Thèse soutenue

Transport du tungstène dans un tokamak par une modélisation intégrée premiers principes

FR  |  
EN
Auteur / Autrice : Sarah Breton
Direction : Yannick Marandet
Type : Thèse de doctorat
Discipline(s) : Energie, Rayonnement, Plasma
Date : Soutenance le 12/01/2018
Etablissement(s) : Aix-Marseille
Ecole(s) doctorale(s) : Ecole Doctorale Physique et Sciences de la Matière (Marseille)
Partenaire(s) de recherche : Laboratoire : Institut de Recherche sur la Fusion par confinement Magnétique (CEA Cadarache, Saint-Paul-lez-Durance)
Jury : Président / Présidente : Peter Beyer
Examinateurs / Examinatrices : Francis Casson, Clarisse Bourdelle
Rapporteurs / Rapporteuses : Alberto Loarte, Frank Jenko

Résumé

FR  |  
EN

La fusion par confinement magnétique est actuellement la voie la plus avancée pour produire de l’énergie grâce à la réaction de fusion. L’un des défis à relever concerne la contamination du plasma par le Tungstène (W), un matériau capable de résister aux hauts flux de chaleur. A cause de son grand nombre atomique, le W rayonne dans les plasmas de tokamak. S’il s’accumule au cœur du tokamak, il refroidit le plasma. Il est donc crucial de comprendre les mécanismes du transport du W et d’identifier les paramètres favorisant son accumulation. Le W interagit de façon non-linéaire avec les différents paramètres du plasma. La simulation intégrée est le seul outil permettant à tous ces paramètres d’être simulés de façon auto-consistante durant plusieurs temps de confinement. Pour la première fois, l’outil de simulation intégrée est couplé à des codes de transport premiers principes modélisant de façon auto-consistante les transports turbulent et collisionnel du W, les profils de densité, température, rotation, radiation, et l’évolution du chauffage. Pour des raisons numériques, certains phénomènes ne sont pas modélisés et l'interaction plasma/paroi interne est simplifiée. A chaque pas de temps, cette simulation reproduit avec succès les signaux expérimentaux et le comportement du W. De plus, des acteurs responsables de l’accumulation du W (la rotation et la source centrale de particules) sont identifiés. Enfin, la simulation intégrée a permis de mettre en lumière l’effet stabilisant du W sur la turbulence. Le travail accompli montre que la simulation intégrée premiers principes permet désormais d'optimiser à l'avance les scénarios de plasma afin d'y limiter l'accumulation de W.