieces numbered from
1 to 2d− 1. So, the identity is obtained after 4d consecutive lego pieces.

Below we present a part of the tower, the joints are represented by thin vertical
double arrow, deformations by a thick horizontal double arrow.
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−−−−−−−−−−−−−−−−−−−−−−−−−→

[
L0
L0−1

]
⇔ . . . ⇔ [ Q1 ]⇔ · · · ⇔

[
L0+2d
L0−1+2d

]
l l l[

L0−1
L0−2

]
⇔ . . . ⇔ [ Q2 ]⇔ · · · ⇔

[
L0−1+2d
L0−2+2d

]
l l l[

L0−2
L0−3

]
⇔ . . . ⇔ [ Q3 ]⇔ · · · ⇔

[
L0−2+2d
L0−3+2d

]
. . . . . . . . .

l l l[
L0−(2d−2)
L0−(2d−1)

]
⇔ . . . ⇔ [ Q2d−1 ]⇔ · · · ⇔

[
L0+2d−(2d−2)
L0+2d−1−(2d−1)

]
l l l[

L0−(2d−1)
L0−2d

]
⇔ . . . ⇔ [ Q2d ]⇔ · · · ⇔

[
L0+2d−2d
L0+2d−1−2d

]
=
[

L0
L0−1

]
←−−−−−−−−−−−−−−−−−−−−−−−−−

�

Corollary 3.19. Let W be the dual complex. Then W is invariant under
Z2 o Z2.

Proof. From the argument in the proof of proposition 3.16, there exist d
copies of Z. From theorem 3.18, the lego X is invariant under a cyclic group of
order of 2. The diagrams of the decomposition are classified up to rotation and
the smallest cardinality of diagrams belonging to the same rotation class is 4: it
contains the four M diagrams. The other classes are of cardinalities of type 4p
where p divides d. The only diagrams which are not considered in the tower are
the M diagrams and each lego is connected to one M diagram. The procedure of
consecutive lego pieces implies that the we have the following consecutive cyclic
relations of M diagrams: M1 is consecutive to M2, M2 is consecutive to M4, M4
is consecutive to M3, M3 is consecutive to M1. So W is invariant under Z2 o Z2
since 2 is the smallest integer greater than one dividing the cardinality of the set
of M diagrams. �

2.1. The main classes of subcomplexes. Let W (I) be the dual complex
with I the set of its vertices. The vertices in i0 ∈ I correspond bijectively to the
set of biregular classes σi0 ∈ Σd. Let us define the subcomplexes which generate
the dual complex.
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Definition 3.6. Consider the finite number of distinct points i0, ..., ip in real
affine space. We define the subcomplex D(i0, ..., ip) ⊂ W as a compact and con-
nected structure in real affine space of real dimension m, having vertices I ′ =
(i0, ..., ip) ⊂ I and such that:

(1) there exists an edge between the vertices ij and ik in the sequence I ′ if
{σij , σik} are both incident to a common codimension 1 signature.

(2) there exists a quadrangular 2-face between the vertices (ij, ik, il, im) ⊂ I ′ if
the signatures {σij , σik , σil , σim} are incident to a common codimension 2
signature.

(3) there exists an n-face of vertices (ik0 , ..., ikq) ⊂ I ′ if the codimension zero
signatures {σik0

, ..., σikq} are all incident to one signature of higher codi-
mension than 0.

(4) there exists an m-face of vertices (i0, ..., ip) if the codimension zero signa-
tures {σi0 , ..., σip} are all incident to one signature of high codimension.

Definition 3.7. We introduce three main classes of structures in the dual
complex called NC,B,O structures respectively.

(1) NC(d) structure is given the set of signatures which are obtained by smooth-
ing a signature σN of codimension 2d− 3 having all blue (resp. red) short
diagonals.

(2) B structure is given the set of signatures which are obtained by smoothing
(a) a signature σB of codimension 2d − 4 having one blue long diagonal

and all the other diagonals short,
(b) a signature having two long blue diagonals and all other short in σB
(c) ...
(d) a signature having d− 2 long diagonals in σB.

(3) O structure is given the set of signatures which are obtained by smoothing
a signature σO of codimension 2d− 4 with two critical points: one red and
one blue. All the other diagonals are short. This class is subdivided into
smaller parts such that:
(a) there exists a blue (resp. red) long diagonal in σO,
(b) there exists two long diagonals in σO
(c) ...
(d) there exist d-2 long diagonals in σO.

2.2. Geometry of the subcomplexes. We are interested in the geometry
of the subcomplexes D(I), contained in the dual complex W. Let D(i0, ..., iq)
be the sub-complex of the dual complex W having q + 1 vertices. The vertices
correspond to the set (Aσij )

q
j=0 and the intersection ∩qj=0A

+
σij

is non-empty.
In order to investigate the geometry of the subcomplexes, we use the geo-

metric properties of the tower, introduced previously.
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Proposition 3.20. Let D(i0, ..., iq+1) be a NC(d) subcomplex of (W ,⊂). Then,
each couple of consecutive lego pieces Z in Y contains at least one vertex of this
substructure.

Proof. By remark 3.4 each such subcomplex contains vertices corresponding
to F diagrams and in the particular F diagrams with one shortest long diagonal.
Since each lego piece contains such a diagram, then each copy of Z contains at
least one vertex of D(i0, ..., iq+1). �

Lemma 3.21. For any q ≥ 0, the set of vertices of a subcomplex D(i0, ..., iq) is
contained in the set of vertices of the subcomplex D(i0, ..., iq+1).

Proof. One hasD(i0, ..., iq) ⊂ D(i0, ..., iq+1). So, the set of vertices of {i0, ..., iq}
is contained in the set of vertices of {i0, ..., iq+1}. �

Corollary 3.22. For any q ≥ 0, the set of vertices of D(i0, ..., iq) is contained
in r copies of Z, where r is a divisor of d.

Proof. From lemma 3.21, the set of vertices of D(i0, ..., iq) is contained in the
set of vertices of D(i0, ..., iq+1). Moreover, from proposition 3.16, the Galois group
acts transitively on the set of vertices. Since the substructure formed by 0-faces
and 1-faces in W is invariant under the group Zd oZ2 by theorem 3.19, therefore
the set of vertices of D(i0, ..., iq) is contained in r copies of X, where r is a divisor
of d. �

Corollary 3.23. Let D(i0, ..., iq) be a subcomplex of W having vertices be-
longing to rq+1 copies of X, where rq+1 divides d. Then, the set of vertices of
D(i0, ..., iq−1) is contained in rq copies of X, where rq is a divisor of rq+1.

Proof. From lemma 3.21, the set of vertices of D(i0, ..., iq−1) is contained in
the set of vertices of D(i0, ..., iq). So, if the vertices belonging to D(i0, ..., iq) are
contained in rq+1 copies of X, then the set of vertices of D(i0, ..., iq−1) is contained
in rq copies of X, where rq < rq+1. Supposing that rq is not a divisor of rq+1 would
contradict the fact that Y is invariant under the group Zd o Z2. Indeed, if ones
supposes that Y is invariant under a finite cyclic group G of order d then, Y is
also invariant under the subgroups of G. By Lagrange’s theorem the subgroups of
G are cyclic groups and their order divides d. Therefore rq is a divisor of rq+1. �

Lemma 3.24. The sub-complex D(i0, ..., ik) having only vertices in the lego
pieces is invariant under a cyclic subgroup Zb o Z2 where b divides d.

Proof. By theorem 3.19, it follows that the structure in W , formed from
vertices and edges is invariant under Z2d o Z2. The subset of vertices belonging
to D(i0, ..., ik), does not belong to each copy of X. Indeed, from lemma 3.21,
the vertices of D(i0, ..., ik) belong to a smaller number of copies of X. Using
theorem 3.19, Y is invariant under the group Z2d o Z2. From the same argument
as previously, the number r of copies of X containing vertices of D(i0, ..., ik), is a
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divisor of d. The theorem of Lagrange implies that D(i0, ..., ik) is invariant under
an order b cyclic subgroup of Zd, such that the equation rb = d is verified. �

We now state the following conjecture:

Conjecture: The poset of signatures can be realized as the poset of cells of
a CW-complex.
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| 11
1 | | 1

11 |
| 71 |

| 4
10 |

| 15
9 |

| 12
2 |

| 11
1 | | 93 | | 1

11 | | 39 | | 93 | | 39 |
| 93 |

[
1,11
10,0

]
| 11

1 |
[

3,9
2,8

][
1,11
0,10

] [
1,11 3,9
0,10 2,8

] [
3,9
2,8

]
| 88 |

[
1,11
10,0

]
| 0

10 |
[

3,9
2,8

]
| 10

0 | | 0
10 |

| 60 |

| 39 |

| 14
8 |

| 11
1 |

| 82 | | 10
0 | | 82 | | 0

10 | | 28 || 28 |
| 82 |

[
0,10
15,9

]
| 10

0 |
[

2,8
1,7

][
0,10
15,9

] [
0,10 2,8
15,9 1,7

] [
2,8
1,7

]
| 71 |

[
0,10
15,9

]
| 15

9 |
[

2,8
1,7

]
| 9

15 | | 15
9 |

| 5
15 |

| 28 |

| 13
7 |

| 10
0 |

| 9
15 | | 15

9 | | 17 | | 9
15 | | 17 || 71 |

| 17 |
[

15,9
14,8

]
| 19

15 |
[

1,7
0,6

][
15,9
14,8

] [
15,9 1,7
14,8 0,6

] [
1,7
0,6

]
| 60 |

[
15,9
14,8

]
| 14

8 |
[

1,7
0,6

]
| 8

14 | | 06 | | 8
14 | | 60 | | 14

8 | | 06 || 14
8 | | 60 |

| 4
14 |

| 17 |

| 12
6 |

| 9
15 |

| 06 |
[

14,8
13,7

]
| 8

14 |
[

0,6
15,5

][
14,8
13,7

] [
14,8 0,6
13,7 15,5

] [
0,6
15,5

]
| 5

15 |
[

14,8
13,7

]
| 13

7 |
[

0,6
15,5

]
| 7

13 | | 13
7 |

| 3
13 |

| 06 |

| 11
5 |

| 8
14 |

| 15
5 | | 13

7 | | 5
15 | | 7

13 | | 5
15 | | 15

5 |
| 15

5 |
[

13,7
12,6

]
| 7

13 |
[

15,5
14,4

][
13,7
12,6

] [
13,7 15,5
12,6 14,4

] [
15,5
14,4

]
| 4

14 |
[

13,7
12,6

]
| 12

6 |
[

15,5
14,4

]
| 6

12 | | 12
6 |

| 2
12 |

| 15
5 |

| 10
4 |

| 7
13 |

| 14
4 | | 6

12 | | 14
4 | | 6

12 | | 4
14 | | 14

4 |
| 14

4 |
[

12,6
11,5

]
| 6

12 |
[

14,4
13,3

][
12,6
11,5

] [
12,6 14,4
11,5 13,3

] [
14,4
13,3

]
| 3

13 |
[

12,6
11,5

]
| 11

5 |
[

14,4
13,3

]
| 5

11 | [ 11
5 ]

| 1
11 |

| 14
4 |

| 93 |

| 12
6 |

| 13
3 | | 5

11 | | 3
13 | | 11

5 | | 3
13 | | 13

3 |
| 13

3 |
[

11,5
10,4

]
| 5

11 |
[

13,3
12,2

][
11,5
10,4

] [
11,5 13,3
10,4 12,2

] [
13,3
12,2

]
| 2

12 |
[

11,5
10,4

]
| 10

4 |
[

13,3
12,2

]
| 4

10 | | 10
4 |

| 0
10 |

| 13
3 |

| 82 |

| 5
11 |

| 12
2 | | 4

10 | | 2
12 | | 10

4 | | 2
12 | | 12

2 |
| 12

2 |
[

10,4
9,3

]
| 4

10 |
[

12,2
11,1

][
10,4
9,3

] [
10,4 12,2
9,3 11,1

] [
12,2
11,1

]
| 1

11 |
[

10,4
9,3

]
| 93 |

[
12,2
11,1

]
| 39 | | 93 | | 39 | | 1

11 | | 93 | | 11
1 | | 1

11 | | 11
1 |

Figure 4. Lego tower for d=4





CHAPTER 4

Explicit construction of the dual complex for d = 2, 3, 4

In the previous chapter we have introduced the dual complex, which is an
essential tool for the calculation of the cohomology groups and useful to have
the nerve in the sense of Čech. In this chapter, a detailed construction of it is
proposed. In particular, we construct the isomorphic map between the i-faces
of (W ,⊂) in the dual complex and the codimension i classes of polynomials in
(Aσ,≺).

The construction of the dual complex for d = 3, 4 is presented and in the
appendix a detailed construction of the tower for d = 6 is given. In order to con-
struct the dual complex we enumerate all the diagrams and give the incidence
relations between them.

1. Dual complex for d = 2, 3
In the case where d = 2, the complex W is formed from 4 vertices and 4

edges. The dual complex associated to the decomposition into signatures of the
space DPol2 is represented in the figure 2 in chapter 2. See Figure 3 in chapter 7
for a detailed description of the signatures and elementary Reidemeister moves
on the signatures. In the decomposition of DPold when d = 3 there exist 22
biregular classes: four M diagrams, six S diagrams with one S tree, twelve F
diagrams (six with one red long diagonal six with one long blue diagonal).

Representants of classes of biregular polynomials:

0

24

6

8 10

1
3

5

7
9

11
0

24

6

8 10

1
3

5

7
9

11
0

24

6

8 10

1
3

5

7
9

11

In addition to biregular classes there exist 48 codimension 1 classes (four families
of twelve diagrams equivalent up to rotation), 30 codimension 2 classes and
4 codimension 3 classes. Here we did not use the standard notations on the
terminal vertices introduced in the previous chapter, since these are the diagrams
directly generated from the computer program.

Representants of codimension 1 classes:
49
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#3

0

0
112

2

3

3
4 4 5

5

0

0
112

2

3

3
4 4 5

5

0

0
112

2

3

3
4 4 5

5

0

0
112

2

3

3
4 4 5

5

Representants of codimension 2 classes:
– 1 family of size 6

0

0
112

2

3

3
4 4 5

5

– 2 families of size 12

0

0
112

2

3

3
4 4 5

5

0

0
112

2

3

3
4 4 5

5

Representant of codimension 3 class:
– 1 family of size 4

0

0
112

2

3

3
4 4 5

5

Using the deformation operation (definition 2.11), we have the incidence
relations between diagrams. For a couple of curves of the same color we have
the following adjacence relations:

We use this operation onto all the diagrams. The figure 1 illustrates the dual
complex in the d = 3 case. The dual complex contains two distinct parts.

(1) The four sub-complexes with black edges.
(2) The sub-complex with colored edges (corresponding to the tower)
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M3 M1

| 71 |

| 39 |

| 11
5 |

| 5
11 |

| 93 |

| 17 |

M4 M2

| 82 | | 4
10 | | 12

6 | | 6
12 | | 10

4 | | 28 |

[
6,12
5,11

][
3,9
4,10

][
1,7
2,8

]

[
4,10
5,11

][
2,8
3,9

][
12,6
1,7

]

Figure 1. dual complex for d=3

• The four subcomplexes with black edges are the ones connecting a cou-
ple of M diagrams having a common set of short diagonals. These black
subcomplexes contain three vertices corresponding to F diagrams. The
3-face of the black sub-complex corresponds to the codimension 3 dia-
gram and it is incident to three 2-faces which correspond to the codi-
mension 2 diagrams having two critical points z0 and z1 of codimension
1 verifying Re(P )(zi) = 0 (resp. Im(P )(zi) = 0), for i = 0, 1.
• The colored part of the dual complex corresponds to the parts in the

tower, resumed in the lego construction 2. In particular the vertices in
this colored part are the S diagrams. The 2-faces in the interior part
correspond to codimension 2 classes with one codimension 1 point on
Re(P )(zi) = 0 and one on Im(P )(zi) = 0.

This dual complex is resumed in the lego construction in Figure 2.
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| 17 |

| 28 |

| 39 |

| 4
10 |

| 5
11 |

| 60 |

| 71 |

[
1,7
2,8

]
[

2,8
3,9

]
[

3,9
4,10

]
[

4,10
5,11

]
[

5,11
6,0

]
[

6,0
7,1

]

| 71 |

| 82 |

| 93 |

| 10
4 |

| 11
5 |

| 06 |

| 17 |

Figure 2. Lego tower for d=3

• The first quadrangle 2-face connecting the following two F diagrams and
two S diagrams | 28 |,| 82 |

[
1,7
2,8

]
and

[
2,8
3,9

]
corresponds in figure 1 to the blue

vertical cycle. The F diagrams have one long red diagonal.
• The second quadrangle 2-face connecting the following two F diagrams

and two S diagrams diagrams | 93 | | 39 |,
[

2,8
3,9

] [
3,9
4,10

]
corresponds in figure 1

to the blue horizontal cycle. The F diagrams have two long blue diago-
nals.

Remark 4.1. There does not exist any codimension 3 class of polynomials in
the subcomplex corresponding to the tower.

The tower does not indicate the adjacence relations with the M diagrams.
So, we illustrate these relations in the figure 3, where edges of the same color
are glued together. The final structure is a union of cylinders.

2. Dual complex for d = 4
In this part the construction of the dual complex for d = 4 is presented. We

give a detailed study of the non-empty intersections of the sets A+
σ in the good

cover. Recall that the dual complex contains two subparts: the sub-complex
connecting two M consecutive diagrams; the complementary sub-complex.

• The tower contains 8 lego pieces. Each lego piece follows the relations
in figure 2. A subgraph of the lego piece is described by:

F ↔ S ↔ F ⊗ S ↔ S ⊗ S ↔ F ⊗ S ↔ S ↔ F.

• Each lego piece is connected to a consecutive one using the join graph.
– Two successive SS diagrams (SS+ and SS−) are related by the fol-

lowing commutative diagram:
FF+ ↔ SS+

l l
SS− ↔ FF−

, where the FF diagram

is adjacent to the SS diagram in the following way:
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M1 | 71 | M3

| 6
12 |

[
12,6
1,7

]
| 12

6 |

M2 | 17 | M4 | 93 | M2

| 28 |
[

1,7
2,8

]
| 82 |

[
2,8
3,9

]
| 28 |

M1 | 71 | M3 | 39 | M1 | 11
5 | M3

| 4
10 |

[
3,9
4,10

]
| 10

4 |
[

4,10
5,11

]
| 4

10 |

M4 | 93 | M2 | 5
11 | M4

| 6
12 |

[
5,11
6,12

]
| 12

6 |

M1 | 11
5 | M3

Figure 3. The 2-faces of the dual complex for d = 3

– Two consecutive S diagrams (S+ and S−) are related by the fol-
lowing commutative diagram:

F+ ↔ S+
l l
S− ↔ F−

, where the F diagrams

marked by F+ and F− have opposite orientation i.e. F+ =
∣∣∣ ji ∣∣∣ and

F− =
∣∣∣ ij ∣∣∣.

• The last sub-complex is the connection between the four M diagrams.
This subcomplex is represented by the double line and corresponds to



54 4. EXPLICIT CONSTRUCTION OF THE DUAL COMPLEX FOR d = 2, 3, 4

M3 M1

M2M4

Figure 4. Four NC(4) beads

the figure below.

M1

| 3
13 |

| 15
9 |

| 11
5 |

| 71 |
| 3

13 || 11
5 |

| 71 || 15
9 |

| 15
5 || 7

13 |

| 39 || 11
1 |

| 7
13 |

| 11
1 |

| 15
5 |

| 39 |

M3

Figure 5. Detail of the connection between M1 and M3

The subcomplex between M1 and M3 contains the following families of classes
of codimension 3 and 4 :

cod 3

0
0

1
122

3
3

4
4

5
5 6 6

7
7

cod 3

0
0

1
122

3
3

4
4

5
5 6 6

7
7

, cod 4

0
0

1
122

3
3

4
4

5
5 6 6

7
7

cod 4

0
0

1
122

3
3

4
4

5
5 6 6

7
7

cod 4

0
0

1
122

3
3

4
4

5
5 6 6

7
7

There exist Cat(4) = 14 biregular classes in this subcomplex and one codimen-
sion 5 class. See the appendix A for the other diagrams.

Example of codimension 5 class in the subcomplex:

(cod 5)

0

1
2

3

4

5
6

7

0

12

3

4

5 6

7
4
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A detailed study of the tower is given. We present an algorithmic method to
obtain the tower for the first two consecutive pieces (see figure 2 for an illustra-
tion). On the figure green circles indicate which vertices are glued together.

• Let us start with the first lego piece having a Q diagram
[

1,11 3,9
0,10 2,8

]
.

(1) Deform in it the couple of red diagonals (2, 8), (4, 6) in order to
obtain

[
1,11
0,10

]
| 93 |. So, one obtains an FS diagram. Let us deform

the long blue diagonal in the tree | 93 | with the short blue diagonal
in the M tree | 57 |. This turns it into an M tree and so, we have
the S diagram

[
1,11
0,10

]
. The F diagrams which are obtained from

this S diagram by a minimal number of deformation operations are
| 71 | , | 0

10 | , | 10
0 | , | 11

1 | , | 1
11 | , | 4

10 |.
(2) Deform in Q the couple of red diagonals (0, 10), (12, 14) in order to

obtain | 11
1 |
[

3,9
2,8

]
. So, one obtains an SF diagram. Let us deform

the long blue diagonal in the tree | 11
1 | with the short blue diago-

nal in the M tree | 13
15 |. This turns it into an M tree and so, we

have the S diagram
[

3,9
2,8

]
.The F diagrams which are obtained from

this S diagram by a minimal number of deformation operations are
| 15

9 | , | 28 | , | 82 | , | 12
2 | , | 39 | , | 93 |.

• Let us consider the consecutive lego piece.

(1) The consecutive lego piece contains the Q diagram
[

0,10 2,8
15,9 1,7

]
and an

adjacent S diagram
[

1,7
2,8

]
obtained by deforming a couple of red di-

agonals giving the FS diagram | 10
0 |
[

2,8
1,7

]
, or a couple of blue diag-

onals giving an FS diagram | 15
9 |
[

2,8
1,7

]
. The S diagram

[
2,8
1,7

]
is ad-

jacent after one deformation operation to the following F diagrams
| 15

9 | , | 9
15 | , | 11

1 | , | 14
8 | | 28 | | 82 |.

(2) The lego piece contains the Q diagram
[

0,10 2,8
15,9 1,7

]
and an adjacent

S diagram
[

15,9
0,10

]
obtained by deforming a couple of blue diago-

nals giving the FS diagram | 10
0 |
[

15,9
0,10

]
, or a couple of red diago-

nals giving an FS diagram | 82 |
[

2,8
1,7

]
. The S diagram

[
15,9
0,10

]
is ad-

jacent after one deformation operation to the following F diagrams
| 71 | , | 17 | , | 60 | , | 39 | | 0

10 | | 10
0 |.

Remark 4.2. The S diagram
[

1,7
2,8

]
is not consecutive with the S diagram[

1,11
0,10

]
since these two diagrams do not share a common set of diagonals. However

they belong to consecutive lego pieces and share a common set of F diagrams
being adjacent to them in one deformation step. A detailed figure is illustrates
this below.
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A more general approach is taken by considering the i-th couple of consecu-
tive lego pieces. This is obtained by adding +2i to the numbers {2, 4, ...4d} (resp.
{1, 3, ..., 4d − 1}), which correspond to the terminal vertices colored red (resp.
blue), modulo 4d, in the first lego piece. This induces the following consecutive
lego pieces. One may apply to these lego pieces the same remark as previously.

(1) Let the Q diagram be
[

1+2i,11+2i 3+2i,9+2i
0+2i,10+2i 2+2i,8+2i

]
. Deform in it the couple of red

diagonals (2+2i, 8+2i), (4+2i, 6+2i) in order to obtain
[

1+2i,11+2i
0+2i,10+2i

] ∣∣∣ 9+2i
3+2i

∣∣∣.
So, one obtains an FS diagram. Let us deform the long blue diagonal
in the tree

∣∣∣ 9+2i
3+2i

∣∣∣ with the short blue diagonal in the M tree
∣∣∣ 5+2i

7+2i

∣∣∣. This

turns it into an M tree and so, we have the S diagram
[

1+2i,11+2i
0+2i,10+2i

]
. The F

diagrams which are obtained from this S diagram by a minimal number
of deformation operations are

∣∣∣ 7+2i
1+2i

∣∣∣ , ∣∣∣ 0+2i
10+2i

∣∣∣ , ∣∣∣ 10+2i
0+2i

∣∣∣ , ∣∣∣ 11+2i
1+2i

∣∣∣ , ∣∣∣ 1+2i
11+2i

∣∣∣ , ∣∣∣ 4+2i
10+2i

∣∣∣.
(2) Deform in Q the couple of red diagonals (0 + 2i, 10 + 2i), (12 + 2i, 14 + 2i)

in order to obtain
∣∣∣ 11+2i

1+2i

∣∣∣ [ 3+2i,9+2i
2+2i,8+2i

]
. So, one obtains an SF diagram.

Let us deform the long blue diagonal in the tree
∣∣∣ 11+2i

1+2i

∣∣∣ with the short

blue diagonal in the M tree
∣∣∣ 13+2i

15+2i

∣∣∣. This turns it into an M tree and so,

we have the S diagram
[

3+2i,9+2i
2+2i,8+2i

]
. The F diagrams which are obtained

from this S diagram by a minimal number of deformation operations are∣∣∣ 15+2i
9+2i

∣∣∣ , ∣∣∣ 2+2i
8+2i

∣∣∣ , ∣∣∣ 8+2i
2+2i

∣∣∣ , ∣∣∣ 12+2i
2+2i

∣∣∣ , ∣∣∣ 3+2i
9+2i

∣∣∣ , ∣∣∣ 9+2i
3+2i

∣∣∣.
(3) The consecutive lego piece contains the Q diagram

[
0+2i,10+2i 2+2i,8+2i
15+2i,9+2i 1+2i,7+2i

]
and an adjacent S diagram

[
1+2i,7+2i
2+2i,8+2i

]
obtained by deforming a couple

of red diagonals giving the FS diagram
∣∣∣ 10+2i

0+2i

∣∣∣ [ 2+2i,8+2i
1+2i,7+2i

]
, or a couple of

blue diagonals giving an FS diagram
∣∣∣ 15+2i

9+2i

∣∣∣ [ 2+2i,8+2i
1+2i,7+2i

]
. The S diagram[

2+2i,8+2i
1+2i,7+2i

]
is adjacent after one deformation operation to the following

F diagrams
∣∣∣ 15+2i

9+2i

∣∣∣ , ∣∣∣ 9+2i
15+2i

∣∣∣ , ∣∣∣ 11+2i
1+2i

∣∣∣ , ∣∣∣ 14+2i
8+2i

∣∣∣ ∣∣∣ 2+2i
8+2i

∣∣∣ ∣∣∣ 8+2i
2+2i

∣∣∣.
(4) The lego piece contains the Q diagram

[
0+2i,10+2i 2+2i,8+2i
15+2i,9+2i 1+2i,7+2i

]
and an adja-

cent S diagram
[

15+2i,9+2i
0+2i,10+2i

]
obtained by deforming a couple of blue diag-

onals giving the FS diagram
∣∣∣ 10+2i

0+2i

∣∣∣ [ 15+2i,9+2i
0+2i,10+2i

]
, or a couple of red diag-

onals giving an FS diagram
∣∣∣ 8+2i

2+2i

∣∣∣ [ 2+2i,8+2i
1+2i,7+2i

]
. The S diagram

[
15+2i,9+2i
0+2i,10+2i

]
is adjacent after one deformation operation to the following F diagrams∣∣∣ 7+2i

1+2i

∣∣∣ , ∣∣∣ 1+2i
7+2i

∣∣∣ , ∣∣∣ 6+2i
0+2i

∣∣∣ , ∣∣∣ 3+2i
9+2i

∣∣∣ ∣∣∣ 0+2i
10+2i

∣∣∣ ∣∣∣ 10+2i
0+2i

∣∣∣.
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| 11
1 | | 1

11 |

| 71 |

| 4
10 |

| 15
9 |

| 12
2 |

| 11
1 | | 93 | | 1

11 | | 39 | | 93 | | 39 |
| 93 |

[
1,11
10,0

]
| 11

1 |
[

3,9
2,8

]
[

1,11
0,10

] [
1,11 3,9
0,10 2,8

] [
3,9
2,8

]
| 88 |

[
1,11
10,0

]
| 0

10 |
[

3,9
2,8

]
| 10

0 | | 0
10 |

| 60 |

| 39 |

| 14
8 |

| 11
1 |

| 82 | | 10
0 | | 82 | | 0

10 | | 28 || 28 |
| 82 |

[
0,10
15,9

]
| 10

0 |
[

2,8
1,7

]
[

0,10
15,9

] [
0,10 2,8
15,9 1,7

] [
2,8
1,7

]
| 71 |

[
0,10
15,9

]
| 15

9 |
[

2,8
1,7

]

3. Subcomplexes for d = 4 and tables of intersections of open sets
This part presents the different families of subcomplexes in the dual complex

for d = 4. We study the common vertices of different subcomplexes, in the
so-called intersections tables.

3.1. The subcomplexes. This part is devoted to showing explicitly the
structures of subcomplexes of the dual complex for d = 4. The vertices of these
subcomplexes correspond to the set of incident classes to a signature of codimen-
sion 4 (resp. codimension 5).

There is one family of diagrams of codimension 5 and two families of dia-
grams of codimension 4.

Definition 4.1. We call vertical (resp. horizontal) bridge the subcomplex con-
necting two opposite F diagrams, where the F diagram contains a single F tree
having one long blue (resp. red) diagonal.

The figure 6, presents a subcomplex of the dual complex W which consists of
a quadrangle of vertices M1, ...,M4 where the edges represent the NC structure
and the vertices M1, ...,M4 correspond to the four M diagrams. This quadran-
gle is divided into four regions by a green and red line. These lines represent
respectively the vertical and horizontal bridges and connect two F diagrams op-
positely oriented. The intersection of the red and green line is denoted by S, and
corresponds to the common vertex to the vertical and horizontal bridges.

There exist 8 horizontal bridge structures and 8 vertical bridge structures.
So, the vertical bridges are labeled from 1 to 8. A bridge subcomplex is drawn
in the figure 7.

Notation We use the approach of proposition 3.9, chapter 2.

Example 4.1. Take a diagram having only one long blue diagonal while all
the others are short. If on one side of this long blue diagonal there exist two
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M3 F M1

F

M2FM4

F
S

NC

NC

NC NC

Figure 6. Horizontal, vertical bridge structures

(0, 34)

(12) (14) (34) (24)

(124) (134) (234) (12)(34)

(1234, 34)

Figure 7. Bridge structures between two opposite NC(4) subcomplexes

red vertices i, j and if each red diagonal delimits a region containing one blue
vertex, then this diagram is assigned to the couple (0, ij). The figure 8 presents
the example of a long blue diagonal corresponding to (∗, 123)



3. SUBCOMPLEXES FOR d = 4 AND TABLES OF INTERSECTIONS OF OPEN SETS 59

Figure 8. Example of (∗, 123) diagram

The blue diagonals are assigned to blocks colored in blue (noted “bl. bk").
Otherwise the block is colored red (noted “red bk").

There are three families of subcomplexes:

(1) The first family is composed by 4 subgraphs of W isomorphic to the lat-
tice of non crossing partitions of {1, .., 4}, NC(4) (the face of dimension
5 corresponds to the diagram of codimension 5).

(2) The second family is composed of 8 vertical bridge and 8 horizontal
bridge structures, connecting a couple of opposite F diagrams in two
lattices NC(4). The face of dimension 4 corresponds to the diagram of
codimension 4 with critical points on ReP (z) = 0 (resp. ImP (z) = 0).

(3) The third family is composed of 32 open book structures, connecting a
couple of F diagrams (one with red long diagonal one with a long blue
diagonal) in adjacent NC(4) subcomplexes. The face of dimension 4 cor-
responds to a diagram of codimension 4 having critical points verifying
ReP (z) = 0 and ImP (z) = 0.

The open book structures are labeled from i to viii and from a to h for the
opposite color. The 4-face in an open book corresponds to one of the following
diagrams of codimension 4:

0

1
2

3

4

5
6

7

0

12

3

4

5 6

7

3
0

1
2

3

4

5
6

7

0

12

3

4

5 6

7

3

The next table enumerates all the vertices of the vertical bridge subcomplex in
the notation above. To each biregular diagram we assign a couple (∗, ∗) of red
and blue blocks, partitioning {1, .., 4}. The diagrams of one horizontal bridge
have a fixed red long diagonal equivalent to (∗, 123) up to rotation kπ

8 . The
second table contains the vertices of the horizontal bridge structures and the
vertices have a fixed blue long diagonal equivalent to (∗, 123) up to rotation kπ

8 .
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BKL�N◦polytope 1 2 3 4 5 6 7 8

b. bk 34 41 12 23 123 124 134 234
red bk 0 0 0 0 1234 1234 1234 1234
red bk 12 23 34 41 134 124 123 234
red bk 23 34 41 12 124 134 234 123
red bk 24 13 24 13 (23)(41) (12)(34) (23)(41) (12)(34)
red bk 34 14 12 23 123 234 134 124
red bk 124 123 234 134 23 34 41 12
red bk 134 124 123 234 12 23 34 41
red bk 234 134 124 123 41 12 23 34
red bk (12)(34) (23)(41) (12)(34) (23)(41) 13 24 13 24
red bk 1234 1234 1234 1234 0 0 0 0

A B C D E F G H

red block 34 41 12 23 123 124 134 234
bl. bk 0 0 0 0 1234 1234 1234 1234
bl. bk 12 23 34 41 134 124 123 234
bl. bk 23 34 41 12 124 134 234 123
bl. bk 13 24 13 24 (23)(41) (12)(34) (23)(41) (12)(34)
bl. bk 34 14 12 23 123 234 134 124
bl. bk 124 123 234 134 23 34 41 12
bl. bk 134 124 123 234 12 23 34 41
bl. bk 234 134 124 123 41 12 23 34
bl. bk (12)(34) (23)(41) (12)(34) (23)(41) 13 24 13 24
bl. bk 1234 1234 1234 1234 0 0 0 0

We give the table corresponding to the open book subcomplexes. By 0, 34 we
mean that successively one must consider the first the case where the blue block
is 0 and then the second case where the blue block is 34. We give the table for
one of the two families of classes of diagrams above, due to their similarity.

i ii iii iv v vi vii viii
b. bk 0,34 0,41 0,12 0, 23 1,123 1,124 1,134 1,234
red bk 1234 1234 1234 1234 0 0 0 0
red bk 34 41 12 23 123 124 134 234
red bk 134 124 123 234 12 23 34 41
red bk 234 134 234 123 41 34 23 34
red bk (12)(34) (23)(41) (12)(34) (23)(41) 13 24 13 24

a b c d e f g h
b. bk 0,34 0,41 0,12 0, 23 1,123 1,124 1,134 1,234
b. bk 1234 1234 1234 1234 0 0 0 0
b. bk 34 41 12 23 123 124 134 234
b. bk 134 124 123 234 12 23 34 41
b. bk 234 134 234 123 41 34 23 34
b. bk (12)(34) (23)(41) (12)(34) (23)(41) 13 24 13 24

9 10 11 12 13 14 15 16
b. bk 0,34 0,41 0,12 0, 23 1,123 1,124 1,134 1,234
red bk 0 0 0 0 1234 1234 1234 1234
red bk 124 123 234 341 12 14 34 23
red bk 12 23 34 41 134 234 123 124
red bk 14 12 23 34 234 123 124 134
red bk 24 13 24 13 (12)(34) (23)(41) (12)(34) (23)(41)

l m n o p q r s
Black bk 0 0 0 0 1234 1234 1234 1234
Black bk 124 123 234 341 12 14 34 23
Black bk 12 23 34 41 134 234 123 124
Black bk 14 12 23 34 234 123 124 134
Black bk 24 13 24 13 (12)(34) (23)(41) (12)(34) (23)(41)

The table corresponding to the four non-crossing partition subcomplex.
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NC1 NC2 NC3 NC4
0 1234 0 1234
0 0 0 0

12 12 12 12
23 23 23 23
34 34 34 34
41 41 41 41
13 13 13 13
24 24 24 24

(12)(34) (12)(34) (12)(34) (12)(34)
(23)(41) (23)(41) (23)(41) (23)(41)

123 123 123 123
124 124 124 124
134 134 134 134
234 234 234 234

3.2. Intersections tables. This work aims at defining the non-empty inter-
sections between the different families of substructures of W . This study serves
to consider the cochains for the space DPol4. Therefore, the intersections between
the different families of subcomplexes are considered. The couple “[I], [K]” rep-
resents the intersection between one subcomplex of the family I and one sub-
complex of the family K. If their intersection is empty then it is not interesting
for the Čech cohomology. So, we are interested only in the non-empty intersec-
tions between complexes. We construct the tables of intersections as follows.
On the first vertical column we indicate the biregular diagram by “∗, ∗′′; the first
line of the table contains the different families of subcomplexes. We have in the
table: 

0 if I,K = ∅
I if I,K 6= ∅ and K is on the first line or I is on the first line
K if I,K 6= ∅ and I is on the first line or K is on the first line

There exist biregular signatures which do not belong to at least two structures
enumerated above. Those points are called lonely points. Example of lonely
points:

vertex [A] [a] [i] [1]
2334 A 0 0 0
1334 A 0 0 0

Other lonely points are enumerated in the following table.
vertex [A] [a] [i] [1]
1313 0 0 0 0

13(23)(41) 0 0 0 0
2424 0 0 0 0

24(12)(34) 0 0 0 0
(12)(34)(12)(34) 0 0 0 0

(12)(34)234 0 0 0 0
(12)(34)124 0 0 0 0
(34)(12)(34) 0 0 i 0

(23)(41)(23)(41) 0 0 0 0
341(23)(41) 0 0 0 0
123(23)(41) 0 0 0 0

Remark 4.3. One may consider the vertices of W which are connected by one
edge to 1434. This vertex is of valency 6. Its related vertices are not all lonely
points. Let us list the non-lonely points: 23124∈ (F, f), 23123 ∈ (iv, 4), 23412
∈ (C, viii), 12312∈ (C, i). The lonely points: 123412∈ C,231234 ∈ 4.
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We consider below the intersections between an NC structure and the other
structures (bridge or open book structures). Below are given all the possible
results concerning the intersection of subcomplexes.

Remark 4.4. For the sake of simplicity, the block 1234 assigned to a biregular
diagram corresponds to the notation “1".

Intersection between NC structures and other structures We give
the intersections between NC and the other subcomplex structures i.e openbook
structures and bridge structures. In the table, each column corresponds to a
couple of intersecting structures. If they intersect at one vertex then we define
the couple of structures and their intersections in the table. The last column
contains the number of intersections of different couples of structures giving the
same vertex.

vertex NC, a NC, i NC,A NC, 1 nb. inter
120 NC1, c 0 0 NC1, 3 2
230 NC1, d 0 0 NC1,4 2
340 NC1, a 0 0 NC1, 1 2
410 NC1, b 0 0 NC1, 2 2

(12)(34)0 NC1, {a, c} 0 0 0 2
(23)(41)0 NC1, {b, d} 0 0 0 2

1340 NC1, {a, b} 0 NC1, vii NC1, 7 4
2340 NC1, {a, d} 0 NC1, viii NC1, 8 4
1240 NC1, {b, c} 0 NC1, vi NC1, 6 4
1230 NC1, {c, d} 0 NC1, v NC1, 5 4
121 NC2, {e, h} 0 NC1, iii NC1, 3 4
231 NC2, {f, g} 0 NC2, iv NC2, 4 4
341 NC2, {f, g} 0 NC2, i NC2, 1 4
411 NC2, {h, e} 0 NC2, ii NC2, 2 4
131 NC2, {e, g} 0 0 0 2
241 NC2, {f, h} 0 0 0 2

1341 NC2, g 0 0 NC2, 7 2
2341 NC2, h 0 0 NC2, 8 2
1241 NC2, f 0 0 NC2, 6 2
1231 NC2, e 0 0 NC2, 5 2
034 NC3, i 0 NC3, A 0 nb. inter
041 NC3, i 0 NC3, B 0 2
012 NC3, iii 0 NC3, C 0 2
023 NC3, iv 0 NC3, D 0 2

0134 NC3, {i, ii} NC3, g NC3, G 0 4
0234 NC3, {i, iv} NC3, h NC3, H 0 4
0124 NC3, {ii, iii} NC3, f NC3, F 0 4
0123 NC3, {iii, iv} NC3, e NC3, E 0 4

0(12)(34) NC3, {i, iii} 0 0 0 2
0(23)(41) NC3, {ii, iv} 0 0 0 2

134 NC4, {vi, vii} NC4, a NC4, A 0 4
141 NC4, {v, vi} NC4, b NC4, B 0 4
112 NC4, {v, viii} NC4, c NC4, C 0 4
123 NC4, {vii, viii} NC4, d NC4, D 0 4

1134 NC4, vii 0 NC4, G 0 2
1234 NC4, vii 0 NC4, H 0 2
1124 NC4, {vi} 0 NC4, F 0 2
1123 NC4, {v} 0 NC4, E 0 2
113 NC4, {v, vii} 0 0 0 2
124 NC4, {vi, viii} 0 0 0 2

Below we are giving the intersection table corresponding to the couples of
intersecting structures giving M diagrams (10 and 01 in the new notation).

vertex�inter NC, i NC, a NC,A NC, 1 nb. inter
10 NC4, {v, . . . , viii} NC1, {a, . . . , d} 0 0 8
01 NC3, {i, . . . , iv} NC2, {e, . . . , h} 0 0 8
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Intersections between bridge and open book structures. We present
eight intersection tables (due to the eight possible rotations of the diagrams by
an angle of kπ

8 ) and some lonely points.
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• Intersection of structures leaving the monochromatic diagram defined by 34
fixed:

vertex [A],[1] [A],[a] [A], [i] [a], [1] [i],[1] [a],[i] nb. inter
1234 A,3 0 0 0 0 0 1

(12)(34)34 0 A,a 0 0 0 0 1
034 0 0 A,i 0 0 0 1

123434 0 A,a A,vii 0 0 a,vii 3
12434 A,6 0 A, vi 0 vi,6 0 3
23434 A,8 A,a 0 0 8,viii a,viii 4
13434 A,7 A,a A, vii a,7 vii,7 a,i 6
3434 A,1 A,a A,i a,1 i,1 a,i 6

Lonely points:

vertex [A] [a] [i] [1]
1434 0 0 0 2
2334 A 0 0 0
1334 A 0 0 0

• Intersection of structures leaving the red diagonals of the diagram defined by
14 fixed:

vertex [A],[1] [A],[a] [A], [i] [a], [1] [i],[1] [a],[i] nb. inter
014 0 0 B,ii 0 0 0 1

(23)(41)14 0 B,b 0 0 0 0 1
2314 B,4 0 0 0 0 0 1

123414 0 B,b 0 0 ii,2 b,v 3
13414 B,7 B,b 0 b,7 0 0 3
12314 B,5 B,b B,vii 0 v,5 0 4
4114 B,2 B,b B,ii b,2 ii,2 b,ii 6
12414 B,6 B,b B, vi b,6 vi,6 b,ii 6

Lonely points:

vertex [A] [a] [i] [1]
1214 B 0 0 0
3414 B 0 0 0
2414 B 0 0 0

• Intersection of structures leaving the red diagonals of the diagram defined by
12 fixed:

vertex [A],[1] [A],[a] [A], [i] [a], [1] [i],[1] [a],[i] nb. inter
012 0 0 C,iii 0 0 0 1

3412 C,1 0 0 0 0 0 1
(12)(34)12 0 C,c 0 0 0 0 1

123412 0 C,c 0 0 ii,2 c,v 3
12412 C,6 C,c 0 b,6 0 0 3
23412 C,8 0 0 b,7 8,Viii h,viii 4
12312 C,5 C,c C,i c,5 v,5 c,iii 6
1212 C,3 C,c C,iii C,3 iii,3 c,iii 6

lonely points:

vertex [A] [a] [i] [1]
2312 C 0 0 0
4112 C 0 0 0
2412 C 0 0 0

• Intersection of structures leaving the red diagonals of the diagram defined by
23 fixed:

vertex [A],[1] [A],[a] [A], [i] [a], [1] [i],[1] [a],[i] nb. inter
023 0 0 D,iv 0 0 0 1

4123 C,2 0 0 0 0 0 1
(23)(41)23 0 D,d 0 0 0 0 1

123423 0 D,d D,vi 0 0 d,vi 3
13423 D,7 0 D,vii 0 vii,7 0 3
12323 D,5 D,d D,i d,5 vi,6 0 4
23423 D,8 D,d H,ii b,7 8,Viii h,viii 6
2323 D,4 D,d D,i c,3 iv,4 d,iv 6
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Lonely points:

vertex [A] [a] [i] [1]
1223 D 0 0 0
3423 D 0 0 0
1323 D 0 0 0

• Intersection of structures leaving the red diagonals of the diagram defined by
123 fixed:

vertex [A],[1] [A],[a] [A], [i] [a], [1] [i],[1] [a],[i] nb. inter
13123 0 e,E 0 0 0 0 1

134123 E,7 0 0 0 0 0 1
1234123 0 0 E,v 0 0 0 1

41123 E,e E,2 0 e,2 0 0 3
0123 e,E 0 E,iii 0 0 e,iii 3
23123 E,4 e,E E,iii 0 iv,4 0 4

123123 E,5 E,e E,v e,5 v,5 e,vi 6
12123 E,3 e,E E,iv e,3 iii,3 e,v 6

Lonely points

vertex [A] [a] [i] [1]
123 E 0 0 0

234123 E 0 0 0
(23)(14)123 E 0 0 0

• Intersection of structures leaving the red diagonals of the diagram defined by
124 fixed:

vertex [A],[1] [A],[a] [A], [i] [a], [1] [i],[1] [a],[i] nb. inter
24124 0 f,F 0 0 0 0 1

234124 F,8 0 0 0 0 0 1
1234124 0 0 F,vi 0 0 0 1

0124 f,F 0 F,vi 0 0 f,ii 3
12124 F,3 0 F,iv 0 iii,3 0 3
34124 F,1 f,F 0 f,1 0 vii,4 4
41124 F,2 F,f F,iii f,2 ii,2 f,vii 6

124124 F,6 f,F F,vi f,6 vi,6 e,vi 6

Lonely points:

134124 F 0 0 0

• Intersection of structures leaving the red diagonals of the diagram defined by
134 fixed:

vertex [A],[1] [A],[a] [A], [i] [a], [1] [i],[1] [a],[i] nb. inter
1234134 0 0 0 0 0 0 1
123134 G,5 0 0 0 0 0 1
13134 0 g,G 0 0 0 0 1
0134 g,G G,ii 0 0 g,ii 3
23134 G,4 0 0 g,4 iii,3 0 3
41134 G,2 G,g G,ii 0 ii,2 0 4
34134 G,1 G,g G,i g,7 i,1 g,vii 6

134134 G,7 G,g G,vii g,7 vii,7 g,vii 6

Lonely points:

124134 G 0 0

• Intersection of structures leaving the monochromatic diagram defined by 234
fixed:
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vertex [A],[1] [A],[a] [A], [i] [a], [1] [i],[1] [a],[i] nb. inter
24234 0 H,h 0 0 0 0 1

123234 H,5 0 0 0 0 0 1
1234234 0 H,viii 0 0 0 0 1

0234 H,h H,iv h, iv 0 0 3
34234 H,1 0 H,i 0 i,1 0 3
12234 H,3 H,h 0 h,3 ii,2 0 4
23234 H,4 H,h H, iv h,4 iii,3 h,viii 6

234234 H,8 H,h H,viii h,8 viii,8 8,viii 6

Lonely points:

124234 H 0 0 0



CHAPTER 5

Signatures, invariants of polynomials and monodromy

In this chapter it is shown that the monodromy is explicitly obtained from
the stratification {Aσ}σ∈Σ by signatures. Moreover, we show that the signatures
highlight information concerning properties of the complex polynomial maps.
Let us introduce a few notations.

• Let Tub be the tubular neighborhood of a picture embedded in the com-
plex plane.
• Let Tub0 be the tubular neighborhood of the union of the real and imag-

inary axis in the complex plane.
• Define E = C \ int(Tub) and E0 = C \ Tub0.
• Let φ : ∂E → ∂E0 be a smooth branched cover of degree d > 0. We

denote by Φ : E → E0 an extension of φwhich is a holomorphic branched
cover of degree d with branch points lying inside E \ ∂E.

Lemma 5.1. The number of 2-cells in C \ σ of a biregular signature of degree
d > 1 is at least one and at most d− 1.

Proof.
(1) Counting the maximal number of common 2-cells.

Considering a tree as a simple curve with endpoints on the boundary
of the disc (a chord), we have a system of d non intersecting chords on
the plane. The maximal number of adjacent regions between chords that
one can achieve is d + 1. This case is possible only for a configuration of
d parallel chords on the disc. Therefore counting only the regions shared
between two chords, we find that there exists d− 1 such shared regions.

(2) Counting the minimal number of common 2-cells.
Let us define 2d vertices on the boundary of the disc, numerated from

0 to 2d− 1. The configuration of chords with the least number of shared
regions is given by d chords connecting vertex i with vertex i+ 1 mod 2d.
There exists one complementary region shared by the d chords.

�

Lemma 5.2. The image of a root of P ′ by a polynomial P ∈ DPold is different
from zero.

Proof. Suppose by contradiction that the image by P of a root of P ′ is zero.
The root of P ′ is then also a root of P . This implies that the discriminant of

67
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the polynomial is zero (the discriminant of a polynomial can be defined as the
product of the values of the polynomial P ′ at the roots of P ) and therefore that
the polynomial P has multiple roots, which is a contradiction. �

Lemma 5.3. For each smooth submersion φ : ∂E → ∂E0 of degree d > 0
there exists a smooth extension Φ : E → E0 with finitely many critical points. The
germ of Φ at a critical point p is of the form Φ(p + h) = Φ(p) + z(h)k. The real
determinant of the differential DΦ is positive at each regular point.

Proof. Consider the embedded graph σ in C∪{∞} satisfying the 7 properties
of Theorem 2.3. Its tubular neighborhood being Tub, the boundary of the tubular
neighborhood defines the boundary ∂E. The restriction of Φ to one edge of σ is an
injective and regular map. Let us show that the smooth extension Φ has finitely
many critical points lying in E. The E0 is partitioned into four disjoint open 2-cells
colored A,B,C,D, the inverse map Φ−1(∂E0) copies d times ∂E0 in E. We use a
purely combinatorial argument to show that in the regions of C \σ there exist the
critical points of Φ: we count the number of regions in the complementary part
of the signature and show that it is strictly smaller than 4d. Let us consider the
number of complementary regions of a generic signature. The counting is inspired
from elementary combinatorial exercises: we place dots on a horizontal line which
are compartmented by vertical lines. One tree of the signature plays the role of
the vertical line (defining a compartment); the regions contained between two lines
are marked by dots. One dot is attributed to each 2-cell which is a complementary
region to a tree of the signature. Thus, for two trees sharing a common 2-cell, there
exist 2 dots in the compartment. Since there exist d such trees in C the application
of lemma 5.1 implies that there are at most d− 1 compartments containing 2 dots
and at least 1 compartment containing d dots . Now, assume that there exists a
polygonal region R of color A containing m dots. This region R is connected and
if m ≥ 2, it contains the zeros of the derivative polynomial P ′ .Those points which
are the zeros of P ′ (by lemma 5.2), lie in the regions containing m > 1 dots and are
the branching points for Φ (since this polygonal region is connected this argument
is true only if there exists at least one point glueing those regions together: the
branching point of Φ). Therefore, Φ has critical points in the regions containing
m > 1 dots and at these critical points p, the germ of Φ is a branching cover of
type Φ(p + h) = Φ(p) + z(h)k, where k is an integer greater than 1. In the case
of co-dimension i signatures (i.e. when i > 0), the maps Re(P) and/or Im(P)
have critical points. This follows from the Cauchy-Riemann equations: a zero of
the gradient of Re(P) implies a zero of the gradient of Im(P), which signifies that
the the zeros of Φ′ are situated on the zero-loci of ∇ Re(P) and ∇ Im(P). These
points are the critical points for Φ. At regular points, the smooth submersion is
orientation preserving. Therefore, for all regular points de differential DΦ > 0. �
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1. Monodromy
First recall that the configuration space Confd is defined as the set of d-tuples

(x1, ..., xd) such that

Confd = {(x1, ..., xd) ∈ Cd|xi 6= xjfor i 6= j}.
We are particularly interested in the subset of Confd corresponding to the trajec-
tories of a couple of roots xi and xj of polynomials with the following condition:

• the roots xi and xj are the inner nodes of a couple of trees belonging to
the boundary of the same polygonal region;
• we consider the trajectories of those nodes obtained after the compo-

sition of Whitehead operations (acting on the couple of red and blue
curves) and verifying ρ ◦ β ◦ ρ ◦ β = Id.

We now consider the pure braid group (or colored braid group) with d strings
which we identify with the fundamental group of DPold. We shall denote an
elementary braid by xij if the i-th and j-th strings are involved. An elementary
colored braid is drawn as follows:

i j

Figure 1. Elementary colored braid xij

Lemma 5.4. [Gauss-Lucas] Suppose that P is a complex polynomial such that
its roots form a convex polygon. Then the roots of P ′ lie in the convex hull defined
by the roots of P .

Proposition 5.5. Consider two roots xi and xj of a polynomial being the
crossing points of two couples of red and blue curves sharing a polygonal region.
Let ρ (resp. β) be the Whitehead moves (i.e. deformation operations) acting on a
couple of red curves (resp. blue curves). If we apply the Whitehead moves ρ (resp.
β) successively onto the red couples of curves (resp. blue couples of curves) such
that ρ ◦ β ◦ ρ ◦ β = Id then the roots xi and xj describe a trajectory which is in
bijection with an elementary colored braid xij.

Proof. Let us denote by (#) the condition that ρ ◦ β ◦ ρ ◦ β = Id. We first
show that the condition (#) is true if the couple of deformed red and blue curves
by ρ and β belongs to one couple of trees T1 and T2 sharing a polygonal region.
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ρ

β

ρ

β

Figure 2. The composition of Whitehead deformations on a couple of trees

Suppose by contradiction that the minimal number of consecutive deformations
ρ, β which alternate such that (#)

is true can be achieved considering more than two different trees sharing a
common polygonal region, say three. Focusing on these three trees we get a partial
signature of degree 3 (of type M for the degree 3). The adjacencies relations for
the space of degree 3 polynomials are illustrated in the figure 1 in chapter 3.
Starting from an M diagram we have only two types of quadrangles. First we
there exist the quadrangles colored in black (and isomorphic to the Hasse diagram
of an NC(3) lattice) and secondly the quadrangles starting with an M diagram
involving S and F diagrams. Let us investigate the first quadrangle. It is obtained
using Whitehead moves which are all of one color β (resp. ρ). So the condition
(#) is not satisfied. We now consider the second type of quadrangles which can
be itself decomposed into two sub-cases.

We have one closed path starting (and ending) at the M diagram, such that
the (#) condition is satisfied. One can easily verify that for this case among the
three trees only a couple of trees are considered. Therefore, we are not interested
in this case.

As for the second sub-case of quadrangles starting (and ending) at the M
diagram, one can verify that it involves the three trees at the same time. However,
the condition (#) is not satisfied as we have the following composition ρ◦β◦β◦ρ =
Id.

In conclusion for more than three trees sharing a polygonal region there do
not exist any quadrangular relations verifying the condition (#). Since the dual
complex corresponding to the decomposition of the space DPold−1 is contained in
the one of the space DPold this argument can be applied for any d ≥ 3 and the
number of deformation operations such that (#) is satisfied is achieved only when
we consider them onto a couple of trees sharing a polygonal region.

Let us show that this condition implies the existence of homotopically non-nul
paths which are defined by the couple of roots corresponding to the inner nodes
of the two trees.
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Suppose without loss of generality, that the polygonal region shared by the
trees T1 and T2 is colored A and xi , xj are respectively the inner nodes of T1 and
T2. We shall apply successively the two types of deformation operations β and ρ
onto those trees T1 and T2. We shall only consider partial signatures, i.e. the piece
of the signature containing the couple of trees T1 and T2. The codimesion 0 partial
signatures are indexed by odd numbers and the partial signatures of codimesion
1 are indexed by even numbers. Using lemma 5.3 the region A of the partial
signature σ1 contains a root of P ′. The first deformation operation β maps the
partial signature σ1 to the partial signature σ3 by a Whitehead move on the couple
of blue curves. By Cauchy-Riemann equations, this deformation implies that the
root of P ′, defined at first in region A moves continuously onto the positive part
of the imaginary axis (giving σ2). Then it deforms again into a couple of smooth
blue curves where the root P ′ belongs to the region colored B. This is signature
σ3. Now we apply ρ to the signature σ3. Again the Whitehead move deforms the
couple of red curves so that the root of P ′ continuously moves from the region
B to the negative part of the real axis (signature σ4) and then to the region of
color C. This gives the signature σ5. Applying again the deformation operation
β on the couple of blue curves in σ5 we obtain the signature σ6. The root of P ′
which is in σ5 and lies in the region colored C moves onto the negative part of
the imaginary axis and into the region D. This defines the signature σ7. Finally,
applying again the deformation operation ρ onto σ7, the root P ′ is moved onto the
region A (giving back σ1) and condition (#) is satisfied. Since the deformation
operations are applied only onto one couple of trees sharing a polygonal region,
the other trees remain invariant under the deformation operations β, ρ. Therefore
the other d − 2 roots of P ′ do not move into different regions. Now applying
lemma 5.4, which states that the roots of the derivative lie in the convex hull of
the roots of the polynomial, onto the degree 2 polynomial whose roots are the
valency 4 inner nodes of the trees T1 and T2, we obtain that those two roots move
along non-homotopically null closed paths, around the root of P ′ we considered.
Therefore the trajectories of those two roots define a generator xij for the pure
colored braid group, intertwining precisely these two roots xi and xj.

Note that we are computing the fundamental groupoid based at the generic
pieces of the covering, using paths which cross codimension 1 strata only. �

2. The σ-sequences
We introduce an invariant of signatures.

Definition 5.1. Let σ be a signature. To each signature is associated a σ-
sequence which is an eight-tuple of positive integers (a, b, c, d, e, f, g, h) enumerating
the number of critical values of the polynomials of Aσ respectively in the quadrants
A,B,C,D and on the semi-axes R+,R−, ıR+, ıR−. The sum of those integers is
a+ b+ c+ d+ e+ f + g + h = d.
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Example 5.1. For a degree 4 polynomial P = (z−ı0.78251−0.2)(z−ı0.78405+
0.21)(z+ ı0.7299− 0.36)(z+ ı0.6903 + 0.349), its σ-sequence is (0, 0, 0, 1, 2, 0, 0, 0).
The signature is represented on the figure 3. The polygonal region A starts above
the red horizontal curve, on the right of the diagram.

Figure 3. Signature of P

In a stratum corresponding to a generic signature there exist polygonal re-
gions shared by k simple trees. A region common to k trees is called a region of
multiplicity k.

Example 5.2. Using the same example as above, the regionD is of multiplicity
2.

Proposition 5.6. Let σ be a generic signature and P be a polynomial in Aσ.
Then we have the following σ-sequences:

(1) If the signature is anM diagram, then the critical values of P are spread in
one unique region of multiplicity d and the σ-sequences are of the following
type: (d−1, 0, 0, 0, 0, 0, 0, 0), (0, d−1, 0, 0, 0, 0, 0, 0), (0, 0, d−1, 0, 0, 0, 0, 0),
(0, 0, 0, d− 1, 0, 0, 0, 0).

(2) If the signature is an F diagram (with one unique F tree), then the critical
values of P are spread into at most two distinct quadrants, one of the them
containing at least dd−1

2 e critical values of P . The σ-sequences associated
to this diagram are of type (m, d − 1 − m, 0, 0, 0, 0, 0, 0), (0,m, d − 1 −
m, 0, 0, 0, 0, 0), (0, 0,m, d− 1−m, 0, 0, 0, 0, 0), (d− 1−m, 0, 0,m, 0, 0, 0, 0)
where 0 ≤ m ≤ d− 1.

(3) If the signature is an S diagram (with one narrow S tree). Then, the criti-
cal values of P are spread among the four distinct quadrants: (m1,m2,m3, d−
1− (m1 +m2 +m3), 0, 0, 0, 0), where 1 ≤ {m1,m2,m3} ≤ d− 1.

Proof. Recall that the map P : C → C is a holomorphic branched cover of
degree d.

(1) If the signature of the polynomial is an M diagram then there exists one
unique region of multiplicity d fo color A,B,C or D. It follows that the
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roots of P ′ lie in this region of multiplicity d, giving the σ-sequences as in
the statement.

(2) If the signature of the polynomial is an F diagram then F tree separates the
diagram into two regions of multiplicity strictly greater than one. Using
the lemmas above, these two regions contain the roots of P ′. One region
contains 1 ≤ m ≤ d − 2 simple trees (with short diagonals) and a second
region constituted of d− 1−m other simple trees (with short diagonals).
The roots of P ′ will be spread among the following couples of regions:
{A,B}; {B,C}; {C,D} and {D,A}. Indeed, if the long diagonal of the F
tree is blue then the couple of adjacent regions to this long blue diagonal is
colored {A,B} or {C,D}. If the long diagonal of the F tree is red, the the
couple of adjacent regions to this long red diagonal is colored {A,D} or
{B,C}. The number of roots of P ′ spread in each of the two compartments
is respectively m and d− 1−m.

(3) If the signature of the polynomial is an S diagram, where S is narrow
then the roots of P ′ are spread into two regions from A,B,C,D which are
{A,C} and {B,D}. Indeed, if S is narrow then there exist two opposite
regions which are of multiplicity 1. Therefore, the result follows.

�

Lemma 5.7. Let P be a biregular polynomial of signature F⊗d−2 (resp. S⊗d−2)
then there exist d − 1 regions of multiplicity 2. The σ-sequences are one of the
following:

(1) (bd−1
2 c, d

d−1
2 e, 0, 0, 0, 0, 0, 0),

(2) (0, bd−1
2 c, d

d−1
2 e, 0, 00, 0, 0),

(3) (0, 0, bd−1
2 c, d

d−1
2 e, 0, 0, 0, 0),

(4) (dd−1
2 e, 0, 0, b

d−1
2 c, 0, 0, 0, 0).

The σ-sequence for the signature S⊗d−2 is one of the following:
(1) (bd−1

2 c, 0, d
d−1

2 e, 0, 0, 0, 0, 0),
(2) (0, bd−1

2 c, 0, 0, d
d−1

2 e, 0, 0, 0),
(3) (dd−1

2 e, 0, b
d−1

2 c, 0, 0, 0, 0, 0),
(4) (0, dd−1

2 e, 0, b
d−1

2 c, 0, 0, 0, 0)
Proof. The signature is constituted from d − 2 simple F trees which divide

the diagram into d− 1 regions of multiplicity 2. Indeed, each such region is in the
complement of two trees. The long diagonal of an F tree is adjacent to two adjacent
regions colored {A,B}, {C,D} (if the long diagonal is blue) {B,C}, {D,A} (if the
long diagonal is red). If d is odd then the number of roots of P ′ in both regions are
equal. If d is even then the number of critical points in the regions are not equal.
Reciprocally, for the signature S⊗d−2. There exist d − 1 complementary regions
which are colored respectively {A,C} or {B,D} and we apply the same argument
as before. �
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Method for the computation of the Čech
cohomology groups





CHAPTER 6

Čech cover indexed by signatures

Previously, the existence of a partition of DPold indexed by signatures has
been shown. In this part we prove that this partition is the basis, for a new good
cover of DPold, in the sense of Čech; that is a covering by open subsets such that
multiple intersections (including the pieces themselves) are contractible. On the
one hand, we show that this new cover is a (semi-algebraic) stratification, using
the double barycentric subdivision and the triangulation theorem of Łojasiewicz.
On the other hand we give a sketch of proof the acyclicity condition. In this new
cover the adjacence and incidence relations of the decomposition are preserved.
As for the incidence relations they can now be read off the nerve of the covering.

1. Stratification of DPold by signatures
1.1. The cell decomposition. The decomposition by signatures has the

property that each stratum is contractible. This is proved in the first statement
below.

Theorem 6.1. [1] Let σ be a signature in Σd. Then the set

Aσ := {P ∈ DPol d | σ(P ) = σ}
is contractible.

Proof. If we equip the isotopy class Σ of graphs satisfying the 7 proper-
ties of theorem 2.3, with the topology induced by the topology of the arc-length
parametrizations of the edges, then it is contractible by Theorems of Baer [4] [5]
and Epstein [31]. For a given graph CP in the isotopy class of these graphs Σ,
the space ECP of functions Φ : C→ C is contractible, with Grothendieck’s smooth
topology. The space EΣ of pairs (Φ, CP ) with CP ∈ Σ and Φ ∈ ECP is by the fibra-
tion Theorem of J. Cerf the total space of a fiber bundle π : EΣ → Σ (Φ, CP ) 7→ CP .
It follows that the total space EΣ is contractible by J.Cerf’s theorem on the space
of embeddings and jets [11]. The group GC,∞ of orientation preserving diffeomor-
phisms of C that extend to C ∪ {∞} as a diffeomorphism with the identity as
differential at ∞ is contractible (Theorem of Eells [30]). The group GC,∞ acts
without fix points on EΣ, so the space EΣ/GC,∞ is contractible [10]. By the Rie-
mann mapping Theorem, there exists in every GC,∞-orbit a unique pair (Φ, CP )
such that the pull back by Φ of the standard conformal structure on C is again
the standard structure. In order to achieve unicity of the pair (Φ, CP ) we require

77
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moreover that Φ, now by Rouché’s Theorem a monic polynomial, is balanced. It
follows that the space of monic and balanced polynomials with picture in Σ is a
space of representatives for the quotient EΣ/GC,∞. We conclude that the space
of monic balanced polynomial mappings P with picture in the isotopy class Σ is
contractible. The group of Tschirnhausen substitutions is contractible and acts
fixed point free on the space of monic polynomial mappings P with picture in the
isotopy class Σ. Hence, the space of monic polynomial mappings P with picture
in the isotopy class Σ is contractible too. �

Theorem 6.2. The degree d signatures determine a stratification of DPold in
which a signature of dimension k corresponds to a dimension k cell of DPold.

Proof. A signature corresponds uniquely to a picture, a picture describes a
region of polynomials (i.e. the set of polynomials having the same picture) and
the statement from theorem 6.1 shows that these regions are contractible. �

1.2. Stars of strata.

• Recall that we write σ ≺ τ when τ can be obtained from σ by a sequence
of repeated half-Whitehead moves i.e. when τ is incident to σ. We call the union
σ = {τ : σ ≺ τ} the combinatorial closure of σ, and let Aσ = ∪σ≺τAτ .

Lemma 6.3. Let τ be a signature with a given intersection of two red (or blue)
diagonals. There are exactly two ways to smooth the intersection, which give two
non-isotopic signatures σ1 and σ2 such that τ is incident to both σ1 and σ2.

Proof. Consider a couple of red (resp. blue) curves intersecting at one point
with end-vertices (i, k)(j, l) where i < j < k < l on the circle (c.f. definition 2.15).
The smoothing induced by the Whitehead move applied onto this couple of curves
gives in a neighbourhood of this specific point either a couple of horizontal bands
or a couple of vertical bands, which are attached to the boundary of the disc. This
gives new diagonals (i, j)(k, l) or (i, l)(k, j) in a cell R. We recall that there does
not exist an isotopy of the disc verifying definition 2.7 and mapping (i, j)(k, l) to
(i, l)(k, j). Applying lemma 2.7 to the region R we obtain that σ1 to σ2 are two
non-isotopic signatures. �

Similarly, we have the following for contracting half-Whitehead moves.

Lemma 6.4. Let τ1 and τ2 be obtained from a signature σ by two different
half-Whitehead moves. Then τ1 and τ2 are different.

Proof. Let τ1 and τ2 be obtained from a signature σ by two different half-
Whitehead moves and suppose by contradiction that τ1 and τ2 are the same sig-
nature. Consider two different couples of disjoint diagonals (i, j) and (k, l) (resp.
(m,n) and (p, q)) sharing a polygonal region with the labels of the end vertices on
the boundary of the polygonal region verifying i < j < k < l and m < n < p < q.
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We require that at least three of the four diagonals are distinct. Then one half-
Whitehead move acting on σ deforms the couple of curves (i, j) and (k, l) into
(i, k)(j, l) and the second half-Whitehead move acting on σ deforms the couple of
curves (m,n) and (p, q) into (m, p)(n, q). There does not exist any isotopy veri-
fying the definition 2.7. We obtain that these signatures define two non-isotopic
signatures. �

Recall that the smoothings of an intersection were defined in definition 2.18,
and can be of two types: the first separates the intersections of curves into more
than one connected component and the second type does not.

Lemma 6.5. Let τ be a signature with a given red (or blue) intersection of
m > 2 curves. The smoothings of τ obtained by smoothing a single half-Whitehead
move, i.e. the smoothings which are of dimension 1 greater than τ , are all distinct.

Proof. Locally, around the intersection, the graph resembles a star shaped
tree with one inner node and 2m leaves which we can number 1, .., 2m. The possible
smoothings are as follows. Of the first type, we can separate i, i+ 1 mod m from
the tree as a separate diagonal; the resulting graphs are non-isotopic. Of the
second type, we add an inner edge separating the leaves into two disjoint groups
; these are clearly non-isotopic, nor are they isotopic to the previous ones as they
are locally connected.

�

2. DPold as a covering of a non-compact stratified space
2.1. Critical values. Consider the space Vd = (Cd−1 \0)/Sd−1 where Sd−1 is

the group of permutations. If X denotes an equivalence class of points in Cd−1,
we can associate a unique σ-sequence (a, b, c, d, e, f, g, h) of positive integers to X
enumerating the number of points in X in the quadrants A,B,C,D and on the
semi-axes as in the definition 5.1 in chapter 5. The set of points X in Vd having
a given σ-sequence (a, b, c, d, e, f, g, h) forms a polygonal cell in Vd isomorphic to

(1) Aa/Sa×Bb/Sb×Cc/Sc×Dd/Sd×(R+)e/Se×(R−)/Sf×(ıR+)g/Sg×(ıR−)h/Sh.
The real dimension of this cell is equal to 2(a+ b+ c+ d) + (e+ f + g + h). The
cells are disjoint and thus form a stratification of Vd.

Definition 6.1. A subset V inside Cd−1/Sd−1 for d > 2 is said to be a
non− compact stratification if it is equipped with a stratification by a finite
number of open cells of varying dimensions having the following properties:

• the relative closure of a k-dimensional cell of V is a union of cells in the
stratification.
• the relative closure of a k-dimensional cell of V is a “semi-closed” polytope,
i.e. the union of the interior of a closed polytope in Cd−1/Sd−1 with a subset
of its faces.
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Lemma 6.6. Let d > 2, and let Vd denote the space Vd equipped with the
stratification by σ-sequences. Then Vd is a non-compact stratification.

Proof. The closure of the region of Vd described by 1 is given by

A
a
/Sa×B

b
/Sb×C

c
/Sc×D

d
/Sd× (R+)e/Se× (R−)/Sf × (ıR+)g/Sg × (ıR−)h/Sh,

where A denotes the closure in V1 = C \ 0 of the quadrant A, namely the union
of A with R+ and ıR+, and similarly for B,C,D. The direct product of semi-
closed polytopes is again a semi-closed polytope, as is the quotient of a semi-closed
polytope by a sub-group of its symmetry group. �

Theorem 6.7. The map ν that sends a polynomial in DPold to its critical
values realizes DPold as a finite ramified cover of Vd.

Proof. The image of ν contains only unordered tuples of d− 1 complex num-
bers different from zero, since a polynomial can have 0 as a critical value if and
only if it has multiple roots. Therefore the image of ν lies in Vd. To show that
ν is surjective, we use a theorem of R. Thom [?] (1963), stating that given d − 1
complex critical values, there exists a complex polynomial P of degree d such that
P (ri) = vi for 1 ≤ i ≤ d−1 where the ri are the critical points of P , and P (0) = 0.
To find a Tschirnhausen representative polynomial of DPold having the same prop-
erty it suffices to take P (z − ad−1

d−1 ) where ad−1 is the coefficient of zd−1 in P . By
a result of J. Mycielski [47], the map ν is a finite ramified cover, of degree dd−1

d−1 ,
see [47]. �

2.2. The cases d = 2, 3, 4. The exact nature of the ramified cover DPold →
Vd is complicated and interesting, especially in terms of describing the ramifica-
tion using the signatures. In this section, we work out full details in the small
dimensional cases, and for generic strata.

Let d = 2. The spaces DPol2 and V2 are one-dimensional. The space V2 is
C \ 0 equipped with the stratification given by the four quadrants A,B,C,D
and the four semi-axes. The only Tschirnhausen polynomial of degree 2 having
given critical value v is z2 + v, therefore the covering map ν is unramified of
degree 1, an isomorphism. The four signatures corresponding to the strata of
real dimensional 2 and the four corresponding to the one dimensional strata are
illustrated in figure 3.

Let d = 3. In this case the covering map ν is of degree 3: explicitly, if P (z) =
z3 + az + b has critical values v1 and v2 then so do the polynomials P (ζz) and
P (ζ2z) where ζ3 = 1. The 10 open cells of real dimension 4 in V3 are given by:

A×A/S2, B×B/S2, C×C/S2, D×D/S2, A×B,A×C,A×D,B×C,B×D,C×D.
Ramification occurs only above the first four; in fact exactly when the two critical
values are equal, i.e. P (z) = z3 + b. Thus above each of the first four cells,
there is only one stratum, corresponding to the four rotations of the leftmost
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signature (see figure 1). In contrast, there are three distinct signatures above
each of the remaining 6 cells. The six signatures in the middle of the figure 1
form two orbits under the 2π

3 rotation which li above the cells, A×C and B×D,
whereas the twelve signatures on the right form four orbits lying ove the cells
A×B;B × C;C ×D;D × A.

Let d = 4. The degree of the covering map ν is 16. There are 20 generic
cells in V4. Four generic cells correspond to taking three critical values in three
different quadrants. There is no ramification above these cells; each of these
have 16 distinct strata in the preimage of ν, corresponding to four rotations each
of the fifth, sixth, eighth and eleventh signatures in the figure below.

Four more cells of V4 correspond to taking three critical values in the same
quadrant. Only one stratum of DPol4 lies above each of these cells, namely,
the first signature in the figure below, with ramification of order sixteen. The
remaining twelve cells correspond to two critical points in one quadrant and the
third in a different quadrant. When the quadrants are adjacent, only six cells lie
above the corresponding regions of V4. For example over the region A,A,B lie
the two rotations of the second signature in the figure below with ramification
of order 2, and the four rotations of the tenth signature each of ramification
of order 3. The situation is analogous when the quadrants are opposed. For
example over the region A,A,C, there are the two rotations of the third figure
(below) each with ramification of order 2, and the four rotations of the ninth
signature each of ramification order 3. the second signature in the figure 2.2
with ramification of order 2, and the third and seventh signatures

3. The good cover of DPold
In this key section we show how to use the stratification of DPold to construct

a good topological cover of DPold, suitable for calculating cohomology groups,
which is the subject of the following chapter. We proceed in three steps. We will
use theorem 6.1 above, stating that the strata are contractible. We will show that
the topological closure of Aσ is given by the combinatorial closure of σ, and that
it remains contractible. Next, we prove that finite intersections of generic strata
are either contractible or empty. Finally, we will obtain the open sets of the good
cover by a thickening the generic strata.

3.1. Closures of generic strata.
Lemma 6.8. Let τ be a non-generic signature and let Aτ be the corresponding

strata of DPold. Let P0 ∈ Aτ . Then for every generic signature σ such that τ
is incident to σ, every 2d-dimensional open ball Bε containing P0 intersects the
generic stratum Aσ.

Proof. Suppose that there exists a generic signature σ which does not verify
that Bε containing P0 intersects the generic stratum Aσ. Then there does not exist
any path from a point y ∈ Aτ to x ∈ Aσ. Therefore Aσ and Aτ are disjoint. In
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Figure 1. Generic signatures d = 4

particular this impies that Aτ is not in the closure of Aσ. So, τ is not incident to
σ.

�

Lemma 6.9. Let σ be a generic signature and let τ 6= σ. Then τ is incident
to σ if and only if the following holds: for every pair of points x, y ∈ DPold with
x ∈ Aσ and y ∈ Aτ , there exists a continuous path γ : [0, 1] → DPold such that
γ(0) = x, γ(1) = y and γ(t) ∈ Aσ for all t ∈ [0, 1). Any other such path ρ from a
point x′ ∈ Aσ to a point y′ ∈ Aτ is homotopic to γ.

Proof. The result follows from Lemma 6.8. Indeed, if τ is incident to σ then
by Lemma 1, a ball around y ∈ Aτ necessarily intersects Aσ and therefore there
is a path from y to a point x′ ∈ Aσ. Composing this with a path from x′ to x in
Aσ we obtain γ. Conversely, if there is a path γ from x ∈ Aσ to y ∈ Aτ , then it is
impossible to have an open ball containing y that does not intersect Aσ. �

We return to the original polynomials in order to define half-Whitehead moves
in an analytic and then topological fashion.

Let P ∈ DPold+1 ; explicitly : P (z) = zd+1 + a1z
d−1 + . . .+ ad.

We denote the critical points by z = (z1, . . . , zd) (P ′(zi) = 0) and the critical
values by w = (w1, . . . , wd), so that for any i there is a j such that P (zi) = wj.
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There are no a priori constraints on the zi’s and wj ’s other than wj 6= 0 (for all j)
because the roots of P are assumed to be simple.

Let Cdw denote the (affine) space of the w’s recall that there is a ramified cover

πw : DPold+1 → Cdw
of degree (d+ 1)d. We don’t know much about the ramification locus (other than
the fact that it is of pure codimension 1).

Let Cdz denote the affine space of the critical points z and let p : Cz → Cw
denote the natural map given by P (P (z) = w). Denote by c(wk) (or just c(k))
the number of distinct critical points above wk and by m = (m1, . . . ,mc(k)) their
multiplicities (mi > 1). Generically, above a point w there is just one critical point
of multiplicity 2 and d − 1 simple (non critical) points, i.e. c(w) = 1, m1 = 2.
Such a point we call a simple critical point (recall that Hurwitz investigated
simple covers i.e. covers with only simple critical points and that these are still
useful and much studied objects).

Now return to a given polynomial P and its critical values w. It is “generic”
if w2

j /∈ R for all j. Assume it is not generic and let w0 (= wj for some j) be
such that w2

0 ∈ R ; purely for notational simplicity assume that in fact w0 is real
(rather than pure imaginary). Let c = c(w0) be the number of distinct critical
points above w0, with multiplicities m = (m1, . . . ,mc) and denote these points
(z1, . . . , zc) (here the zi’s are distinct).

We now wish to smooth out the critical value w0 in a “universal" way. It is
actually more natural to work “upstairs" since that means nothing but smoothing
out every critical point above w0. So choose one of the zi (1 6= i 6= c), and call
it z0, with multiplicity m = m0. We now need a result which says that the
universal expansion is obtained by “plugging" the generic polynomial of degree
m in a small neighborhood of z0. This means the following. First this is shown
via holomorphic surgery and is thus not explicit ; that is we cannot explicitly
write down a universal family in terms of the coefficients ai of the polynomial
P . But we do know that there exists such a local universal family and that it is
biholomorphically equivalent to the one obtained by completing the polynomial
(z − z0)m into the generic polynomial in (z − z0) of degree m near z0. In other
words let ε = (ε1, . . . , εm) be complex numbers with |εi| < ε << 1 for all i (with
some ε > 0) and let

pε(z) = (z − z0)m + ε1(z − z0)m−1 + . . .+ εm .

Then there is a biholomorphic map between the set of the ε’s (i.e. (0, ε)m), or
equivalently the family pε, and a universal family Pε(z) with P0 = P (where
0 = (0, . . . , 0)). Here we ignored the normalization which says that the sum of
the roots of Pε(z) vanishes and this has to be taken into account later.

Consider the generic case of a simple critical value w0 : c(w0) = 1, m =
2. Then ε = (ε1, ε2), pε(z) = (z − z0)2 + ε1(z − z0) + ε2. However there is
in fact only one deformation parameter, again because the sum of the roots of
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Pε(z) vanishes. By varying ε let the critical point vary into z0(ε) (again ε is 1-
dimensional), leading to a deformation w0(ε). The lemma says that w0(ε) has
non zero derivative at ε = 0. By the implicit function theorem w0(ε) covers a
neighborhood of w0 in the w-plane and a half-whitehead move is nothing but the
results of what happens when w0(ε) moves into the upper or lower half-plane.

When m > 2 it becomes richer and more complicated, one important point
being that the space of deformation parameters, which looks like (0, ε)m−1 (due
to the normalization condition) is contractible, so that all the smoothings are so
to speak equivalent.

Lemma 6.10. A polynomial P : C→ C; z 7→ P = zd + ad−2z
d−2 + · · · + a1z +

a0 d ∈ N, ai ∈ C is homotopic to f : z 7→ zd, in the space of unitary polynomial
maps.

Proof. Explicitly, the homotopy is given by:
h(z, τ) = zd + (1− τ)(ad−1z

d−1 + · · ·+ a1z + a0) for z finite,
h(∞, τ) =∞.

for all finite τ and z, h is continuous and moreover lim
z→∞

h(z, τ) = ∞ for all τ .
Therefore, h is continuous on P1 × [0, 1]. �

Lemma 6.11. A contracting half-Whitehead move which takes a signature σ to
an incident signature τ induces a retraction of the stratum Aσ onto the boundary
stratum Aτ .

Proof. From the above discussion it follows that we can construct the retrac-
tion locally near Aτ ; then we extend it to the whole of Aσ using the contractibility
of this stratum. �

Proposition 6.12. If σ is a signature, the closure Aσ of the stratum Aσ in
DPold is given by

Aσ = ∪τ∈σAτ ,
where the boundary of σ denoted σ consists of all incident signatures τ .

Proof. One direction is easy. Indeed, if x ∈ Aτ where τ is incident to σ then
every 2d-dimensional open set containing x must intersect Aσ, so ∪τ∈σAτ ⊂ Aσ.

For the other direction, let x ∈ Aσ \ Aσ and let τ be the signature of x. We
first note that the dimension of τ can not be equal to the dimension of σ because
if they were equal, Aτ would be an open stratum disjoint from Aσ.

Therefore the dimension of τ is less than the dimension of σ. Let U be any
small open neighborhood of x. Let y ∈ U ∩ Aσ and let γ be a path from y to x
such that γ \ x ⊂ Aσ. Then every point z ∈ γ \ x has the same signature σ. Using
theorem 6.7, any path from the interior to any point not in Aσ must pass through
the boundary of the polytope. Therefore any sequence of half-Whitehead moves
and smoothings from σ to τ must begin with half-Whitehead moves bringing σ to
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a signature that is incident to σ. But x is the first point on γ where the signature
changes and therefore τ must be incident to σ. �

Lemma 6.13. The set of signatures incident to a generic signature σ is equal
to the set of signatures τ such that
(i) P σ

r ⊂ P τ
r and P σ

b ⊂ P τ
b (with at least one of the containments being strict), and

(ii) the set of paths (i, j) in τ for the pairs in P σ
r (resp. those for (k, l) in P σ

v )
intersect only at isolated points (no shared segments).

Proof. Performing a half-Whitehead move on a signature can never eliminate
a pair but can only add pairs, which shows that if τ is incident to σ then (i) holds.
Furthermore, half-Whitehead moves cause the arcs of σ to cross only at isolated
points.

Conversely, suppose that (i) and (ii) hold for τ . Consider the red forest of τ .
We claim that the set P σ

r provides a recipe for smoothing the red forest of τ to
obtain the red forest σ (and subsequently the blue using P σ

b ), as follows.
Let us use the term “short arcs” for arcs joining two neighboring (even for red,

odd for blue) points on the circle. We start with the short arcs, joining pairs of
the form (i, i + 2) in P σ

r . Because the paths cross only at points, smoothing the
path (i, i + 2) by separating it off from the rest of the red forest of τ eliminates
only paths from i or i + 2 to other points; paths between all the other pairs of
P τ
r remain. We then erase the arcs (i, i + 2) from the signature and now treat

the “new” short arcs (those from P σ
r joining points j, j+ 6) separating them from

the rest of the tree, then erase those and continue in the same way. The final
result reduces the red forest of P τ

r entirely to a set of d disjoint pairs, endpoints
of red arcs, which is equal to P σ

r since they all belong to P σ
r . This proves that any

signature τ satisfying (i) and (ii) can be smoothed to σ. �

Theorem 6.14. Let σ be a generic signature. Then, the topological closure
Aσ of the stratum Aσ is contractible.

Proof. We know from the Theorem 6.2 that Aσ is a cell, so homeomorphic to
the k dimensional open ball. Adding the disjoint incident strata of Aσ (of codimen-
sion 1) is thus equivalent to glueing a finite number of disjoint open subsets of the
boundary of the open ball, which remains contractible. Adding the codimension 2
strata is homeomorphic to adding disjoint open subsets of the boundaries of the
open subsets added in the previous step, which again remains contractible, and the
same holds until all strata have been added. Altogether we see that the closure Aσ
is homeomorphic to the open ball together with a subset of its boundary, which is
contractible. �

This proof easily adapts to give the following result.

Corollary 6.15. Let σ be any signature and let σ̃ be a subset of σ. Let Aσ̃
be the union of Aρ with ρ in σ̃. Then, Aσ̃ is contractible.
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3.2. The acyclicity condition. In what follows we show that multiple
intersections of closures of strata are contractible or empty; this is in fact stronger
than the acyclicity condition.

For this purpose as in chapter 2, we replace signatures by diagrams consisting
of a unit disk D with 4d points on the boundary corresponding to the roots of
unity

√
14d

replacing the asymptotic rays. By a slight abuse of notation, we
continue to write σi for the diagram associated to the signature σi.

The idea is to superimpose diagrams σ0, ..., σp such that terminal vertices
√

14d

coincide and to apply contractions on the non identical diagonals, as follows.
Let σ0, . . . , σp be generic signatures and let Θ denote their superimposition.

This superimposition is not well-defined as the diagonals of the different signa-
tures can be positioned differently with respect to each other, since the diagonals
of each signature are given only up to isotopy, but we will consider only those
having the following properties

(1) all intersections are crossings (but not tangents) of at most two diago-
nals,

(2) the superimposition Θ cuts the disk into polygonal regions; we require
that no region is a bigon,

(3) the number of crossings of a given diagonal with other diagonals of Θ
must be minimal, with respect to a possible isotopy. We take representa-
tives of isotopy classes of arcs.

We call such superimpositions admissible.

Lemma 6.16. Let σ0, . . . , σp be generic signatures. If there exists no superim-
position Θ with the property that no diagonal has more than p + 1 intersections
with diagonals of the opposite color then there is no signature τ incident to all the
σi.

Proof. The key point is the following. If σ0, ..., σp admit a signature τ incident
to all of them, then τ has the following property: every segment of the tree τ (a
segment is the part of an edge contained between two vertices, including terminal
vertices) belongs to at most one diagonal (i, j) of each σi. Thus, in particular,
each segment can be considered as belonging to at most p+ 1 diagonals, one from
each σi. Thus if a red diagonal of τ crosses p + 2 or more blue diagonals in the
superimposition, there is no one segment of τ which can belong to all of them, so
the red diagonal will necessarily cross more than one blue segment of τ , which is
impossible. �

We will say that the set of signatures σ0, . . . , σp is compatible if it admits an
admissible superimposition Θ with the property that no diagonal crosses more
than p + 1 diagonals of the opposite color. (Note that a red diagonal (i, j) can
never cross a blue diagonal (i′, j′) in more than one point.) Compatible sets of
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generic signatures may potentially have non-empty intersection. We will now
show how to give a condition on Θ to see whether or not this is the case.

Graph associated to an intersection of generic signatures.

Let σ0, . . . , σp be a set of compatible generic signatures and let Θ be an ad-
missible superimposition. Then Θ cuts the disk into polygonal regions. Color
a region red (resp. blue) if all its edges are red (resp. blue); the intersecting
regions are purple. Construct a graph from Θ as follows : place a vertex in each
red or blue region (but not purple) with number of sides greater than three.
If two vertices lie in blue (resp. red) polygons that meet at a point, join them
with a blue (resp. red) edge (even if this edge crosses purple regions). If two
vertices lie in blue (resp. red) polygons that intersect along an edge of the op-
posite color, connect them with a blue (resp. red) edge. If two vertices lying
in the same red (resp. blue) polygon can be connected by a segment inside the
polygon which crosses only one purple region, add this segment. Connect each
vertex to every terminal vertex lying in the same red (resp. blue) region, and also
to any terminal vertex which can be reached by staying within the original red
(resp. blue) polygon but crossing through a purple region formed by two blue
(resp. red) diagonals emerging from that terminal vertex. Finally, if any vertex
of the graph has valency 2, we ignore this vertex and consider the two emerging
edges as forming a single edge. We call this graph the graph associated to the
superimposition.

Lemma 6.17. The graph associated to Θ is independent of the actual choice of
admissible superimposition Θ.

Proof. Let Θ and Θ′ be admissible superimpositions, and consider a given
diagonal (i, j). By the admissibility conditions the number of crossings of (i, j)
with diagonals of the other color is equal in Θ and Θ′, and in fact the set of
diagonals of the other color crossed by (i, j) is identical in Θ and Θ′ . Therefore,
the only possible modifications of the Θ is to move (i, j) across an intersection of
two diagonals of the other color. But this does not change the associated graph. �

Definition 6.2. The canonical graph associated to a set of compatible signa-
tures σ0, . . . , σp is the graph associated to any admissible superimposition Θ.

Theorem 6.18. Let σ0, . . . , σp be generic signatures. Then there exists a sig-
nature incident to all the σi if and only if the set σ0, . . . , σp is compatible and
associated canonical graph is a signature.

Proof. Replacing a blue (or red) polygon by a graph having the shape of a
star as in the construction above involves diagonals of the different σi which must
be identified if we want to construct a common incident signature. The contracting
moves may be stronger than strictly necessary (i.e. the signature τ may not be
the signature of maximal dimension in the intersection), but any signature in the
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intersection must either have the same connected components as τ , i.e. be obtained
from τ by applying only smoothing half-Whitehead moves which do not increase
the number of connected components of τ (we call these smoothings connected
smoothings), or lie in the closures of these. Thus, up to such smoothings, the
moves constructing τ are necessary in order to identify the diagonals of the σi.

The contracting moves in the construction of the graph associated to Θ, re-
stricted to just one of the signatures σi, has the effect of making a contracting
half-Whitehead move on the blue (resp. red) curves of this signature. Thus, on
each of the signatures, the graph construction reduces to a sequence of contracting
half-Whitehead moves. Thus the σi possess a common incident signature if and
only if τ is such a signature. �

Theorem 6.19. Let Aσ0 , ..., Aσp be closures of strata in DPold corresponding
to generic signatures σ0, . . . , σp, and assume that these admit a non empty inter-
section I. Then the signatures σi are compatible, and admit a canonical signature
τ , and I is given by the union of the closure Aτ of the stratum Aτ and the closures
Aρ of strata Aρ where ρ is obtained from τ by certain connected smoothings. The
intersection I is contractible.

Proof. Since I is non-empty, by Theorem 6.18 the σi are compatible and their
canonical graph is a signature τ . Therefore, the closure of Aτ lies in I.As we saw
in the first part of the proof of Theorem 6.18, any signature ρ in the intersection
must either have the same connected components as τ , i.e. ρ must be obtained
from τ by connected smoothings (but not all possible connected smoothings will
give a stratum in the intersection), or be incident to such a signature.

Let B be the union of the strata Aρ for those signatures ρ which are obtained
from τ by connected smoothings and such that Aρ lies in the intersection I. We
will show that B is contractible, and then that the closure B is contractible. By
the above observation, B is equal to I, so this will prove the theorem.

To show that B is contractible we first make the following observation. Let σ
any non-generic signature, and Cσ be the union of σ with all signatures obtained
from σ by smoothing. Then Cσ is an open neighborhood of Aσ of dimension
2d, which retracts onto Aσ. By lemma 6.11, this retraction is induced by the
contracting half-Whitehead moves on all the strata of Cσ, different from σ.

Let Bσ denote the subset of Cσ, consisting of only the strata obtained from σ
by connected smoothings. Then Bσ is contractible because it is a subset of the
contractible neighborhood Cσ such that the retraction of Cσ onto Aσ preserves Bσ;
thus the restriction of the retraction from Cσ to Bσ remains a retraction.

This shows that B = Bτ is contractible.
Let us show that the closure B remains contractible. By Proposition 6.12,

the closure consists in the union of B with all strata incident any stratum in B.
Observe that if µ is such a stratum, there is a unique stratum ρ in B such that
µ is obtained from ρ only by non connected contracting half-Whitehead moves.
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Indeed, connected and non connected contractions commute, so that if µ is ob-
tained from any stratum ρ′ by a sequence of contracting half-Whitehead moves,
we can perform first all those that are connected, obtaining ρ, and then those that
are non-connected. Let ρ̃ denote the union of ρ with all of its incident strata µ
obtained by sequences of non-connected half-Whitehead moves. Then, as in corol-
lary 6.15, ρ̃ retracts onto ρ. Thus, B retracts onto B, which is contractible by the
previous argument. Therefore, B is contractible. �

3.3. Superimposition of signatures. Let σ0∪· · ·∪σp be compatible generic
signatures and Θ denote an admissible superimposition. In this subsection, we
digress briefly in order to give a visual description of the conditions on the su-
perimposition Θ for the associated graph to be a signature. In fact, it is quite
rare for signatures to intersect. Almost always the canonical graph will not be
a signature. Given a red polygon and a blue polygon of Θ, they must either be
disjoint or intersect in one of exactly four possible ways:

• the intersection is a three sided polygon with two red (resp. blue) edges
and one blue edge (resp. red);

• the intersection is a four sided polygon with two red and two blue edges;

• the intersection is two triangles joined at a point, formed by two cross-
ing blue (resp. red) diagonals, cut transversally on either side of the
intersection by two red (resp. blue) diagonals; note that this means that
two polygons of the same color meet at a point and both intersect the
polygon of the other color;

• the intersection is a point at which two blue diagonals and two red di-
agonals all cross in the cyclic order red, red, blue, blue, red, red, blue,
blue; note that this means that in fact four polygons meet at a point,
each being the same color as the opposing one.
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From such a disposition of diagonals, we obtain the graph described above.
• The graph must be a forest with even valency at every non-terminal vertex.

3.4. Semi-algebraic stratification. The next paragraph is devoted to show
that the stratification is semi-algebraic. This result forms an important step to-
wards the construction of the good cover.

Definition 6.3. A semi-algebraic subset of R2d is a subset of the form
∪si=1 ∩

ri
j=1 {x ∈ R2d|fi = 0, gj > 0}

where fi, gj ∈ R[x1, ..., xn] for i = 1, ..., s and j = 1, ...., ri.
Proposition 6.20. The space DPold is a semi-algebraic set.
Proof. Let (z1, .., zd) ∈ Cd be the set of roots of one variable complex poly-

nomials. The locus of non distinct roots defines an algebraic variety: {(z1, .., zd) ∈
Cd|zi = zj for some i 6= j}. So, this is a semi-algebraic set and since the comple-
mentary of a semi-algebraic set in the affine space is semi-algebraic then DPold is
a semi-algebraic set. �

Theorem 6.21. The decomposition DPol d = ⋃
σ∈Σd Aσ in R2d is semi-algebraic.

Proof. Let us consider the set of classes of codimension c and of degree d.
The codimension c classes verify a system of polynomial equations. Let zi and
zj be some critical points of the polynomial P . Then, we have: Re(P )(zi) = 0
and/or Im(P )(zj) = 0, where P ′(zi) = 0, ..., P (ki)(zi) = 0, P ((k+1)i)(zi) 6= 0 (resp.
P ′(zj) = 0, ..., P (nj)(zj) = 0, P ((n+1)j)(zi) 6= 0). So, it follows from the definition 6.3
that the set of codimension c classes is a semi-algebraic set. A union of semi-
algebraic sets is semi-algebraic. Therefore, the decomposition DPol d = ⋃

σ∈Σd Aσ
is semi-algebraic. �

From S.Łojasiewicz’s theorem 1 on triangulation [45], it follows that for a
finite collection of semi-algebraic sets of an affine space {Bν}kν=1, there exists a
finite simplicial complex K in the affine space R2d and a semi-algebraic homeo-
morphism τ : |K| → ∪kν=1Bν , where |K| = ∪{s : s ∈ K} such that:

(1) ∀s ∈ K, τ(s) is an analytic submanifold of R2d and τ : |K| → ∪kν=1Bν is
an analytic isomorphism.

(2) ∀s ∈ K, and for all Bν , τ(s) ⊂ Bν or τ(s) ⊂ R2d \Bν

The semi-algebraic sets {Bν}kν=1 in our case are the sets of a fixed codimension.
These semi-algebraic sets are not connected: the number of connected com-
ponents in a codimension c semi-algebraic set is the number of codimension c
signatures.
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The construction of the good cover is as follows. In the first place, we show
theorem 6.21 which states that the decomposition is semi-algebraic. In the sec-
ond place, we apply the classical result of S.Łojasiewicz on triangulation of semi-
algebraic sets (Theorem 1 of [45]).

Proposition 6.22. Let σ be a generic signature, K the simplicial complex
above and K′′ the simplicial complex obtained using the second barycentric subdi-
vision of K. Let A+

σ = Aσ
⋃

s′′∈K′′|s′′|∩Aσ 6=∅ int(s
′′) be an open set. Then Aσ is a

deformation retract of A+
σ .

Proof. Consider the dual complex W and a subcomplex Z of dimension n in
W . Let us consider the set of incident classes to Z.

The open sets of the good cover are defined as follows. Take the second barycen-
tric subdivision K′′ of K, and the union of all the simplicial interiors in K′′ that
have non-empty intersections with the k-faces Z ′ of the subcomplex Z (where the
dimension 0 ≤ k ≤ n). The open sets are defined as follows:

U(Z ′) =
⋃

s′′∈K′′|s′′|∩Z′ 6=∅
int(s′′),

such that the following conditions hold:
(1) the set U(Z ′) is an open set of |K′′|
(2) the set U(Z ′) retracts onto Z ′.

Using the definition of the dual complex we come back to the stratification {Aσ}σ∈Σ
of DPold we have that A+

σ = Aσ
⋃

s′′∈K′′|s′′|∩Aσ 6=∅ int(s
′′). �

We call this union of open sets the regular neighborhood in W of Z. The
open sets A+

σ ⊂ DPold are such that Aσ ⊂ A+
σ .

Remark 6.1. A path exists in DPold from Aσ1 to Aσn where σ1, .., σn are
biregular, if there is a finite number of adjacent bi-regular sets Aσi such that
A+
σi
∩ A+

σi+1
6= ∅ for all i ∈ {1, ..., n}.

3.5. A good open cover of DPold for the Čech cohomology.
Theorem 6.23. There exists an open cover U = {A+

σ }σ∈Σd where σ is generic
of DPold with the desired properties:

(1) The elements of the cover A+
σi
, where σi is generic, are open and con-

tractible;
(2) the multiple intersections ∩pi=1A

+
σi

are either empty or contractible.

Proof. (1) From the Theorem 6.14 it follows that Aσ is contractible. The
thickening of Aσ presented in the proposition 6.22 is also contractible.
Therefore, A+

σi
is contractible.

(2) The multiple intersections
∩pi=1A

+
σi

= ∩pi=1(Aσi ∪s′′∈K′′|s′′|∩Aσi 6=∅
int(s′′))
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and using the Theorem 6.19 the intersections in the equation above are
either empty or equal to

Aτ
⋃

s′′∈K′′|s′′|∩Aτ 6=∅

int(s′′).

So, the multiple intersections ∩pi=1A
+
σi
are either empty or contractible. We

have thus a good cover in the sense of Čech of the space DPold.
�

Corollary 6.24. The thickening {A+
σ } is a Čech covering of DPold.

Proof. By theorem 6.23 the cover by {A+
σ } satisfies the properties of a Čech

cover: the multiple intersections contractible and the elements of the cover A+
σi

are
open and contractible. �



CHAPTER 7

General method for the Čech cohomology of braid groups

A general method to explicitly calculate the cohomology groups is givens, in
this chapter.

The method for computing the i-th cohomology group relies on the structure
of the stratification and it moreover requires two steps:

- the first step, consists in investigating the kernel of the coboundary map
di : Ci(U ,F) → Ci+1(U ,F), where F is a sheaf. We show that the coboundary
operator matrix of di is block diagonal and contains blocks which are circulant,
for i ≥ 3.

-The second step, consists in investigating the image of the coboundary map
di−1 : Ci(U ,F)→ Ci+1(U ,F). To this end we show that the coboundary operator
is a finite map.

1. Cohomology with values in a sheaf
This chapter is devoted to the presentation of a new general method which in

principle should make it possible to compute the cohomology groups of the full
braid groups with coefficients in a sheaf of abelian groups. However, here for
simplicity we will confine ourselves to the case of a constant sheaf and indeed
Z. Starting first with a short overview on cohomology with values in a sheaf,
we explain how to use it in our context. The short reminder below is essentially
extracted from Jean-Pierre Serre’s famous article Faisceaux algébriques cohérents
(1956), see [48].

1.1. Cochains of the covering. Let U = {Ui}i∈I be a good covering of the
space DPold. The open sets Ui of the good cover correspond to the biregular sets
Aσi along with their regular neighbourhood, that we have denoted previously by
A+
σi

(in chapter 6).
Let p ≥ 0 be an integer. If s = (i0, i1, ..., ip), where s is a finite sequence of

elements in I. We denote by Us = Ui0,i1,...,ip the intersection Ui0∩Ui1∩ ...∩Uip. We
call a p-cochain of U with values in the sheaf F a function f assigning to every
finite sequence s = (i0, i1, ..., ip) of p+1-elements of I a section fs = fi0,i1,...,ip of F
over Ui0,i1,...,ip. The p-cochains form an abelian group denoted by Cp(U ,F). This
group is given by the following product over all sequences s of p+ 1 elements of
I:
∏Γ(Us,F), where Γ(Us,F) is the set of sections of F over Us.

93
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1.2. Invariants of the polyhedral structure. LetW(I) be the polyhedral
structure where I is the finite set of its vertices. The vertices i0 ∈ I are in bijection
with the set of biregular classes σi0 ∈ Σd.

We first isolate two important building blocks in the recursive structure of
the complexW(I). This study of incidence relations will bring some information
concerning the non-empty intersection of open sets in the cover (see lemma ??
form chapter 6).

Proposition 7.1. The polyhedral complex W contains two invariant subcom-
plexes:

(1) the 2-face, being a quadrangle denoted by D(i0, i1, i2, i3),
(2) the 3-subcomplex, being a diamond denoted by D(i0, i1, i2, i3, i4),

Proof. (1) The existence of the first invariant follows from the lemma 3.1.Let
us study the relations of the chains associated to a 2-face inW . From these
incidence relations in the poset, it follows that if a 2-face exists then it is
necessarily quadrangular.

Let σ0, σ1, σ2, σ3 be the four generic signatures which correspond to the
four vertices of a 2-face in W . These incidence relations are stated two by
two below.
• {σ0, σ1, } � β01, where codim(β01) = 1.
• {σ1, σ2, } � β12, where codim(β12) = 1.
• {σ2, σ3, } � β23, where codim(β23) = 1.
• {σ3, σ0, } � β30, where codim(β30) = 1.
{σ0, σ1, σ2} � {β01, β12, } � α012, where codim(α012) = 2. Notice that

the supremum of σ0, σ2 is a codimension 2 signature: {σ0, σ2} � α012,
instead of a codimension 1 signature.

The other chains of the poset up to the codimension 2 signatures are
as follows:
{σ1, σ2, σ3} � {β1, β2, } � α123, where codim(α123) = 2.

The supremum of σ1, σ3 is a codimension 2 signature: {σ1, σ3} � α123,
instead of a codimension 1 signature.
{σ2, σ3, σ0} � {β23, β30, } � α230, where codim(α230) = 2.

The supremum of σ0, σ2 is a codimension 2 signature: {σ0, σ2} � α012,
instead of a codimension 1 signature.
{σ3, σ0, σ1} � {β30, β01, } � α301, where codim(α301) = 2.

The supremum of σ1, σ3 is a codimension 2 signature: {σ1, σ3} � α123,
instead of a codimension 1 signature.

This implies that α123 = α301 and α012 = α230 which is possible if
and only if α123 = α301 = α123 = α0123 and α012 = α230 = α0123. These
incidence relations are represented using a Hasse diagram as follows.
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σ0
β01←→ σ1

lβ30 α0123 lβ12

σ3
β23←→ σ2

(2) The second type of invariant of the complex W is a so-called “diamond
structure".

σ0

↙β01 ↓β02 ↘β03

σ1 σ2 σ3

↘β14 ↓β24 ↙β34

σ4

In the complex it consists of one 3-face, three quadrangular 2-faces, six
edges and five vertices. Let us show that for any degree d > 2 this structure
exists. We first enumerate all the incidence relations in the poset given by
this object. Let {σ0, σ1, σ2, σ3, σ4} be the generic signatures associated to
the vertices in the complex.

Let the signatures βij, αijk, γijkl verify codim(βij) = 1, codim(αijk) =
codim(αijkl) = 2,codim(γijklm) = 3 where i 6= j 6= k 6= l 6= m. We have
the following chains up to the codimension 1 signatures:
• {σ0, σ1} � β01,
• {σ0, σ2} � β02,
• {σ0, σ3} � α013,
• {σ1, σ4} � β14,
• {σ2, σ4} � α024,
• {σ3, σ4} � β34.
The incidence relations for three generic (biregular) signatures:

(a) {σ0, σ1, σ2} � {β01, β02, β12 = α012} � α012 � γ0123,
(b) {σ0, σ1, σ3} � {β01, β03, β13 = α013} � α013 � γ0123,
(c) {σ0, σ2, σ3} � {β02, β03, β23 = α023} � α023 � γ0123,
(d) {σ1, σ2, σ3} � {β12 = α012, β23 = α023, β13 = α013} � γ0123.

Since from relation (b) β13 = α013 and from relation (d) α013 � α123.
Now these signatures have same codimension 2. So, we have that
α013 = α123. Hence, α013 = α123 = γ0123.

(e) {σ4, σ1, σ2} � {β41, β42, β12 = α412} � α412 � γ4123,
(f) {σ4, σ1, σ3} � {β41, β43, β13 = α413} � α413 � γ4123,
(g) {σ4, σ2, σ3} � {β42, β43, β23 = α423} � α423 � γ4123,
By relation (f) of the second block we have β13 = α413 and by relation
(b) of the first block β13 = α013. So, α413 = α013 and thus α413 = α013 =
α0134. We have also that α013 � α123 implying that α0134 = α123. So,
α0134 = α123 = γ01234. Similarly, we have: β12 = α412 = α012, so β12 =
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α412 = α012 = α0124 and β23 = α423 = α023. So, β23 = α423 = α023 = α0234.
Finally, we have β0,4 = {α0134, α0123, α1234} � γ01234.

�

We now exploit this information starting with the case of the quadrangular
2-face. These incidence relations have the following consequences on the open
sets in U .

Recall that the collection of open sets Ui in the good cover are in bijection
with the set of vertices of the polyhedral complex and indexed by the set of
codimension 0 signatures. The intersection of the three open sets associated to
the signatures σ0, σ1, σ2 is Uσ0,σ1,σ2. So, we have: Uσ0,σ1,σ2 = Uσ0,σ1,σ3 = Uσ0,σ2,σ3 =
Uσ1,σ2,σ3 = Uσ0,σ1,σ2σ3.

For the diamond structure, we have the following relations for the open sets:
from the previous result we have the following non-empty intersections: U01234 ⊂
{U0234, U0134, U0124} and U12 = U0124, U23 = U0234, U13 = U0134.

Lemma 7.2. Let W be the complex associated to the decomposition in signa-
tures of DPold. For any degree d > 3 there exists in W a subcomplex R which is
connected, of topological genus 1 and obtained from the union of one subcomplex
NC(d), one bridge and two open book structures.

Proof. Going back to the definition of a bridge structure Dbridge(u0, ...., up)
(cf definition 3.7), its vertices {u0, ...., up} are in bijection with the set of biregular
signatures {σu0 , ...., σup} which are incident to one signature σbridge of high codi-
mension. The bridge structure is contained in the tower structure and it inherits
invariance under the symmetry group Z2 o Z2. So, we partition its set of vertices
{u0, ...., up} into two disjoint sets which are of same cardinality and that we denote
V0 and V1 (with |V0| = |V1|). Recall that the diagram of the signature σbridge con-
tains two critical points: one of multiplicity 2, one of multiplicity (d− 1) and both
critical points lie on curves of the same color, say red (resp. blue). There exist
d− 1 short diagonals colored blue (resp. red) and one long blue (resp. red) diago-
nal. Concerning the vertices of Dbridge(u0, ...., up), their BKL notation is as follows:
(∗, akl) (resp. (akl, ∗)), where * represents the word associated to the colored red
diagonals. Notice that the signature (∗, akl) is adjacent in one deformation step
to either (∗, 0) or (∗, ad,d−1ad−2,d−3...a2,1) (reciprocally (akl, ∗) is adjacent in one
deformation step to (0, ∗) or (ad,d−1ad−2,d−3...a2,1, ∗)).

The two open book structures that we consider have vertices denoted by
(∗, akl) and (∗, 0) (if akl is adjacent in one deformation step to 0), and respec-
tively (∗, akl) (∗, ad,d−1ad−2,d−3...a2,1), if akl is adjacent in one deformation step to
ad,d−1ad−2,d−3...a2,1) (We proceed similarly for the opposite color, where diagrams
are denoted by (akl, ∗)).

Now, any bridge subcomplex is glued to a couple of open book structures in
the following manner: both open book structures share with the bridge a set of
vertices. The first open book structure shares with the bridge structure the set
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of vertices V0, the second open book structure shares with the bridge structure
the set of vertices V1. More precisely, the openbook subcomplexes denoted by
Dopenbook1 (resp. Dopenbook2) verify that the following intersections are non-empty:
Dopenbook1 ∩Dbridge(u0, ...., up) = {V0}, resp. Dopenbook2 ∩Dbridge(u0, ...., up) = {V1}.
The remaining vertices which are contained openbook1 (resp. in openbook2) form
the sets denoted by V2 (resp. V3). Now, since the signatures forming the sets
V2 and V3 carry a BKL notation of the type (∗, 0) or (∗, ad,d−1ad−2,d−3...a2,1) (if
akl is adjacent in one deformation step to ad,d−1ad−2,d−3...a2,1)) so those signatures
belonging to the sets V2 and V3 are the ones from the NC(d) subcomplex. So,
the subcomplexes NC(d) and Dopenbook1 have in common the set of vertices {V2};
NC(d) and Dopenbook2 have in common the set of vertices V3. The union of these
four subcomplexes forms one connected component inW , denoted by R, which is of
topological genus 1: the sets of vertices V0, V1, and V2, V3 are disjoint; reciprocally,
the sets of vertices V1, V2, and V3, V0 are disjoint and V0 ∪ · · · ∪ V4 forms one
connected component. �

1.3. Coboundary operations.
1.3.1. General definition. Let us recall the definition of the coboundary oper-

ators for the Čech cohomology.
Let D(J ′) be a subcomplex with the set J ′ of its vertices; an ordered sub-

complex of D(J ′) is a sequence J ′ = (i0, i1, ..., ip) of elements of I. The com-
plex W is the sum of all the subcomplexes with set of vertices in I. We define
W(I) = ⊕∞p=0Kp(I) to be the complex defined by D(I); Kp(I) is the set of sub-
complexes of p vertices of D(I). If s is a subcomplex of S(I) we denote by |s| the
set of vertices of s.

A mapping h : Kp(I)→ Kq(I) is called a simplicial endomorphism if
(1) h is a homomorphism
(2) for any subcomplex s of p vertices of D(I) we have

h(s) =
∑
s′
cs
′

s with cs
′

s ∈ Z,

the sum being over all subcomplexes s′ of q vertices such that |s′| ⊂ |s|.
This leads to the coboundary operator between cochains. Let h be the sim-

plicial endomorphism and let f ∈ Cq(U ,F) be a cochain of degree q. For any
subcomplex s of p vertices put: (htf)s = ∑

cs
′
s ρ

s′
s (fs′), where ρs

′ denotes the
restriction homomorphism: Γ(Us′ ,F) → Γ(Us,F), which makes sense because
|s′| ⊂ |s|. the mapping s 7→ htf is a homomorphism:

ht : Cq(U ,F)→ Cp(U ,F).
Applying the above to the simplicial endomorphism

∂ : Kp+1(I)→ Kp(I)

defines by the formula: ∂(i0, i1, ..., ip) = ∑j=p+1
j=0 (−1)j(i0, i1, ..îj., ip).
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The symbol “ îj ” means that the subscript is omitted.
Thus we obtain a homomorphism ∂t : Cp(U ,F) → Cp+1(U ,F) which we

denote by d. From definition we have that:

(df)i0,i1,...,ip+1 =
j=p+1∑
j=0

(−1)jρj(fi0,i1,...,îj ,...,ip+1
),

where ρj denotes the restriction homomorphism

ρj : Γ(Ui0,i1,...,îj ,...,ip+1
,F)→ Γ(Ui0,i1,...,ip ,F).

Since ∂ ◦ ∂ = 0, we have d ◦ d = 0. Thus C(U ,F) is equipped with a coboundary
operator making it a complex. Note that we will omit ρj from our notation.

The q-cochain Cq(U ,F) and the q+1-cochain Cq+1(U ,F) being related by the
coboundary operator:

dq : Cq(U ,F)→ Cq+1(U ,F),

where (dqf)i0,...,iq ∈ Cq+1(U ,F) is given by the equation (??):

(dqf)i0,...,iq =
q+1∑
k=0

(−1)kfi0,...,̂ik,...,iq |A+
σi0,...,iq+1

, f ∈ Cq(U ,F).

The matrix corresponding to the coboundary operator mapping Cq(U ,F) to
Cq+1(U ,F) is represented by:

(2)

(
+1 −1 . . . (−1)k . . . (−1)q 0 0 ... 0
0 ... . . . ... . . . ... 1 ... (−1)k... (−1)q

...

0 0 . . . ... (−1)m . . .

)
︸ ︷︷ ︸

Aq

×



f
î0,...,iq

. . .

f
i0,...,̂ik,...,iq

. . .

f
i0,...,̂iq
− − − − −
f

ĵ0,...,jq
. . .

− − − − −
f

h0,...,ĥk,...,hq
. . .


︸ ︷︷ ︸

Cq(U,F)

=

( (dqf)i0,...,iq
(dqf)j0,...,jq

...

(dqf)h0,...,hq

)
︸ ︷︷ ︸

Cq+1(U,F)

1.3.2. Circulant matrices. We now state and prove a proposition which es-
sentially provides an explicit method for computing the coboundary operators.

Let us recall first the definition and properties of a circulant matrix.
A circulant matrix is specified by one vector column v = (v0, v1, v2, . . . , vn−1).

We define a shift operator T : Cn → Cn by

T (v0, v1, v2, . . . , vn−1) = (vn−1, v0, v1, . . . , vn−2).

Definition 7.1. The circulant matrix associated to v is the n×n matrix whose
rows are given by iterations of the shift operator acting on v.

A circulant matrix thus looks like:
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V =


v0 v1 v2 . . . vn−1

vn−1 v0 v1 . . . vn−2
...

...
... . . . ...

v1 v2 v3 . . . v0


By block circulant matrix we mean that the coefficient vi is replaced by a block
of the matrix.

Circulant matrices are tools that are elementary and well understood see
in [28], a salient feature being the fact that the kernel is easily computable.

• Let ε be a primitive n-th root of unity, then the eigenvalue λl of V is
such that: λl = v0 + εlv1 + · · · + ε(n−1)lvn−1 with normalized eigenvector
(1, εl, ε2l, ..., ε(n−1)l).
• The dimension of the kernel of the circulant matrix is the number of zero

eigenvalues.
• the rank of a circulant matrix V is equal to n−k where k is the degree of

gcd (Xn−1, P (X)) where P (X) is the polynomial v0+v1X+v2X
2+...+Xn

associated to the circulant matrix V .

The generalization to block-circulant matrices is given in [29].

Proposition 7.3. The Čech coboundary operators dq, q ≥ 3 are associated
to block diagonal matrices Aq (see picture (1) above) where the blocks are block
circulant.

Proof. The matrix associated to the coboundary operator is block diagonal
since each block corresponds to a substructure R as in lemma 7.2 and since these
structures are disjoint. The blocks of the coboundary matrix are block circulant
since each structure R is of topological genus 1. This latter argument can be
proved by induction on the number of vertices in the R structure (and thus on the
degree d of the DPold). �

Since Aq is block diagonal the kernel is simply the direct sum of the kernels
of the blocks. In conclusion this proposition makes it possible to describe the
kernel of the coboundary operator.

2. Explicit calculation of the Čech cohomology groups
We now give the general method to calculate explicitly the cohomology groups

using, naturally, the decomposition presented throughout this work. The follow-
ing statement illustrates the application of this method for the constant sheaf
Z. However, the method presented in the proof remains independent from this
choice.
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2.1. Cohomology groups.

Theorem 7.4. Let d > 1 be the degree of the polynomials in DPold and let q be
an integer verifying 0 ≤ q < d. Then the Čech cohomology groups Hq(DPold,F)
are finite groups, for 2 < q < d and for F any coherent sheaf.

Proof. The statement in (1) follows from the theorem 2.12 in chapter 2.
To prove the statement (2), one must consider two steps. First, the kernel of

dq : Cq(U ,F) → Cq+1(U ,F) and show in particular that it is non-null. Secondly,
the image of dq−1 : Cq−1(U ,F)→ Cq(U ,F) and show that it is a finite map.

We are interested in the matrix associated to the coboundary operator

dq : Cq(U ,F)→ Cq+1(U ,F).

We show that this matrix is a block diagonal matrix with blocks being block
circulant.

(a) Consider from lemma 7.2 an R structure inW and denote its set of vertices
by the following collection of vertices {V0, ..., V3}, where the cardinalities of those
sets are |V0| = ... = |V3|. For any sequence of vertices (σi0 , ..., σiq+1) in the union
of vertices V0 ∪ V1 it follows from lemma 6.5 from chapter 6 that the open set
Uσ0

i0
,...,σ0

iq+1
corresponding to those vertices is non-empty (the union of the vertices

V0 ∪ V1 belonging to one bridge structure). In particular this property implies
that fσ0

i0
,...,σ0

iq+1
is different from 0. We proceed similarly for the other couples of

vertices, as depicted below.
The sequence of vertices (σ1

i0 , ..., σ
1
iq+1) in the union of vertices V1 ∪ V2, corre-

sponds by lemma 6.5 to a non-empty open set Uσ1
i0
,...,σ1

iq+1
since V1∪V2 is contained

in an open book structure. Applying the sheaf properties we have that fσ1
i0
,...,σ1

iq+1

is different from 0.
We notice that the coboundary relations defined for the q + 2-sequences of

vertices in V0 ∪ V1, are translated for V1 ∪ V2, for V2 ∪ V3 and V3 ∪ V0. So, the
matrix associated to the coboundary operator dq : Cq(U ,F) → Cq+1(U ,F), for
the R structure is block circulant. Therefore from the properties of block circulant
matrices it follows that the dimension of the kernel of this block is n where n
is non-zero. Since there exist 4d such R-structures in the dual complex W , the
dimension of the kernel has the following lower bound:

dim(kerdq) ≥ 4dn.

(b) Now, we show that the image Im(dq−1 : Cq−1(U ,F) → Cq(U ,F) is a finite
map. We point out an important property of our decomposition into signatures of
the space DPold. Take a substructure of one R structure of the dual complex W
(cf lemma 7.2) which is constituted from the union of a bridge structure and an
open book structure. The sets of vertices are V0, V1 and V2 where V0, V1 belong to
the bridge structure and V1, V2 are the vertices in an open book structure. Let us
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consider a sequence of vertices (i0, ..., iq+1) in V1 and its corresponding non-empty
open set Ui0,...,iq+1 .

We have the following inclusion maps UJ ↪→ Ui0,...,iq and UJ ′ ↪→ Ui0,...,iq , where
J is composed from the q + 1 vertices in the bridge structure (contained in the
union of V0 with V1) and similarly J ′ is composed from the q + 1 vertices in the
open book structure (contained in the union of vertices in V1 and V2). Since J
is associated to the bridge structure, the vertices in J are the generic signatures
incident to σbridge. Similarly the set of vertices in J ′ are incident to σopenbook.
Applying lemma 6.5 the open sets UJ and UJ ′ correspond respectively to the
signatures σbridge and σopenbook and in particular we have that the intersection
of UJ and UJ ′ is empty. So, from the sheaf properties, we have the following
maps: F(Ui0,...,iq) → F(UJ) and F(Ui0,...,iq) → F(UJ ′) where F(UJ ′) 6= F(UJ).
In particular, taking F(Ui0,...,iq) → F(Ui0,...,iq+1) where i0, ..., iq+1 ∈ V1, we have
locally a finite map. Applying the same argument to the other couples of sets
{V2, V3} and {V3, V0} and to all the other R structures, we define a finite map
for coboundary operator. In order to explicitly compute the degree of the finite
map we proceed by induction on the degree d > 3 using this property, in the
following way. We have shown in lemma 7.1 that there exist building blocks which
are invariant in the decomposition of DPold. So, firstly the structures NC(d),
bridge, and openbook in DPold, contain those invariants. Secondly, these three
structures contain respectively also the subcomplexes NC(d − 1), bridge, and
openbook structures which are in the signature decomposition of DPold−1. Then,
we apply the property described above, by induction on the structures NC(d−1),
bridge, and openbook in DPold−1. On the one hand, since we have noticed that
there exist NC(d−1) structures in NC(d) they are incident to a common signature
σNC(d), which is of the highest codimension. Similarly, the bridge structure of
DPold contains bridge structures of DPold−1 incident to a common signature σbridge
of high codimension, the same argument is applied for the openbook structures.
On the second hand, these structures remain invariant under the Klein group, as
was shown in chapter 3. So, we can apply the property to the R structures in the
decomposition of DPold. �

3. Čech cohomology for d = 2, 3, 4
Let us illustrate for d = 2 the Čech cohomology with values in the constant

sheaf F(U) = Z for all open sets A+
σ . The dual complex (graph)W is a quadran-

gle (see Fig 2) constituted from

• four vertices, corresponding to the codimension 0 signatures,
• four edges, corresponding to the codimension 1 signatures

These signatures are explicitly drawn and enumerated below:
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Remark 7.1. For d = 2 the 2-face in the dual graph W does not exist, since
it would be associated to a signature where both crossing points of the red and
blue diagonals are not distinct and thus to a class of polynomials with non distinct
roots.

Take the good cover U = {A+
σ1 , . . . , A

+
σ4} where the open sets are the thick-

ened co-dimension 0 sets. These sets have the following non-empty intersec-
tions: A+

σ1,2, A+
σ2,3, A+

σ3,4, A+
σ1,4.

(1) The 0-cochain is defined as

C0(U ,Z) := {(e1, . . . , e4)|ei is a constant on A+
σi
, i = 1, ..., 4} = Z4.

(2) The 1-cochain is defined as

C1(U ,Z) = {(w1,2, . . . , w4,1)|wij = ej−ei is a constant onA+
σi,j
}with i, j ∈ {1, . . . , 4} = Z4.

(3) Triple intersections are empty since there does not exist any 2-face inW.
C2(U ,Z) = {0}.

We have the following sequence of cochains:

0 d−1
−−→ C0(U ,Z) d0

−→ C1(U ,Z) d1
−→ C2(U ,Z) d2

−→ 0,
where the coboundary operator d0 is:

d0 : C0(U ,Z)→ C1(U ,Z);
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(d0e)jk = wk − wj given by : d0(e1, e2, e3, e4) = (e2 − e1, e3 − e2, e4 − e3, e4 − e1).
The kernel of d0 is e2 = e1, e3 = e2, e4 = e3, e4 = e1 So,

H0(U ,Z) = ker(d0 : C0 → C1)
{0} = Z.

Let us consider Im(d0). We have (d0ei)j,k =


0 if i 6= k and i 6= j

1 if i = k

−1 if i = j

Suppose

that w = d0(v) where v = ∑4
i=1 ciei and ci ∈ Z.

So, we have the following vectors:
d0(e1) = [−1, 0, 0,−1]
d0(e2) = [−1,−1, 0, 0]
d0(e3) = [0, 1,−1, 0]
d0(e4) = [0, 0, 1, 1]

Im(d0) = span{(−1, 0, 0,−1), (1,−1, 0, 0), (0,−1, 1, 0), (0, 0, 1, 1)}. We have kerd1 =
Z4 and one vector in span{(−1, 0, 0,−1), (1,−1, 0, 0), (0,−1, 1, 0), (0, 0, 1, 1)} is a
linear combination of the three others. So, H1(U ,Z) = ker(d1:C1→C2)

Im(d0:C0→C1) = Z. To

conclude H2(U ,Z) = ker(d2:C2→C3)
Im(d1:C1→C2) = 0, since ker(d2 : C2 → C3) = 0.

Remark 7.2. For the case d = 3, the results for the cohomology groups are
the same as for d = 2.

3.1. The case d = 4. In order to explicitly compute the cohomology groups
for d = 4 we study the structure of the complex. In particular, we count how
many there exist bridge subcomplexes, NC(4) subcomplexes and openbook com-
plexes in the complex W (see chapter 3 for a detailed study of the subcom-
plexes).

Recall that there exist 4 NC(4) structures, 16 bridge structures and 32 open
book structures. The endvertex of one NC(4), (i.e. one of the vertex correspond-
ing to the M diagram) is the initial vertex of the second NC(4). The end vertex
of the second NC(4) is glued to the initial vertex of the third NC(4) and finally
the fourth NC(4) is glued to the endvertex of the third. The endvertex of the
fourth NC(4) is glued to the initial vertex of the first one.

There are 8 bridge subcomplexes connecting the first and the third NC(4)
structures and there exist 8 bridges connecting the second and fourth NC(4)
structure. There are 32 openbook structures establishing a connection between
the 16 bridge structures and the NC(4) structure. Each bridge has a couple of
open books connecting respectively its upper part to the upper part of the NC(4)
and lower part to the lower part of the NC(4) structure.

Remark 7.3. The bridge and NC(4) structure are invariant under the sym-
metry of Z2 o Z2.
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Remark 7.4. The bridge structure contains two diamond structures.

Now, we show that H3(DPol4,Z) = Z/2Z. To do this one must consider the
image and kernel of the coboundary operators, d2 : C2(U ,Z) → C3(U ,Z) and
d3 : C3(U ,Z)→ C4(U ,Z).

Let us consider the coboundary operator d2 : C2(U ,Z)→ C3(U ,Z). We show
that:

Proposition 7.5. The coboundary operator d2 is a twofold covering C2(U ,Z) 2−→
C3(U ,Z).

Proof. We want to show that C2(U ,Z) 2−→ C3(U ,Z). By definition, the ho-
momorphism d2 : C2(U ,Z)→ C3(U ,Z) follows from the simplicial endomorphism
∂ : Kp+1 → Kp, where Kp is the set of subcomplexes with p-vertices contained
in the dual complex W , which was presented in the first section of this chapter.
Therefore, we study the subcomplexes contained in Kp+1 and Kp, where p = 3.
Since there are four main families of subcomplexes with more than 3 vertices (di-
amond, bridge, NC(4) and open book) we study these cases.

(1) Consider first the bridge structure Dbridge(J) where J = (i0, ..., i4, j0, ..., j4)
are its set of 10 vertices. By the symmetry of the bridge structure, there
is a set of 5 vertices on the upper half part and a set of 5 vertices on the
lower part of the bridge.

Without loss of generality, take the bridge with the following set of
vertices in the BKL notation:

bridge1 = {(0, 34); (12, 34); (14, 34); (24; 34); (34, 34);
(124, 34); (134, 34); (234, 34); ((12)(34), 34); (1234, 34)}.

The vertices in its upper half part are the following:
{σi0 ; ...;σi4} = {(0, 34); (12, 34); (14, 34); (24; 34); (34, 34)}.

The vertices in the lower half part are the remaining vertices.
This set of vertices correspond to an open non-empty intersection

Uσi0 ,...,σi4 .
Indeed, the biregular signatures verify the incidence relation σi0 , ..., σi4 �
σbridge, where σbridge is the signature of maximal codimension contained
the bridge structure.

From chapter 3, we find that there exists an open book structure con-
taining those five vertices. This open book structure has the following
vertices:

openbook1 = {(0, 34); (12, 34); (14, 34); (24; 34);
(34, 34); (0, 0); (12, 0); (14, 0); (24; 0); (34, 0)}.
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Since the 5 vertices belong to the open book structure, it implies that
there exists the relation σi0 , ..., σi4 � σopenbook, where σopenbook is the sig-
nature of the highest codimension in the openbook structure. However,
notice that

σopenbook 6= σbridge with codim(σopenbook) = codim(σbridge).
So, this implies that for the open sets Uσi0 ,...,σi4 ⊃ Aσopenbook and Uσi0 ,...,σi4 ⊃
Aσbridge , where Aσopenbook ∩ Aσbridge 6= ∅.

Therefore, the sequence (σi0 , ..., σi4) in I indexes two disjoint open sets.
So, there exists a twofold covering, mapping two disjoint open sets to one
open set

π1 : (Uσi0 ,...,σi4 )openbook t (Uσi0 ,...,σi4 )bridge → (Uσi0 ,....,σi4 ),

where (Uσi0 ,...,σi4 )openbook (resp.(Uσi0 ,...,σi4 )bridge)) is the open set correspond-
ing to the open book structure (resp. is the open set corresponding to the
bridge structure).

(2) Consider the lower part of the bridge. In our example, it consists of the
following set of vertices:

{σj0 ; . . . ;σj4} = {(1, 34); (124, 34); (134, 34); (234; 34); ((12)(34), 34)}.
Let us consider the second open book structure, which has non-empty

intersection with this bridge subcomplex., Its vertices are as follows:

openbook2 = {(1234, 34); (124, 34); (134, 34); (234; 34); ((12)(34), 34);
((12)(34), 34); (1234, 0); (124, 0); (134, 0); (234, 0); ((12)(34), 0)}.

In particular, this contains the set of vertices {σj0 , . . . , σj4}. Therefore,
as previously, to the sequence (σj0 , . . . , σj4), there exist two disjoint open
sets, which correspond respectively to the open set belonging to the second
open book structure and to the open set belonging to the lower part of the
bridge

π2 : (Uσj0 ,...,σj4 )openbook2 t (Uσj0 ,...,σj4 )bridge → (Uσi0 ,...,σi4 ).
(3) Let us consider now the NC(4) structure which contains the following set

of vertices:

NC(4)1 = {(1, 0); (1, 123); (1, 124); (1, 134); (1, 234); (1, 24); ((1, 13); (1234, (12)(34))
(1234, (23)(41)); (1234, 12); (1234, 23); (1234, 34); (1234, 41)}.
This set has a non-empty intersection with the set of vertices of the

second open book structure (resp. first). These intersection sets are re-
spectively:
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openbook2 ∩NC(4)1 = {σk0 ; . . . ;σk4}
= {(1, 0); (124, 0); (134, 0); (234, 0); ((12)(34), 0)},

openbook1 ∩NC(4)1 = {σm0 ; . . . ;σm4}
= {(0, 0); (12, 0); (14, 0); (24; 0); (34, 0)}.

Those 5 signatures in NC(4) are incident to two different signatures
of high codimension which are distinct: σNC(4)1 and σopenbook2 (and respec-
tively σNC(4)1 and σopenbook1) which implies, as previously, that there exists
a twofold covering, mapping two disjoint open sets to one open set:

π3 : (Uσk0
, ..., σk4)openbook2 t (Uσk0 ,...,σk4

)NC(4)1 → (Uσk0 ,...,σk4
)

and
π4 : (Uσm0

, ..., σm4)openbook1 t (Uσm0 ,...,σm4
)NC(4)1 → (Uσm0 ,...,σm4

).
The glueing of the bridge with NC(4) by openbook1 and openbook2 forms a con-
nected component of topological genus 1. We have defined local twofold coverings.
In order to define a general twofold covering, we discuss the glueing properties
of the open sets in the main structures. These glueing properties are considered
by studying the 4-intersections of sets contained in the upper and lower part of
the main structures. Consider the subcomplexes in the bridge structure having a
combination of 4 vertices belonging to both sequences: (i0, ..., i4), (j0, ..., j4). Since,

{σi0 , ..., σj4} ≺ σbridge, where σbridge is the supremum,
we have that Uσi0 ,...,σj4 ⊃ Aσbridge .

In particular, any combination of four intersections contains the set Aσbridge .
There are two particular cases of substructures of the bridge which verify:

σi0 , σi1 , σi4 , σj0 ≺ σdiamond1 ≺ σbridge.

σj1 , σj2 , σj3 , σi2 ≺ σdiamond2 ≺ σbridge.

So, the open sets verify
Uσi0 ,σi1 ,σi4 ,σj0 ⊃ Aσdiamond1

⊃ Aσbridge

and
Uσj1 ,σj2 ,σj3 ,σi2 ⊃ Aσdiamond2

⊃ Aσbridge .

The other 4-combinations of vertices have as a supremum σbridge. So, this
implies that for any other combinations of 4 vertexes different from σi0 , σi1 , σi4 , σj0
and σj1 , σj2 , σj3 , σi2 in the bridge structure we have:

Uσi0 ,...,σi4 = Uσj0 ,...,σj4 = Uσi0 ,...,σi3 ,σj1 = ... = Uσi0 ,σi1 ,σi2 ,σj0 ,σj1
= ... = Uσi0 ,σi1 ,σj0 ,σj1 ,σj2 = Uσi0 ,σj0 ,σj1 ,σj2 ,σj3 .

We proceed similarly for the NC(4) structure an open book structures.
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There exist 16 bridges, 8 of which connect the structures NC1 and NC2 and 8
of which connect NC3 and NC4 (following the description in chapter 3 of the NC
structures). We apply the procedure depicted above to the 16 bridges.

Finally, using the properties of the sheafs, see [48] and applying the procedure
above to the 16 bridges, we have that the coboundary map d2 defines a twofold
covering. �

3.2. The kernel of d3. We want to prove that the kernel of the coboundary
map d3 : C3(U ,Z) → C4(U ,Z) is non-zero and calculate the kernel explicitly, in
order to calculate the cohomology group H3(DPol4,Z).

From the topological point of view, the structures NC(4), bridge and open-
book are balls. Each bridge structure is glued to two different openbook struc-
tures such that the upper half part of the bridge consisting of five vertices is glued
to the five vertices of the first openbook structure, the five vertices on the lower
half part are glued to the five vertices of the second openbook structure. The five
remaining vertices of the second open book structure is glued the five vertices
contained in the half lower part of the NC(4) structure and the five remaining
vertices of the first openbook structure are glued to five vertices contained in the
upper half of the NC(4) structure. This defines a structure closed and bounded
of genus 1. Since there exist 16 bride structures, we have a genus 16 structure.

In a manner requiring calculations, the matrix associated to the coboundary
operator d3 is a block circulant one. This is illustrated as follows.

Let us decompose the set of vertices of the complex into four families. We
enumerate the components of this decomposition. The first family of vertices
consists of those vertices which belong to the upper half part of the NC(4) struc-
ture ans to the first open book structure. This family is denoted by the sequence
(i0, .., i4). The order in which the vertices in the sub sequence of I are given
does not matter. The second family consists of those vertices belonging to the
upper half of vertices of the bridge structure and to the first open book structure.
This family is denoted by the sequence (j0, ..., j4). The third family consists of
those vertices which belong to the lower half of the bridge structure an to the
second openbook structure. It is denoted by (k0, .., k4). Finally, the last family
is a set of vertices belonging to the lower half part of the NC(4) structure and
to the second open book structure. These vertices are denoted by the sequence
(m0, ...,m4).

Lemma 7.6. The matrix associated to the coboundary operator d3 is a block
diagonal matrix where blocks are block circulant.

Proof. Let us introduce some notation. The sequence (ip0 , ip1ip2ip3) ∈ (i0, .., i4)
means that we take four vertices among the five (i0, .., i4). Similarly, (jl0 , jl1 , ...jlr) ∈
(j0, ..., j4) means that we take r + 1 vertices among the ones in (j0, ..., j4).

Let us consider the elements in the 4-cochain C4(U ,Z).
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Let us illustrate a few of these elements, given by coboundary operator. One
element f ∈ C4(U ,Z) is as follows :

(d3f)i0,..,i4 =
4∑
q=0

(−1)qf(Ui0,..îq ,...,i4).

There exist 4 such relations for the sequences (i0, .., i4), (j0, ..., j4), (k0, .., k4) and
(m0, ...,m4).

The other families of elements in the 4-cochain C4(U ,Z) including vertices be-
longing to the sequence of vertices (i0, .., i4) and the sequence (j0, ..., j4) of adjacent
vertices in the first open book structure. These relations are as follows:

(d3f)ip0 ,ip1 ip2 ip3jr
=f(Uip1 ,...,ip3 ,jr

)− f(Uip0 ,ip2 ,ip3 ,jr
)

+ f(Uip0 ,ip1 ,ip3 ,jr
)− f(Uip0 ,ip1 ,ip2 ,jr

) + f(Uip0 ,ip1 ,ip2 ,ip3
),

where jr ∈ (j0, ..., j4).

(d3f)ip0 ,ip1 ip2jl0jl1
=f(Uip1 ,ip2 ,jl0 ,jl1

)− f(Uip0 ,ip2 ,jl0 ,jl1
)

+ f(Uip0 ,ip1 ,jl0 ,jl1
)− f(Uip0 ,ip1 ,ip2 ,jl1

) + f(Uip0 ,ip1 ,ip2 ,jl0
),

where jl0 , jl1 ∈ (j0, ..., j4).

(d3f)ip0 ,ip1jl0 ,jl1 ,jl2
=f(Uip1 ,jl0 ,jl1 ,jl2

)− f(Uip0 ,jl0 ,jl1 ,jl2
)

+ f(Uip0 ,ip1 ,jl1 ,jl2
)− f(Uip0 ,ip1 ,jl0 ,jl2

) + f(Uip0 ,ip1 ,jl0 ,jl1
),

where jl0 , jl1 , jl2 ∈ (j0, ..., j4).

(d3f)ip0 ,jl0 ,jl1 ,jl2 ,jl3
=f(Ujl0 ,jl1 ,jl2 ,jl3 )− f(Uip0 ,jl1 ,jl2jl3

)
+ f(Uip0 ,jl0 ,jl2 ,jl3

)− f(Uip0 ,jl0 ,jl1 ,jl3
) + f(Uip0 ,jl0 ,jl1jl2

),

where jl0 , jl1 , jl2 ∈ (j0, ..., j4).
For the other relations, they are copies of these relations, for couples (j0, ..., j4),

(k0, .., k4); (k0, .., k4)(m0, ...,m4) and (m0, ...,m4),(i0, .., i4).
This implies that we have a block circulant matrix. It follows from the prop-

erties of such matrices that the kernel is non-zero. �

Corollary 7.7. The kernel of the coboundary map d3 : C3(U ,Z)→ C4(U ,Z)
is non zero.

Proof. The matrix associated to the coboundary map d3 is a block diagonal
matrix where the block are block circulant. From the properties of such matrices,
the kernel is non zero. So, the result follows. �
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Let us illustrate, the first block, Block1, in the matrix associated to the cobound-
ary operator. This allows to have an explicit computation of the kernel of d3.There
are three other blocks, which are copies of Block1 and obtained by translation of
this block by 25 columns modulo the number of columns of the boundary matrix,
which is 95 (there are 25× 3 + 20 columns for the next blocks.

First block in d3 =


Block1(a) Block1(b) 0 0

0 Block1(a) Block1(b) 0
0 0 Block1(a) Block1(b)

Block1(b) 0 0 Block1(a)




f(Uip0 ,ip1 ip2 ip3
) f(Uip0 ,ip1 ,ip2 ip3 ,jl0

) f(Uip0 ,ip1 ip2 ,jl0 ,jl1
) f(Uip0 ,ip1 ,jl0 ,jl1 ,jl2

) f(Uip0 ,jl0 ,jl1 ,jl2 ,jl3
)

1− 1 1− 1 1 0 0 0 0
1− 1 1− 1 0 1 0 0 0 0 0 0
1− 1 1− 1 0 0 1 0 0 0 0 0 0
1− 1 1− 1 0 0 0 1 0 0 0 0 0
1− 1 1− 1 0 0 0 0 1 0 0 0 0
1− 1 1− 1 0 0 0 0 0 1 0 0 0

... ... ...

1− 1 1 0 0 0 1− 1 0 0 0 0 0
1− 1 1 0 0 0 0 0 1− 1 0 0 0
1− 1 1 0 0 0 0 0 0 1− 1 0 0
1− 1 1 0 0 0 0 0 0 0 1− 1 0
1− 1 1 0 0 0 0 1 0− 1 0 0 0
1− 1 1 0 0 0 0 1 0 0− 1 0 0
1− 1 1 0 0 0 0 1 0 0 0− 1 0
1− 1 1 0 0 0 0 0 1 0− 1 0 0
1− 1 1 0 0 0 0 0 1 0 0− 1 0
1− 1 1 0 0 0 0 0 0 1 0− 1 0

... ... ...

1− 1 0 0 0 0 0 1− 1 1 0 0 0
1− 1 0 0 0 0 0 1− 1 0 1 0 0

... ...

1− 1 0 0 0 0 0 0 0 1− 1 1 0
1 0 0 0 0 0 0 0 −1 1− 1 1 0
1 0 0 0 0 0 0 0 0− 1 1− 1 1
1 0 0 0 0 0 0 0 −1 1− 1 0 1
1 0 0 0 0 0 0 0 −1 1 0− 1 1
1 0 0 0 0 0 0 0 −1 0 1− 1 1
1 0 0 0 0 0 0 0 0− 1 1− 1 1

... ...

Block1(a) Block1(b)


︸ ︷︷ ︸

Block1=Block1(a)⊕Block1(b)

The next blocks concern the other bridge structures.

Example 7.1. We give an explicit example that the kernel of d3 is non-zero.
Indeed, take the vector lines :

v1 = (1,−1, 1,−1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

v2 = (1, 0, 0, 0,−1, 1,−1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
v3 = (0, 0, 0, 0, 1,−1, 1,−1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)



110 7. GENERAL METHOD FOR THE ČECH COHOMOLOGY OF BRAID GROUPS

v4 = (0, 0, 0, 0, 1, 0, 0, 0,−1, 1,−1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
v5 = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,−1, 1,−1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
v6 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,−1, 1,−1, 1, 0, 0, 0, 0, 0)
v7 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 1,−1, 1, 0, 0, 0, 0, 0)
v8 = (1,−1, 1,−1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

These vectors follow the relation: v8−v1 +v4−v5 +v2−v3 +v6−v7 = 0, implying
the result.



Part 4

Generating and counting signatures





CHAPTER 8

Counting diagrams

In this chapter, we count explicitly the number of diagrams for a fixed degree
d and codimension c. Two different methods are employed. The first one, uses
a computer program to draw those diagrams. The second one starts with a
combinatorial calculation and leads to an efficient computer program, giving the
number of diagrams of degree d and codimension c.

1. Generating diagrams
We count the number Nbc(c, d) of degree d and co-dimension c diagrams.

1.1. Inductive methods. The number Nbc(0, d) of bi-regular signatures of
degree d is given by the recursive formula:
(3)
Nbc(0, d+1) =

∑
0≤j,0≤k,0≤`,0≤m,j+k+`+m=d.

Nbc(0, j)Nbc(0, k)Nbc(`, 0)Nbc(0,m), Nbc(0, 0) = 1.

This recursion is obtained from the following splitting: let L1 be a red diagonal
and L2 be a blue diagonal intersecting at a point. This pair of curves splits the
complex plane in four regions. The summing indices j, k, `,m are the number of
roots of a bi-regular polynomial spread in those four regions.

This recursion gives the Catalan-Fuss sequence referred as A002293 in the
Sloane OEIS Encyclopedia of Integral Sequences:

(4) Nbc(0, d) = 1
3d+ 1

(
4d
d

)
.

Similarly, the number Nbc(1, d) of signatures with only one meeting point
can be obtained by induction. Indeed, the two intersecting monochromatic lines
create a codimension 1 point which splits the diagram into two smaller bi-regular
diagrams of respective degrees a and d− a.

(5) Nbc(1, d) = 2d
d−1∑
a=1

Nbc(0, a)Nbc(0, d− a), d ≥ 3,

verify

(6) Nbc(1, d) = 1d≥24
(

4d
d− 2

)
.

113
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Until now this sequence was not classified in the Sloane’s OEIS Encyclopedia of
Integral Sequences. The number of this sequence is A283049.

Inductive methods present difficulties for higher codimension than 1. So, we
investigate other methods.

1.2. Perfect matching method. A meeting point is characterized by an
X-ing number which takes the values:

(1) 1 if the monochromatic intersections are of valency 4
(2) X if the valency of the meeting point is 2X,X > 2.
The X-ing number of a diagrams is the sum of the X-ing numbers of each

meeting point, X = X1 + · · ·+Xk for k meeting points.

Example 8.1. For X = 3, let k be the number of I-monochromatic crossings
and m the number of R-monochromatic crossings. We have the following cases:

• k = 3,m = 0
• k = 2,m = 1
• k = 1,m = 2
• k = 0,m = 3

For X-ing numbers 0,1,2,3, the perfect matching method is effective to solve
the counting problem. However, for X-ing number greater than 3 the perfect
matching method fails.

Remark 8.1. The number of possible signaturesNbc(X, d) whereX = {0, 1, 2, 3}
can be solved by Hall’s Marriage perfect matching theorem.

Let d ≥ 0 be the degree of the diagram and let the 4d vertices on the circle
be indexed [0, ..., 4d − 1]. One matches the even vertices together and the odd
vertices together, under the constraint that the number of intersection points of
curves of opposite color is d and the maximal number of monochromatic inter-
section points (meeting) is 3 for one color. A matching is drawn as a diagonal
in the diagram. We can consider the numeration of the 4d vertices as d sets of
four vertices on the disk. Each set is made of two starting vertices (one red and
one blue) and two incoming vertices (one red, one blue). In counter-clockwise
orientation we have:

• the set 4k + 0 is the blue incoming vertex for the set k,
• the set 4k + 1 is the red starting vertex for the set k,
• the set 4k + 2 is the blue starting vertex for the set k,
• the set 4k + 3 is the red incoming vertex for the set k.

2. Counting diagrams
The two next sections are devoted to counting of the diagrams using different

methods.
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X�d 0 1 2 3 4 5 6 7 8 9

0 1 1 4 22 140 969 7 084 53 820 420 732 3 362 260

1 0 4 48 480 4 560 42 504 393 120 3 624 768 33 390 720

2 0 30 608 8 740 109 296 1 269 450 14 096 320 151 927 776

3 0 4 344 8 760 157 504 2 388 204 32 737 984

Table 1. Number of bi-chromatic diagrams of degree d and X ≤ 3.

Firstly, we focus on computer algorithms which allow to draw diagrams.
these are based on combinatorial matching, merging and superposition of di-
agrams. This approach is limited to lower degrees than 9. Indeed for d = 7 the
number of signatures is equal to 8 780 632 and taking into account rotational
symmetries and colors, we obtain 397 366 diagrams.

Secondly we investigate an analytic-combinatorial method which enables a
general counting of the number of diagrams.

2.1. Drawing diagrams. We call a monochromatic diagram the diagram
where only the blue (resp. the red) diagonals are considered. LetW be the space
of monochromatic diagrams and Wd be the set of monochromatic diagrams of
degree d (i.e. with 2d terminal vertices). Bi-chromatic diagrams are obtained
from a superposition of two monochromatic red and blue diagrams.

Let us introduce two operations on the diagrams. The merging and the con-
nected sum (called also union).

• Connected sum. The connected sum of two monochromatic diagrams is
given by the binary operation ⊗ defined by Wn ×Wm → Wn ⊗Wm ⊂
Wn+m.The neutral element ε is the empty diagram. The connected sum is
given by cutting open diagram 1 and diagram 2 at an arbitrary point and
then connecting the two circles such that the orientations on the curves
match.

0
3
⊗1

2 −→ −→

1
0
⊗1

2 −→ −→

• Merging operation. The merging concerns only monochromatic diagrams
with crossings and is given by the binary operation Cn×Cm → Cn�Cm ⊂
Cn+m−1. The neutral element η is the diagram with no crossings. The
merging operation of Cn with Cm consists in cutting open the two discs
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around Cn and Cm at two points on either sides of a chosen edge a for
Cn and b for Cm.These two edges fuse together and the two points on
either sides of the fused edges are glued.

Remark 8.2. These operations are associative but not uniquely defined.

Let us now sketch algorithms to the draw diagrams.
2.1.1. Merging of monochromatic trees.
(1) We define a dictionary of planar trees with meeting points for a fixed

color.
• a diagram with one single curve corresponding to a degree 1 diagram

of X-ing number 0.
• a four branched tree corresponding to a degree 2 diagram of X-ing

number 1
• 2k-branched tree for k ≥ 3 corresponding to a degree k diagram of

X-ing number k
For the sake of brevity, k-star stands for 2k-branched tree.

(2) We define the merging operation on the trees T1, T2 (defined in the alge-
bra chapter) in order to obtain a new tree T .

Let T1 and T2 be two trees in a dictionary. The merging of T1 with T2
consists in:
• choosing one leaf f1 of neighborhood v1 in T1
• choosing a leaf f2 of neighborhood v2 in T2
• connecting T1 to T2 by suppressing f1 and f2 and replacing the edges

(f1, v1) et (f2, v2) by the edge (v1, v2).
. If T1 is a degree d1 tree, of X-ing number X1, and T2 is a

degree d2 tree of X-ing number X2 then the new tree T generated
has a degree d = (d1 + d2 − 1) and X-ing number X = (X1 +X2).

(3) Now, we verify if the new tree is in the dictionary or not.
. If the representative of the class T is not in the dictionary then

it is added to the dictionary.
(4) Iterating this procedure, generates all the trees of finite degree d and

X-ing number.

2.1.2. Connected sum: from trees to forests. One may combine all the trees
to generate forests. Therefore it is necessary to define a dictionary of forests. To
obtain forests from trees the following steps must be fulfilled.

(1) Define a dictionary of forests.
(2) Obtain new forests from old, using the connected sum of a tree and a

forest. More precisely, we combine a tree T1 and a forest F2, placing the
leaves of a rotation of T1 on the sector of the circle situated between two
leaves of F2.

(3) Check if the forest is in the dictionary:
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. If the representative of the new forest is not in the forest dic-
tionary, then it has to be added.

Remark 8.3. Initially the forest dictionary is the final dictionary of trees.

2.2. Algorithm for the generation of monochromatic diagrams. The
connected sum and merging operations have been defined above, we can now
proceed to the generation of monochromatic diagrams, necessary for the bi-
colored diagrams. As in the previous chapters, we consider on the boundary
of the disc the 2d vertices of our graph. Take d be packages of 0 and 1 vertices,
numerated from 0 to d − 1 in counter-clockwise orientation. Each package is
formed of a starting vertex 0 and of an incoming vertex 1 for the properly em-
bedded oriented curves in the disk. For a given package, the incoming vertex
follows immediately the starting vertex, in counter-clockwise orientation.

Let M [d][X] be the set of monochromatic diagrams of degree d and X-ing
number.

Two binary operations on the diagrams are allowed, as was describes previ-
ously: the union (connected sum) and the merging.

Remark 8.4. The set M [d][X] of chord diagrams of degree d > 0 and X-ing
number X > 0 is obtained recursively by:

• all the unions (connected sums) of the diagrams M [d−1][X] with a 1-star
if d > 0.
• all the merges of diagrams of M [d− 1][X− 1] with the 2-star, if d > 0 and
X > 0.
• all the merges of diagrams if M [d− k+ 1][X − k] with the k-stars (k ≥ 3),
if d− k + 1 ≥ 0 and X − k ≥ 0.

2.3. Algorithm for bi-colored forests. In this section a guideline for the
computer program is given along with the pseudo-codes, generating the signa-
tures.

2.3.1. Useful monochromatic diagrams. In this subsection we introduce the
Boolean matrix useful[0 . . . dMax][0 . . . XMax] where useful[d][X] indicates if it
is necessary to construct M [d][X] in order to construct M [dmax][Xmax]. This tool
avoids the generation of un useful diagrams when a particular class of monochro-
matic diagrams is required.

In order to minimize complexity in time (and space), we introduce a new
matrix, instead of M [d][X], which takes into account the set of equivalence
classes of the signatures in M [d][X] and the order of the rotation group leav-
ing the representative of the diagram invariant. This new matrix is denoted by
K1[0 . . . dMax][0 . . . XMax].

The elements of K1[d][X] are all the couples (r, s) where r is a canonical rep-
resentative of an equivalence class in M [d][X] and s is the order of the rotation
group, leaving r invariant.
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Initially only K1[d = 0][X = 0] which contains the 0-star (the empty diagram)
is known.

One may remark that the sets K1[d][X] for which useful[d][X] is not satisfied
are empty.

For instance, for the generation of diagrams of degree 8 and X-ing number,
K1[8][8], it is necessary to compute some K1[d][X] for smaller co-dimensions and
degrees. Initially, the boolean matrix of d lines and X arrays is of the following
type:

If one needs the K1[d][X], this implies that we will need also K1[d − 1][X],
K1[d− 1][X − 1] K1[d− 2][X − 3].

To generate the bi-colored graphs for fixed degree and X-ing number (X, d),
one needs all the monochromatic classes (0, d), (1, d), . . . , (X, d). The next step is
to combine all the superpositions of both monochromatic diagramsgR,gI where
gR has degree and X-ing number (XR, d) and gI has degree and X-ing number
(XI , d). The superposition of the diagrams gives a degree d cell of X-ing number
X = XR +XI .

If sR is the size of the equivalence class gR (order of the rotation group on
the diagram) and sI is the size of the class gI , one combines the s = min(sR, sI)
rotations when gR is superposed with gI .

Below, we give two sub-programs to fill in the matrix K1[][]. The first sub-
program concerns the useful merges and the second sub-program concerns the
useful unions (connected sums).

Generation of all the useful merges of (r, s) with a k-star x
Algorithm 1: Algorithm useful merge

To generate all the useful merges of (r, s) with a k-star x:
Let X ′ = X − number(r) +X − number(x)
Let d′ = degree(r) + degree(x)− 1.
if not useful[d′][X ′] then

continue
for all the points p from 0 to s− 1 do

Merging of r (in p) with x (in 0) defining (r′, s′)
if (r′, s′) is already in K1[d′][X ′] then

continue
else

Add (r′, s′) in K1[d′][X ′].

To generate the useful unions of the couples (r, s) with the 1-star x:
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Algorithm 2: Algorithm
Add (r = the 0-star, s = 1) in K1[0][0].
for d from 0 to dmax − 1: do

for X from 0 to imax: do
for all (r, s) in K[d][X]: do

Generate all the useful merges of (r, s) with all the k-stars.
Generate all the useful unions of (r, s) with the 1-star.
Remark 8.5. One may eventually suppress (r, s) from K[d][X] if
d! = dmax or X! = Xmax.

End of the loop for (r, s)
End of the loop for X

End of the loop d.

One can easily compute the Boolean matrix useful[0, . . . , dMax][0, . . . , XMax],
where useful[d][X] indicates by the following procedure in the pseudo-codes.
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An example of the generated diagrams can be found in the appendix A using
this computer program.

2.4. Numerical results. By the method developed above we generated the
diagrams and numerical results are placed in the tabular below. Firstly is given
the table for monochromatic diagrams, see Table 2 and secondly is given the
number of signatures, see Table 3 and table 4. Nmc(X, d) is the number of
monochromatic diagrams of degree d and X-ing number. The results, up to
d = 11, on the number of diagrams is given in table 2. Let us notice that the
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Nmc(0, d) Catalan numbers (sequence A002694 in the Sloane’s OEIS Encyclope-
dia)

Nmc(0, d) = 1
d+ 1

(
2d
d

)
= (2d)!
d!(d+ 1)! ,

=
∑

0≤j≤d
Nmc(0, j)Nmc(0, d− j), d ≥ 2, Nmc(0, 0) = Nmc(0, 1) = 1.

The other sequences are now on the on line Integer Sequence Encyclopedia.

X�d 0 1 2 3 4 5 6 7 8 9 10 11

0 1 1 2 5 14 42 132 429 1 430 4 862 16 796 58 786

1 0 1 6 28 120 495 2 002 8 008 31 824 125 970 497 420

2 0 3 28 180 990 5 005 24 024 111 384 503 880 2 238 390

3 0 1 20 195 1 430 9 009 51 688 278 460 1 434 120 7 141 530

4 0 9 155 1584 12 689 87 360 548 352 3 217 080 17 949 756

5 0 66 1 209 13 377 115 920 866 592 5 864 388 36 933 435

6 0 521 9 814 116 248 1 082 628 8 677 395 62 723 199

7 0 4 516 84 048 1 043 307 10 299 330 87 597 125

8 1 071 40 869 749 835 9 629 960 99 658 020

9 35 11 280 377 152 6 875 225 90 808 795

10 0 952 115 830 3 540 620 64 354 895

11 0 15 732 1 187 300 33 810 855

12 285 211 400 12 170 004

13 0 10 395 2 583 889

14 0 220 110

15 2 530

16 0

Table 2. Nmc(X, d) number of monochromatic diagrams of degree d with X-ing
number X.

2.4.1. Bi-chromatic. Nbc(X, d) is the number of bi-chromatic diagrams of de-
gree d and X-ing number X. The results on the number of quasi-cells is given
up to d = 9 in table 3.

The numbersNbc(c, d) of bi-chromatic diagrams of degree d and of co-dimension
c using the definition of codimension from chapter 2 is given by table 4. The last
line gives the Euler-Poincaré characteristic number, which is the alternate sum
of the cardinalities of the Nbc(c, d) for fixed d > 0. Notice that the co-dimension
number is c ≤ 2d− 3.

3. Counting diagrams of any degree d
3.1. Canonical splitting. The previous approach gives a visual realization

of signatures. However, this method to count diagrams is limited by the space
and time of computation. To count diagrams of any degree d and co-dimension
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X�d 0 1 2 3 4 5 6 7 8 9

0 1 1 4 22 140 969 7 084 53 820 420 732 3 362 260

1 0 0 4 48 480 4 560 42 504 393 120 3 624 768 33 390 720

2 0 0 30 608 8 740 109 296 1 269 450 14 096 320 151 927 776

3 0 4 344 8 760 157 504 2 388 204 32 737 984 419 969 088

4 0 84 4925 139 896 2 906 442 50 651 520 788 773 293

5 0 1404 77 376 2 379 048 54 885 376 1 063 824 300

6 50 23 216 1 279 026 42 051 904 1 054 350 990

7 0 1 980 399 452 21 996 336 764 136 072

8 0 51 870 7 140 924 391 047 426

9 840 1 168 480 131 199 712

10 0 49 200 24 819 480

11 0 1 759 500

12 16 215

13 0

Nbc(d) 0 1 8 104 1 656 29 408 568 856 8 780 632 226 748 766 4 433 855 265

Table 3. Number Nbc(X, d) of bi-chromatic diagrams of degree d and X-ing
number X

c�d 0 1 2 3 4 5 6 7 8 9

0 0 1 4 22 140 969 7 084 53 820 420 732 3 362 260

1 0 4 48 480 4 560 42 504 393 120 3 624 768 33 390 720

2 0 30 608 8 740 109 296 1 269 450 14 096 320 151 927 776

3 4 344 8 760 157 504 2 388 204 32 737 984 419 969 088

4 0 80 4 845 138 792 2 893 442 50 507 680 787 265 325

5 4 1 380 75 600 2 340 744 54 275 296 1 055 436 228

6 0 150 24 016 1 258 362 41 238 464 1 036 993 650

7 4 3 816 430 052 21 941 488 750 708 252

8 0 240 85 316 7 906 016 396255 366

9 4 8 512 1 815 704 148 591 440

10 0 350 242 080 37 896 876

11 4 16 528 6 163 560

12 0 480 5 865 533

13 4 29 124

14 0 630

15 4

16 0

N(d) 0 1 8 104 1 656 29 408 568 856 8 780 632 226 748 766 4 433 855 265

Euler 0 1 0 0 0 0 0 0 0 0

Table 4. Number Nbc(c, d) of cells of degree d and co-dimension c.

c, as defined in chapter 2, we use a method based upon combinatorial generating
functions, developed in [19].
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From the previous sections, it appears that an important combinatorial notion
is the splitting of signatures. Every bi-regular signature has one unique splitting,
somehow non bi-regular signatures σ may have several splittings, as illustrated
in Figure 1. A natural way to associate a non bi-regular signature to a unique

Figure 1. Two splittings of a degree 2 signature, with one meeting point

bi-regular one is to define a canonical splitting.

Definition 8.1. We call canonical splitting a splitting for which the connected
components in the disk D are oriented by theorem 2.3

Lemma 8.1. Let σ be a signature; D be the unit disk, and let C be a connected
component of D \ σ. Then there exists a (unique) integer k ∈ Z/4Z such that the
border ∂C ∩ ∂D is a non-empty union of arcs of circles of the form [Pa, Pa+1] with
a ≡ k (mod 4). The integer k is called the index of C.

Proof. First, since σ is cycle-free, it follows that ∂C∩∂D is non-empty. Hence,
we write it as a disjoint union [Pa1 , Pa1+1]∪ . . .∪ [Pai , Pai+1] of arcs of circles, with
a1 < a2 < . . . < ai (and P4d = P0). If i ≥ 2, let L be the fragment of ∂C that
joins Pa1+1 to Pa2 . The line L splits the disk D into two parts: one part D1 (which
excludes the line L) that contains C and one part D2 (which contains L) that
does not. Let S be a splitting of σ, and let S ′ be the collection of those lines
of S that intersect the area D2. By construction, no line of S may go inside the
interior of C ′, and therefore all lines in S ′ belong entirely to the area D2. If the
collection S ′ contains ` crossing points, then it contains exactly ` odd and ` even
lines, which join 4` points on ∂D overall. This means that the set of endpoints
{Pa1+1, . . . , Pa2} has cardinality 4`, and therefore that a2 ≡ a1 (mod 4). This
completes the proof. �

3.2. Counting signatures. Canonical splittings of signatures pave the way
to recursive decompositions of signatures, which will then allow enumerating
them. However, taking into account meeting points forces us to introduce auxil-
iary combinatorial objects: the partial signatures.

Definition 8.2. Let d be a non-negative integer. Let P0, P1, . . . , P4d be points
lying in the counter-clockwise order on the unit circle ∂D. In addition, let us
consider 2d+ 1 piecewise-affine lines lying inside the unit disk D, which we divide
between d odd (R), d even (I) lines and one base line, so that:

• every point Pa belongs to one unique line, and every line touches ∂D at its
endpoints only;
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• the base line joins the points P−1 and P4d;
• every odd (respectively, even) line joins points Pa and Pb such that {a, b} ≡
{0, 2} (mod 4) (respectively, {a, b} ≡ {1, 3} (mod 4));
• every line touches one unique line of the opposite parity, at a point that
we call crossing point, and it must cross that line at that point;
• two lines of the same parity may touch each other at some point, which we
call meeting point, and they may not cross each other at that point;
• the base line may touch even lines only, and may not cross them;
• the union of these 2d+ 1 lines is cycle-free.

The union of these 2d + 1 lines is called a partial signature of degree d, and the
collection of these 2d + 1 lines is called a splitting of the partial signature. If,
furthermore, the points P−1 and P4d−1 belong to the same connected component of
the partial signature, then the partial signature is said to be widespread.

Like in the case of signature, the co-dimension of a partial signature is the
sum of the co-dimension of its meeting points, and two partial signature σ and
σ′ are equivalent if some homeomorphism of the unit disk maps σ to σ′ and maps
each point Pa to itself.

We denote by N1(c, d) (respectively, N2(c, d) and N3(c, d)) the set of signa-
tures (respectively, partial signature and widespread partial signature) with co-
dimension c and degree d.

By extension, for i ∈ {1, 2, 3}, we also denote by Ni the set
⋃
c,d≥0 Ni(c, d) and

by Ni the associated bivariate generating function, defined by:

Ni(x, y) =
∑
c,d≥0

#Ni(c, d)xcyd.

Let us notice that #N1(c, d) = Nbc(c, d), introduced above.
We investigate now recursive decompositions of (standard, partial) signa-

tures, which will give rise to equations involving the generating functions Ni.

Lemma 8.2. We have N1 = 1 + yN 4
2 . Furthermore, we can associate unam-

biguously every partial signature with a splitting, which we call canonical splitting
of this signature.

Proof. We define a bijection ϕ : N1 7→ {∅} ∪N4
2, such that ϕ(σ) = ∅ if σ has

degree 0, and such that ϕ(σ) = (σ0, σ1, σ2, σ3) where deg σ = ∑3
i=0 deg σi + 1 and

codim(σ) = ∑3
i=0 codim(σi) if σ has degree at least 1.

First, there exists one unique signature σ of degree 0, hence we safely associate
it with ∅. Then, if σ has degree at least 1, let S be the canonical splitting of σ.
Let L1 be the line of S with endpoint P0, let L2 be the line of S that crosses L1,
and let χ be the crossing point at which L1 and L2 cross each other.

Observe that L1 has two endpoints Pa0 and Pa2 , and L2 has two endpoints
Pa1 and Pa3 , with and ak ≡ k (mod 4) for all k. It is straightforward that 0 =
a0 < a1 < a2 < a3 < a4 = 4d. Furthermore, the set D \ (L1 ∪ L2) is formed of
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4 connected components C0, . . . , C3, where Ck contains the arc of circle [Pak , Pak+1 ]
on its border.

For 0 ≤ k ≤ 3, we do the following: we delete all the points Px that do not
belong to the arc of circle [Pak , Pak+1 ] then we renumber each of the points Px (with
ak ≤ x ≤ ak+1) to Px−ak−1. Doing so, we observe that σ∩Ck is a partial signature,
which we denote by σk. Hence, we define ϕ(σ) as the tuple (σ0, σ1, σ2, σ3).

By construction, every crossing point (beside the point χ) and every meeting
point of σ belongs to one unique partial signature σk. Furthermore, the mapping
ϕ is clearly bijective. This proves the equality N1 = 1 + yN 4

2 .
Furthermore, let B be a partial decomposition and let B∅ be the unique partial

decomposition of degree 0. The canonical splitting of ϕ−1(B,B∅,B∅,B∅) induces a
splitting of B, which is the above-mentioned canonical splitting of B. �

Lemma 8.3. We have N2 = N1N3.

Proof. We define a bijection ϕ : N2 7→ N3 × N1, such that ϕ(σ) = (σ0, σ1)
where deg σ = deg σ0 + deg σ1 and codim(σ) = codim(σ0) + codim(σ1) for all
partial signature σ.

Let σ be a partial signature of degree d and let C be the connected component
of σ that contains the point P−1. Let a be the greatest element of {−1, . . . , 4d−1}
such that Pa ∈ C. Furthermore, let D be the unique connected component of D\C
whose border contains the arc of circle [Pa, P4d].

First, deleting the points Px that do not belong to the arc of circle [a+1, 4d−1]
and renaming every point Px (with a < x < 4d to Px−a−1), we observe that σ ∩D
is a signature (whence a ≡ 3 (mod 4)). Second, deleting the points Px with
a < x < 4d and renaming the point P4d to Pa+1, we also observe that σ \ D is a
widespread partial signature. Hence, we define ϕ(σ) as the pair (σ \ D, σ ∩ D).

By construction, every crossing point or meeting point of σ belongs to either
σ \ D or σ ∩ D, and ϕ is clearly bijective. Lemma 8.3 follows. �

Lemma 8.4. We have N2 = N1 + ∑
k≥1

x2k−1ykN 4k+1
2 N k

3 .

Proof. Before defining suitable bijections, we first partition the set N2 as
follows. Let σ be a partial signature and let L be the base line of σ. If L contains
no meeting point, then we say that σ has type 0. Otherwise, let χ be the first
meeting point of L (while going from P−1 to P4d): if k ≥ 1 even lines of σ meet
L at that point, then we say that σ has type k. Now, for all k ≥ 0, we denote by
N2,k the set of partial signatures of type k.

We first define a bijection ϕ0 : N2,0 7→ N1 as follows: if σ has type 0 and degree
d, then ϕ(σ) is the signature obtained by deleting the points P−1, P4d and the base
line of σ. The mapping ϕ1 is clearly bijective, and leaves both the degree and the
co-dimension unchanged.
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Then, for all k ≥ 1, we define a bijection ϕk : N2,k 7→ N2 × (N4
2 ×N3)k such

that ϕ(σ) = (σi)0≤i≤5k, where

deg σ =
5k∑
i=0

deg σi + k and codim(σ) =
5k∑
i=0

codim(σi) + k + 1k≥2.(7)

Let σ be a partial signature of type k and degree d, let S be the canonical
splitting of σ; hereafter we consider exclusively lines in S. Let Le1, . . . , Lek be the
even lines that touch L at the meeting point χ; let Lo1, . . . , Lok be the odd lines that
cross respectively Le1, . . . , Lek. For i ∈ {1, . . . , k}, let Pa0,i < Pa2,i be the endpoints
of Lei and let Pa1,i < Pa3,i be the endpoints of Loi . In addition, let x be the
greatest integer such that Pa3,i and Pa4,i belong to the same connected component
of σ \ {χ}: we set a4,i = x + 1/2 and we add a new point Px on the open arc of
circle (Pa4,i , Pa4,i+1).

Assuming that a0,1 < a0,2 < . . . < a0,k, one checks easily that

0 ≤ a0,1 < a1,1 < a2,1 < a3,1 < a4,1 < a0,2 < . . . < a4,k < 4d.

Then, let Lzi be a (new) piecewise-affine line with endpoints X and Pa4,i and
that lies in D \ σ. The set L∪⋃ki=1(Lei ∪Loi ∪Lzi ) splits the unit disk D into 5k+ 2
connected components:

• for all 0 ≤ u ≤ 4 and 1 ≤ i ≤ k, one component Cu,i whose border contains
the arc of circle [Pau,i , Pau+1,i ] (with the convention that a5,i = a0,i+1 when
i < k, and a5,k = 4d);
• one component C0 whose border contains the arc of circle [P−1, Pa0,1 ];
• one component C−1 whose border contains the arc of circle [P4d, P−1].

Let C 6= C−1 be one such component. Up to deleting the points Px (where x
is an integer or a half-integer of the form a4,i) that do not belong to ∂C and to
renumbering the other points Px from P−1 to P` (where there are `+ 2 points Px
on ∂C), we observe that (σ ∪ ⋃ki=1 L

z
i ) ∩ C is a partial signature; and is even a

widespread partial signature if C = C3,i for some i. Hence, we denote this partial
signature by σu,i if C = Cu,i, or by σ0 if C = C0.

Hence, we set ϕk(σ) = (σ0, σ0,1, σ1,1, σ2,1, σ3,1, σ4,1, σ0,2, . . . , σ4,k). It is easy to
check that ϕk is bijective. Furthermore, every crossing point of σ besides those
between lines Lei and Loi belongs to some σu,i (or to σ0) and every meeting point
of σ besides χ belongs to some σu,i (or to C0) as well, with the same co-dimension
number. This proves that ϕk satisfies (7) and lemma 8.4 follows. �

The following result follows immediately.

Theorem 8.5. The bivariate generating series N1(x, y) and N2(x, y) are solu-
tions of:

N1 = 1 + yN 4
2 and (N2 −N1)(N1 − x2yN 5

2 ) = xyN 6
2 .

In particular, N1 is algebraic, and therefore holonomic.
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Proof. Lemmas 8.4 state explicitly the equality

N2 = N1 +
∑
k≥1

x2k−1ykN 4k+1
2 N k

3 = N1 + xyN 5
2N3

1− x2yN 4
2N3

.

Lemmas 8.3 state N2 = N1v3 then
(N2 −N1)(N1 − x2yN 5

2 ) = xyN 6
2

which completes the proof. �

From lemma 8.2 we have N1 = 1 + yN 4
2 , which allows to rewrite the second

equality of theorem 8.5

(N2 − 1− yN 4
2 )(1 + yN 4

2 − x2yN 5
2 ) = xyN 6

2 .

Remark 8.6. The sum of the signatures of co-dimension k weighted by (−1)k
is equivalent to look at the previous equation for the value x = −1, that is

(N2 − 1− yN 4
2 )(1 + yN 4

2 − yN 5
2 ) + yN 6

2 = 0.
which factorize as

(N2 − 1)(1 + yN 4
2 )2 = 0.

because 1 + yN 4
2 is a sequence with strictly positive coefficients, we have N2 = 1,

then
N1 = 1 + yN 4

2 = 1 + y.

It follows that the alternate sum, with respect to the co-dimensions, of the number
of signatures of degree d takes the value 0 for any d > 2.

From the formulas for generating functions of theorem 8.5 we can use com-
puter programs to compute the number of cells for any d and co-dimension c.
This program is polynomial in time, see appendix B for the first values of d.

4. Counting simple signatures

Theorem 8.5 provides us with polynomial equations, defining implicitly the
series N1 and N2. However, the size of these equations (including their degree)
do not allow extracting simple general formulas for the coefficients #N1(X, d).

Therefore, we investigate more closely a restricted class of signatures, which
we will subsequently be able to count efficiently.

Definition 8.3. A signature σ is said to be simple if every connected compo-
nent of σ contains at most one meeting point, and if exactly two lines touch each
other at that point.

We denote by #N4(c, d) the number of equivalence classes of simple signa-
tures of co-dimension c and degree d, and let N4(x, y) = ∑

c,d≥0 #N4(c, d)xcyd be
the associated bivariate generating function.



128 8. COUNTING DIAGRAMS

Lemma 8.6. We have N4 = 1 + yN 4
4 + 4xy2N 8

4 .

Proof. We prove the statement using a bijective proof. Let σ be a signature
of degree d ≥ 1, with canonical splitting S. Let Le be the even line (in S) with
endpoint P0, and let Lo be the odd line that crosses Le. We say that σ has type 1 if
the union Le∪Lo contains no meeting point of σ, and that σ has type 2 otherwise.
For k = 1, 2, let N4,k be the set of signatures of type k.

We first define a bijection ϕ1 : N4,1 7→ N4
4 such that ϕ1(σ) = (σi)0≤i≤3, where

deg σ = ∑3
i=0 deg σi + 1 and codim(σ) = ∑3

i=0 codim(σi).
This bijection is very similar to that of Lemma 8.2: the set D \ (Le ∪ Lo) is

formed of 4 connected components C0, . . . , C3 and, for i = 0, 1, 2, 3, up to deleting
the points Px that do not belong to ∂Ci and to renaming those that belong to ∂Ci,
we observe that σ ∩ Ci is a simple signature. Denoting this signature by σi, we set
ϕ1(σ) = (σi)0≤i≤3. Observing that ϕ1 is bijective and satisfies the above equalities
(involving co-dimensions and degrees) is then straightforward.

In the same vein, we define another bijection ϕ2 : N4,2 7→ {0, 1, 2, 3}×N8
4 such

that ϕ2(σ) = (k, (σi)0≤i≤7), where k ∈ {0, 1, 2, 3}, deg σ = ∑7
i=0 deg σi + 2 and

codim(σ) = ∑7
i=0 codim(σi) + 1.

Let X be the point at which Le crosses Lo. This point splits both Le and
Lo into four half-lines L0, . . . , L3, with respective endpoints Pa0 , Pa1 , Pa2 and Pa3

(with 0 = a0 < a1 < a2 < a3 < 4d and ai ≡ i (mod 4)). One of these half-lines
(which we denote Lu in the sequel) contains a meeting point Y , at which it touches
another line L′0 of σ. The line L′0 itself is crossed by a line L′1, and none of L′0 or L′1
contains a meeting point different from Y . Hence, the set D\ (Le∪Lo∪L′0∪L′1) is
formed of 8 connected components C0, . . . , C7. Up to reordering these components,
we assume that, for all i, the border ∂Ci ∩ ∂D is an arc of circle [Pai , Pai+1 ], with
0 = a0 < a1 < . . . < a9 = 4d.

Furthermore, we can again check that, up to deleting and renaming points
Px, σ ∩ Ci is a simple signature for all i, and we denote it by σi. Hence, we set
ϕ2(σ) = (u, (σi)0≤i≤7), where we recall that Lu was the line to which belongs the
point Y . Again, ϕ2 is bijective and satisfies the above requirement about degrees
and co-dimensions.

Observing that the simple signature of degree 0 is the unique simple signature
that does not belong to N4,1 ∪N4,2 completes the proof. �

Theorem 8.7. For all integers c, d ≥ 0, we have

#N4(c, d) == 1d≥2c
4c

c+ 3d+ 1

(
4d

c, d− 2c, c+ 3d

)
.

In particular, for a fixed value of c and when d→ +∞, we have

#N4(c, d)
√

2
27π4e3c4433d

dc−3/2

c! .



4. COUNTING SIMPLE SIGNATURES 129

Proof. Consider the function G : (u, z) 7→ N4((2z)−2u, z). Setting u = (2z)2t,
we have 1−G+ zG4−uG8 = 0. Consider also the bivariate functions h : (u, z) 7→
1 + u + z, gu : (u, z) 7→ h(u, z)8 and gz : (u, z) 7→ h(u, z)4, and let Gu and Gz be
the solutions of the equations

Gu(u, z) = ugu(Gu(u, z), Gz(u, z)) and Gz(u, z) = zgz(Gu(u, z), Gz(u, z)).
Note that the function G : (u, z) 7→ h(Gu(u, z), Gz(u, z)) is solution of the equation

G(u, z) = 1 +Gu(u, z) +Gz(u, z) = 1 + uG(u, z)8 + zG(u, z)4,

i.e. that G = G.
The bivariate Lagrange inversion formula states, for all integers k, ` ≥ 0, that

[uk, z`]h(Gu, Gz) = 1
k`

[uk−1, z`−1]
(
(∂uh)(∂zgku)g`z + (∂zh)(∂ug`z)gku + (∂u∂zh)gkug`z

)
= 1
k`

[uk−1, z`−1](8k + 4`)(1 + u+ z)8k+4`−1

= 8k + 4`
k`

(
8k + 4`− 1

k − 1, `− 1, 7k + 3`+ 1

)

= 1
7k + 3`+ 1

(
8k + 4`

k, `, 7k + 3`

)
.

It follows that
N4(t, z) = G(4z2t, z)

=
∑
k,`≥0

1
7k + 3`+ 1

(
8k + 4`

k, `, 7k + 3`

)
(4z2t)kz`

=
∑
k,m≥0

1m≥2k
4k

k + 3m+ 1

(
4m

k,m− 2k, k + 3m

)
tkzm

This proves the equality

#N4(c, d) = 1d≥2c
4c

c+ 3d+ 1

(
4d

c, d− 2c, c+ 3d

)
.

Using the Stirling formula when d→ +∞ then provides the asymptotic estimation
of Theorem 8.8, where

(
4d

c,d−2c,c+3d

)
= (4d)!

c!(d−2c)!(c+3d)! stands for the multinomial
coefficient. �

Since all signatures of co-dimension c ≤ 1 are simple, Theorem 8.8 follows
immediately.

Theorem 8.8. For all integers d ≥ 0, and co-dimension c = 0, 1 we have

#N1(0, d) = Nbc(0, d) = 1
4d+ 1

(
4d+ 1
d

)
and #N1(1, d) = Nbc(1, d) = 1d≥24

(
4d
d− 2

)
.
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The first part of the statement (the numbers #N1(0, d)) were already com-
puted in section 3 of [?]. We list the number of the new integer sequences
emerging from this work which are now on the online Sloane Data base, (OEIS):

• A002293 (Catalan Fuss)
• A283049 codimension 1
• A277877 codimension 2
• A283101 codimension 3
• A283102 codimension 4
• A283103 codimension 5.



APPENDIX A

Bichromatic diagrams of degree 4

Bichromatic diagrams of degree 4 and codim 0

• 140 diagrams, 11 classes, 3 sizes
• 1 class of size 4
• 3 classes of size 8
• 7 classes of size 16
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Bichromatic diagrams of degree 4 and codim 1

• 480 diagrams, 32 classes, 2 sizes
• 4 classes of size 8
• 28 classes of size 16
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Bichromatic diagrams of degree 4 and codim 2

• 608 diagrams, 40 classes, 2 sizes
• 4 classes of size 8
• 36 classes of size 16
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Bichromatic diagrams of degree 4 and codim 3

• 344 diagrams, 24 classes, 2 sizes
• 5 classes of size 8
• 19 classes of size 16
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Bichromatic diagrams of degree 4 and codim 4
• 80 diagrams, 6 classes,
• 5 classes of size 16
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Bichromatic diagrams of degree 4 and codim 5
• 4 diagrams,
• 1 class of size 4
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Computer program values - number of cells

d c Nbc(c, d)
1 0 1

2 0 4
2 1 4

3 0 22
3 1 48
3 2 30
3 3 4

4 0 969
4 1 480
4 2 608
4 3 344
4 4 80
4 5 4

5 0 969
5 1 4 560
5 2 8 740
5 3 8 760
5 4 4 845
5 5 1 380
5 6 150
5 7 4

6 0 7 084
6 1 42 504
6 2 109 296
6 3 157 504
6 4 138 792
6 5 75 600

d c Nbc(c, d)
6 6 24 016
6 7 3 816
6 8 240
6 9 4

7 0 53 820
7 1 393 120
7 2 1 269 450
7 3 2 388 204
7 4 2 893 442
7 5 2 340 744
7 6 1 258 362
7 7 430 052
7 8 85 316
7 9 8 512
7 10 350
7 11 4

8 0 420 732
8 1 3 624 768
8 2 14 096 320
8 3 32 737 984
8 4 50 507 680
8 5 54 275 296
8 6 41 238 464
8 7 21 941 488
8 8 7 906 016
8 9 1 815 704
8 10 242 080

d c Nbc(c, d)
8 11 16 528
8 12 480
8 13 4

9 0 3 362 260
9 1 33 390 720
9 2 151 927 776
9 3 419 969 088
9 4 787 265 325
9 5 1 055 436 228
9 6 1 036 993 650
9 7 750 708 252
9 8 396 255 366
9 9 148 591 440
9 10 37 896 876
9 11 6 163 560
9 12 5 865 533
9 13 29 124
9 14 630
9 15 4

10 0 27 343 888
10 1 307 618 740
10 2 1 603 346 160
10 3 5 141 235 840
10 4 11 345 154 600
10 5 18 230 184 752
10 6 21 792 863 120
10 7 20 126 905 552
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d c Nbc(c, d)
10 8 14 021 232 420
10 9 7 354 776 260
10 10 2 845 096 800
10 11 785 431 920
10 12 147 319 320
10 13 17 773 320
10 14 12 650 040
10 15 47 760
10 16 800
10 17 4

11 0 225 568 798
11 1 2 835 722 032
11 2 16 659 866 938
11 3 60 795 581 132
11 4 154 362 306 956
11 5 289 150 871 152
11 6 412 908 658 612
11 7 457 460 566 948
11 8 395 957 692 834
11 9 267 354 108 384
11 10 139 532 842 240
11 11 55 339 181 040
11 12 16 256 668 362
11 13 3 414 327 224
11 14 489 540 436
11 15 45 209 560
11 16 2 495 856
11 17 74 096
11 18 990
11 19 4

12 0 1 882 933 364
12 1 26 162 863 584
12 2 171 064 877 280
12 3 700 024 311 536
12 4 2 010 147 294 672
12 5 4 300 858 168 200
12 6 7 099 049 144 352
12 7 9 225 783 741 888

d c Nbc(c, d)
12 8 9 541 810 226 232
12 9 7 881 383 144 384
12 10 5 185 446 594 624
12 11 2 695 068 395 136
12 12 1 090 946 146 544
12 13 336 954 018 096
12 14 77 243 088 672
12 15 12 683 065 664
12 16 1 427 076 480
12 17 104 154 312
12 18 4 589 376
12 19 109 992
12 20 1 200
12 21 4

13 0 15 875 338 990
13 1 241 614 915 360
13 2 1 740 202 664 200
13 3 7 892 352 548 080
13 4 25 288 375 607 950
13 5 60 843 411 796 440
13 6 113 967 746 771 060
13 7 169 931 096 233 080
13 8 1 043 370 697 693 320
13 9 1 995 773 262 454 440
13 10 1 584 838 661 637 792
13 11 102 019 613 173 088
13 12 52 839 076 931 524
13 13 21 757 054 387 016
13 14 7 003 483 629 012
13 15 1 237 077 740 456
13 16 315 384 324 853
13 17 41 438 992 088
13 18 3 748 508 088
13 19 221 492 544
13 20 7 970 885
13 21 157 508
13 22 1 430
13 23 4
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Lego tower for d = 6

[
7,21
8,22

]| 8
22 | | 8

18 | [
9,19
10,20

] | 10
20 || .. |

| 22
5 | | 5

23 | [
7,21 9,19
8,22 11,17

] | 17
11 | | 11

17 |

| 9
23 |
| 20

6 |
| 8

18 |
| 21

11 |
[

5,23 7,21
6,24 8,22

] [
9,19 11,17
10,20 12,18

][
5,23
6,24

] [
5,23 7,21 9,19 11,17
6,24 8,22 10,20 12,18

] [
11,17
12,18

]
[

5,23 11,17
6,24 12,18

][
8,22
9,23

] [
10,20
11,21

]
| 24

6 | | 6
24 | [

8,22 10,20
9,23 11,21

] | 18
12 | | 12

18 |

| 10
24 |
| 21

7 |
| 9

19 |
| 22

12 |
[

6,4 8,22
7,1 9,23

] [
10,20 12,18
11,21 13,19

][
6,24
7,1

] [
6,24 8,22 10,20 12,18
7,1 9,23 11,21 13,19

] [
12,18
13,19

]
[

6,4 12,18
7,1 13,19

][
9,23
10,24

] [
11,21
11,22

]
| 71 | | 17 | [

9,23 11,21
10,24 12,22

] | 19
13 | | 13

19 |

| 11
1 |
| 22

8 |
| 10

20 |
| 23

13 |
[

7,14 9,23
8,2 10,24

] [
11,21 13,19
12,22 14,20

][
7,1
8,2

] [
7,1 9,23 11,21 13,19
8,2 10,24 12,22 14,20

] [
13,19
14,20

]
[

7,1 13,19
8,2 14,20

][
10,24
11,1

] [
12,22
13,23

]
| 82 | | 28 | [

10,24 12,22
11,1 13,23

] | 20
14 | | 14

20 |

| 12
2 |
| 23

9 |
| 11

21 |
| 24

14 |

[
8,2 10,24
9,3 11,1

] [
12,22 13,20
13,23 15,21

][
8,2
9,3

] [
8,2 10,24 12,22 13,20
9,3 11,1 13,23 15,21

] [
13,20
15,21

]
[

8,2 13,20
9,3 15,21

][
11,1
12,2

] [
13,23
14,24

]
| 93 | | 39 | [

11,1 13,23
12,2 14,24

] | 15
21 | | 21

15 |

| 13
3 |
| 24

10 |
| 12

22 |
| 1

15 |
[

9,3 10,24
10,4 12,2

] [
13,23 15,21
14,24 16,22

][
9,3
10,4

] [
9,3 11,1 13,23 15,21
10,4 12,2 14,24 16,22

] [
15,21
16,22

]
[

9,3 14,21
10,4 16,22

][
12,2
13,3

] [
14,24
15,1

]
| 10

4 | | 4
10 | [

12,2 14,24
13,3 15,25

] | 16
22 | | 22

16 |

| 14
4 |
| 1

11 |
| 13

23 |
| 2

16 |F 2
16

[
10,4 12,2
11,5 13,3

] [
14,24 16,22
15,25 17,23

][
10,4
11,5

] [
10,4 12,2 14,24 16,22
11,5 13,3 15,1 17,23

] [
16,22
17,23

]
[

10,4 16,22
11,5 17,23

]
| 11

5 | | 5
11 | | 23

17 | | 17
23 |
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13,3
14,4

] [
15,1
16,2

]
| 11

5 | | 5
11 | [

13,3 15,1
12,6 16,2

] | 23
17 | | 17

23 |

| 2
12 |
| 15

5 |
| 3

17 |
| 14

24 |
[

11,5 13,3
12,6 14,4

] [
15,1 17,23
16,2 18,24

][
11,5
12,6

] [
11,5 13,3 15,1 17,23
12,6 14,4 16,2 18,24

] [
17,23
18,24

]
[

11,5 17,23
12,6 18,24

][
14,4
15,5

] [
16,2
17,3

]
| 12

6 | | 6
12 | [

14,4 16,2
15,5 17,3

] | 18
12 | | 12

18 |

| 3
13 |
| 66 |

| 4
18 |
| 15

1 |
[

12,6 14,4
13,7 15,5

] [
16,2 18,24
17,3 19,1

][
12,6
13,7

] [
12,6 14,4 16,2 18,24
13,7 15,5 17,3 19,1

] [
18,24
19,1

]
[

12,6 18,24
13,7 19,1

][
15,5
16,6

] [
17,3
18,4

]
| 13

7 | | 7
13 | [

15,5 17,3
16,6 18,4

] | 19
1 | | 1

19 |

| 4
14 |
| 17

7 |
| 5

19 |
| 16

2 |
[

13,7 15,5
14,8 16,6

] [
17,3 19,1
18,4 20,2

][
13,7
14,8

] [
13,7 15,5 17,3 19,1
14,8 16,6 18,4 20,2

] [
19,1
20.2

]
[

13,7 19,1
14,8 20,2

][
16,6
17,7

] [
18,4
19,5

]

[
17,3
18,4

]

| 14
8 | | 8

14 | [
16,6 18,4
17,7 19,5

] | 20
2 | | 2

20 |

| 5
15 |
| 18

8 |
| 6

20 |
| 17

3 |

[
14,8 16,6
15,9 17,7

] [
18,4 20,2
19,5 21,3

][
14,8
15,9

] [
14,8 16,6 18,4 20,2
15,9 17,7 19,5 21,3

] [
20,2
21,3

]
[

14,8 20,2
15,9 21,3

][
17,7
18,8

] [
19,5
20,6

]
| 15

9 | | 9
15 | [

17,7 19,5
18,8 20,6

] | 21
3 | | 3

21 |

| 6
16 |
| 19

9 |
| 7

21 |
| 18

4 |
[

15,9 17,7
16,10 18,8

] [
19,5 21,3
20,6 22,4

][
15,9
16,10

] [
15,9 17,7 19,5 21,3
16,10 18,8 20,6 22,4

] [
21,3
22,4

]
[

15,9 21,3
16,6 22,4

][
18,8
19,9

] [
20,6
21,7

]
| 11

5 | | 5
11 | [

18,8 20,6
19,9 21,7

] | 22
16 | | 16

22 |

| 7
17 |
| 20

10 |
| 8

22 |
| 19

5 |
[

16,10 18,8
17,11 19,9

] [
20,6 22,4
21,7 23,5

][
16,10
17,11

] [
16,10 18,8 20,6 22,4
17,11 19,9 21,7 23,5

] [
22,4
23,5

]
[

16,10 22,4
17,11 23,5

]
| 17

11 | | 11
17 | | 25

5 | | 5
23 |



Bibliography

[1] N. A’Campo. Signatures of monic polynomials arXiv:1702.05885 [math.AG]
[2] V. J. Arnold. The cohomology ring of colored braids. Mat. Zametki 5 No 2 (1969), 227-231 (Russian), English

transl. in Trans. Moscow Math. Soc. 21, (1970), 30-52.
[3] V. J. Arnold. On some topological invariants of algebraic functions. Trudy Mosk. Matem. Obshch. 21, (1970),

27-46 (Russian), English transl. in Trans. Moscow Math. Soc. 21, (1970), 30-52.
[4] R. Baer. Isotopie von Kurven auf orientierbaren,geschlossenen Flächen und ihr Zusammenhang mit der

topologischen Deformation der Flächen. Journal für die reine und angewandte Mathematik, Berlin (1826),101-
116.

[5] R. Baer. Kurventypen auf Flächen. Journal für die reine und angewandte Mathematik, Berlin (1826), (231-
246).

[6] D. Bessis, F. Digne, J. Michel. Theory in braid groups and the Birman Ko Lee monoid , Springer, Pacific J.
Math 205 (2002) 287-309.

[7] J. Bétréma, A. Zvonkin. Plane trees and Shabat polynomials. Discret Mathematic 153, (1996), 47-58.
[8] J. S. Birman, K. H. Ko, S. J. Lee. A new approach to the and conjugacy problem in the braid groups.

Advances in Mathemarics bf 139, (1996), 322-353.
[9] H. Cartan. Seminaires E.N.S (1953-1954)).
[10] J. Cerf. Groupes d’automorphismes et groupes de difféomorphismes des variétés compactes de dimension 3.

Bulletin de la S.M.F. 87, (1959), 319-329.
[11] J. Cerf. Topologie de certains espaces de plongements. Bulletin de la S.M.F. 89, (1961), 227-380.
[12] F. Cohen, Cohomology of braid spaces, Bull. Amer. Math. Soc. 79 No 4 (1973), 763-766.
[13] N.C. Combe. Geometric classification of real ternary octahedral quartics. To appear in Discrete Computa-

tional Geometry, Springer (2018)
[14] N.C. Combe. Etude de la connexité des surfaces algébriques réelles. Editions Universitaires Européennes,

(2016) .
[15] N. C. Combe, Connected components of real CBn algebraic varieties. (to appear in Math. Semesterberichte,

2018), arXiv (2017):1701.03951v1 [math.AG].
[16] N.C. Combe. A new point of view on complex polynomials by Birman-Ko-Lee words (2017) (sumbitted)
[17] N.C. Combe. A new point of view on complex polynomials–B: splitting and incidence relations (2017) (sub-

mitted)
[18] N.C. Combe. A new point of view on complex polynomials–C: cohomology of braid groups (2017) (submitted)
[19] N. Combe V. Jugé. Counting bicolored configurations for complex polynomials . ArXiv (2017)
[20] N. Combe V. Jugé. A002293 (Catalan Fuss) On line Encyclopedia Integer Sequence, march 2017
[21] N. Combe V. Jugé A283049 codimension 1 On line Encyclopedia Integer Sequence, march 2017
[22] N. Combe V. Jugé A277877 codimension 2 On line Encyclopedia Integer Sequence, march 2017
[23] N. Combe V. Jugé A283101 codimension 3 On line Encyclopedia Integer Sequence, march 2017
[24] N. Combe V. Jugé A283102 codimension 4 On line Encyclopedia Integer Sequence, march 2017
[25] N. Combe V. Jugé A283103 codimension 5 On line Encyclopedia Integer Sequence, march 2017
[26] E. Čech. Théorie générale de l’homologie dans un espace quelconque. Fund. Math. 19, (1932), 149-183.
[27] C. De Concini, C. Procesi, M. Salvetti Arithmetic properties of the cohomology of braid groups, Topology,

Elsevier, Vol 40, Issue 4, Pages 739-751, (2001)
[28] P.J. Davis, Circulant Matrices, John Wiley and Sons, 1979.
[29] T. De Mazancourt The inverse of a Block-circulant matrix IEEE
[30] J. Earle, J. Eells. The diffeomorphism group of a compact Riemann surface. communicated by S. Smale,

(1966), 1-3,
[31] D. B. A. Epstein. Curves on 2-manifolds and isotopies. Acta Mathematica 115, (1967), 83-107,
[32] D. B. Fuks. Cohomologies of the group cos mod 2. Functional. Anal. i Prilozh. 4, No 2 (1970), 62-75 (Russian),

English transl. in Functional Anal. Appl. 4, (1970), 143-151.

141



142 BIBLIOGRAPHY

[33] V. V.Goryunov, Cohomology of the braid groups of the series C and D and some stratifications, Functional
Anal. i Prilozh. 12, No 2 (1978), 76-77 (Russian), English transl. in Functional Anal. Appl. 12, 1978, 139-140.

[34] E. Fadell, L. Neuwirth Configurations spaces Math Scand,10 (1962), 111-118.
[35] R. Fox, L. Neuwirth The braid groups Math Scand, 10 (1962), 119-126.
[36] R. Godement, Topologie Algébrique et Théorie des Faisceaux Heramnn, Paris. (1958)
[37] A. Grothendieck, Éléments de géométrie algébrique (rédigé avec la collaboration de Jean Dieudonné). Pub-

lications mathématiques de l’I.H.É.S. (1960-1967).
[38] A. Grothendieck, Sur quelques points d’algèbre homologique Tohoku Math. J. (1957), 119-221.
[39] A. Grothendieck. Esquisse d’un Programme. [archive] (1984). https://fr.wikipedia.org/wiki/Alexander

Grothendieck
[40] R. Gunning, H.Rossi, Analytic functions if Several complex variables Prentice-Hall, Paris. (1965)
[41] T. Hurley. Group rings and rings of matrices, International Journal of Pure and Applied Math. 31 3 (2006)

319-335.
[42] G. Kreweras. Sur les partitions non croisées d’un cycle, Discr. Math. 1 (1972) 333-350.
[43] S.K. Lando, A.K.Zvonkine Graphs on surfaces and their applications springer, XVI (2004)
[44] Y. Ladegaillerie Classes d’isotopie de plongement topology, 23 no.3 (1984) p.303-311.
[45] S. Łojasiewicz. Triangulation of semi-analytic sets. Annali della Scuola Normale Superiore di Pisa - Classe

di Scienze (1964) Volume: 18, Issue: 4, page 449-474.
[46] J. P. May Finite spaces and larger contexts
[47] J. Mycielski. Polynomials with Preassigned Values at their Branching Points American Math Monthly -

(Oct.1970) Volume: 77, no.8, p. 853-855.
[48] J. P. Serre. Faisceaux Algébriques Coherents (Coherent Algebraic Sheaves) The Annals of Mathematics, 2nd

Ser., Vol 61, No.2, p 197-278 (1954).
[49] G. B. Shabat. Visualizing Algebraic Curves: from Riemann to Grothendieck . Journal of Siberian Federal

University. Mathematics and Physics 1, (2008), 42-51.
[50] R. Stanley Catalan numbers Cambridge University Press, 2015.
[51] R. Thom La stabilité topologique des applications polynomiales, Enseignement Math., 8 (1962) 24-33.
[52] F. V. Vainshtein, The cohomology of braid groups, Funktsional. Anal. i Prilozhen., 12(2), 72-73, 1978.


