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Résumé

Cette these est constituée de quatre chapitres. Le premier contient les notions de base qui
permettent d’aborder les divers themes qui y sont étudiés. Le second est consacré a I’étude
des sous-variétés lagrangiennes d’une variété presque kihlérienne S3 x S3.

Une variété presque kahlérienne est une variété presque hermitienne munie d’une structure
presque complexe J pour laquelle le tenseur (@J ) est anti-symétrique, ou V est la connexion
de Levi-Civita. Je m’intéresse & des sous-variétés lagrangiennes de S? x S? non totalement
geodésiques dont la projection sur le premier facteur S? n’est nulle part de rang maximal.
J’exprime cette propriété a l'aide des fonctions d’angle et j’étudie plus particulierement la
relation entre ces sous-variétés et les surfaces minimales dans S®. Dans ce chapitre, je démontre
que les sous-variétés lagrangiennes de S? x S dont les fonctions d’angle sont constantes
sont totalement géodésiques ou ont leur courbure sectionnelle constante. Puis je donne une
classification complete de ces sous-variétés lagrangiennes. Les résultats présentés ici ont été
obtenus en collaboration avec Burcu Bektag, Joeri Van der Veken et Luc Vrancken (voir [3]
et []).

Dans le troisieme chapitre, je m’intéresse a un probleme de géométrie différentielle affine
et donne une classification des hyperspheres affines qui sont isotropiques. Ce résultat a été
obtenu en collaboration avec Luc Vrancken (voir [41]).

Et enfin dans le dernier, je présente quelques résultats sur les surfaces de translation et les
surfaces homothétiques. Ce travail a été réalisé avec Rafael Lépez ([35]).

Courte présentation des résultats obtenus

§ L’étude des sous-variétés lagrangiennes de la variété presque kihlérienne S> x S3

L’étude des variétés presque kiahlériennes débute dans les années 1970 avec A. Gray. Des
théoremes de structure, traitant le cas tres spécial de la dimension 6, ont été obtenus par
P.-A. Nagy dans les années 2000. Plus récemment, il a été démontré par J.-B. Butruille que
les seuls espaces presque kihlériens homogenes de dimension 6 sont la sphére SO (avec la
structure presque complexe introduite par le produit vectoriel sur R7), I'espace S? x S? (mais
pas équipé de la métrique canonique et muni d’une structure presque complexe introduite en
utilisant les quaternions), 'espace projectif CP3 (avec une métrique et une structure presque
complexe non canoniques) et la variété des drapeaux SU(3)/U(1) x U(1). Tous ces espaces
sont compacts et 3-symétriques. En 2014 V. Cortés and J. J. Vasquez ont découvert les
premiéres structures non homogenes (mais locallement homogenes) presque Kéahler dans [14].



Les premieres structures non homogenes completes des espaces presque kahlériens ont été
découvertes seulement en 2015 par L. Foscolo et M. Haskins (voir [23]). Il existe deux types
de sous-variétés des espaces presque kihlériens (ou plus généralement, presque hermitiens),
a savoir les sous-variétés presque complexes et les sous-variétés totalement réelles. Les sous-
variétés presque complexes sont des sous-variétés dont les espaces tangents sont invariants par
l'opérateur J. Pour les sous-variétés totalement réelles, les vecteurs tangents sont envoyés sur
les vecteurs normaux par la structure presque complexe J. Dans ce dernier cas, si en plus la
dimension de la sous-variété est la moitié de la dimension de ’espace ambiant, alors la sous-
variété est appelée lagrangienne. On notera que les sous-variétés lagrangiennes des variétés
presque kahlériennes sont particulierement intéressantes car elles sont toujours minimales et
orientables (voir [21] pour S8 et [27] ou [52] pour le cas général).

Les sous-variétés lagrangiennes ont été étudiées par de nombreux auteurs dans le passé.
Par contre pour les autres espaces, jusqu’a présent, il existe tres peu de résultats. Dans le
cas de S? x S3 les premiers exemples ont été obtenus respectivement par Schifer et Smoczyk
(2010) et par Moroianu et Semmelmann (2014). Un exemple de tore plat et la classification
de tous les exemples totalement géodésiques ou avec courbure sectionelle constante ont été
obtenus en 2014 par Dioos, Vrancken et Wang.

Une phase fondamentale dans cette étude est 'utilisation d’une structure presque produit
P sur S? x S3, qui est liée, mais est différente de la structure produit canonique de S? x S3.
La décomposition de P en une partie tangentielle et une partie normale le long d’une sous-
variété lagrangienne permet alors d’introduire trois directions principales, Fy, Fa, Fs3, avec
des fonctions angulaires correspondantes 61, 6o, 5.

Les résultats obtenus dans ce domaine sont présentés dans la suite.

Theorem 1. Soit

f:M—Sxs?
z = f(z) = (p(x), q(x))

une immersion Lagrangienne telle que la premiére projection p : M — S est nulle part
une immersion (cela veut dire que p(M) est une surface dans R3). Alors une des fonctions
angulaires est constante et égale a 5. La réciproque est vraie aussi.

Theorem 2. Soit

f:M—Sxs?
z = f(z) = (p(x), q(x)),

une immersion lagrangienne telle que la premiére projection p : M — S3 est nulle part une
immersion. Alors p(M) est une surface minimale dans S>.

En distinguant plusieurs cas, nous avons aussi réussi a montrer la réciproque, c’est-a-dire
comment construire, & partir d’une surface minimale dans S (qui est totalement géodésique ou
qui correspond & une solution de 1’équation de sinh-Gordon), une sous-variété lagrangienne de
dimension 3 de 53 x S3. Ici il faut remarquer que cette variété lagrangienne n’est pas unique.
En effet, pour chaque solution d’une équation différentielle supplémentaire il existe une telle
variété lagrangienne.



Theorem 3. Soit w et u des solutions de l’équation différentielle de respectivement, Sinh-
Gordon (Aw = —8sinhw) et Liouville (Ap = —et) définies sur un ouvert simplement connexe
UCC etsoitp:U—S? la surface minimale associée.

Soit V={(z,t) | z€ U, t € R,e“ " —2 —2cos(4t) > 0} et soit A une solution de

(2\/56“’

2
— 28111(275)) = e“tH — 2 — 2cos(4t)
tan

on V. Alors, il existe une immersion lagrangienne f :V — 83 x S3 : z + (p(x), q(z)), ot q
est déterminée par

dq V3

Ot 2/3e¥ — 2sin(2t) tan A

Jq .y (g + wy) cos(2t) tan A

1 _ - v+ Wy —

ou 8 (e <M “ V3ew — sin(2t) tan A
—4+/3sin(2t) cot A g a3>,

dq 1 iy (ty + wy) cos(2t) tan A

— ==\ —¢€ u + wu +

dv 8 ( (“ V3¢ — sin(2¢) tan A

+4(1 + v/3cos(2t) cot A) ¢ a3>,

q &2 X (3,

> q as x az —4(vV3cot Acos(2t) +1) q an—

) q s x az — 4v/3cot Asin(2t) q ag+

avec g = PPy, et a3 = Ppy.

Theorem 4. Soit X1, X2, X3 les champs de vecteurs canoniques sur S3. Soit B une solution
de l’équation différentielle

_ 48
Xa(X(8) + Xa(Xs(8)) = 22,

sur un domaine connexe, simplement connexe U de S>.
Alors il existe une immersion lagrangienne f : U — S3 x S3 : z — (p(z),q(x)), ot p(x) =
ziz™! et q est déterminée par

Xi1(q) = —2qhziz—'h™1,
Xa(q) = q (—X3(5)hxix_1h_1 — (1 —+/3e20) h:ij_lh_l) ’
X3(q9) =¢ (Xz(ﬁ) haiz™th=! — (1 + \/§e*2ﬁ) h:vk::):*lhfl) .

Dans le théoreme précédent, I'image de p est une surface totalement géodésique dans S>.
Dans la construction réciproque, il y a un cas exceptionnel & considérer.

Theorem 5. Soit w une solution [’équation de Sinh-Gordon Aw = —8sinhw définie sur
un domaine ouvert et simplement connexe U de C et soit p : U — S3 la surface minimale
associée. Alors il existe une immersion lagrangienne f : U x R — §? x S? : 2+ (p(2), ¢(z)),
ot q est déterminée par

dq . V3e v

ot 4

q &2 X a3,



—w

0 e
a—z = ?(46"‘)(]052 —4gaz + wyq az X ag),

0 e
5%:_7;@mm—4w¢m+wwa2xwl

0l g = ppy and a3 = Ppy-

Finalement nous avons montré que localement, une immersion lagrangienne, pour laquelle
p est nulle part une immersion, est obtenue comme décrit dans un des théoréemes précédents.

Les fonctions angulaires 81, 65, 03, définies a partir des directions principales de P, jouent
un role tres important dans I'étude des sous-variétés lagrangiennes de S? x S3. Dans ce sens,
nous avons un premier résultat:

Theorem 6. Soit

f:M—S?xs?
z = f(z) = (p(x), q(x)),

une immersion lagrangienne. Si toutes les fonctions angulaires sont constantes alors M est
totalement géodésique ou M est un espace a courbure sectionmelle constante.

Cela signifie qu’en appliquant le résultat de Dioos, Vrancken et Wang ([20] ), nous obtenons
une classification complete de ces sous-variétés. Il est connu que la somme des fonctions
angulaires est toujours un multiple de 7. Donc si deux de ces fonctions sont constantes, la
troisieme doit aussi étre constante. Pour cette raison, nous avons étudié le cas des sous-
variétés Lagrangiennes pour lesquelles seulement une de ces fonctions est constante. Ainsi,
nous avons montré :

Theorem 7. Soit

f:M—->S3xs?

z = f(z) = (p(), q(x)),
une immersion lagrangienne. Si exactement une fonction angulaire 6 est constante, alors
0=0oub=3% OUG:%’T.

Géométriquement, 'angle de § correspond au cas ot p(M) est une surface minimale dans
S? (et donc une classification compleéte est obtenue en appliquant les théorémes précédents).
Les autres cas suivent des deux constructions remarquables obtenues dans les résultats qui
suivent.

Theorem 8. Soit
f:M—Sxs?
z = f(z) = (p(z), q(z)),

une immersion lagrangienne. Notons les fonctions angulaires 01,0, 03 et les vecteurs propres
correspondants Ey, Ey, E3. Alors f : M — S x S? donnée par f = (q,p) a les propriétés
sutvantes :

(i) f est une immersion Lagrangienne,



(i) la métrique induite par f et f sur M est la méme,

1i1) les fonctions angulaires sont lices par 92 =T — 9@ ot i=1,2,3 et les vecteurs propres
’ ) Sy
COT’T@S])O’IldO/IltS sont les mémes.

et

Theorem 9. Soit

f:M—Sxs?
x> f(z) = (p(), q(x)),

une immersion lagrangienne. Notons les fonctions angulaires 61,02, 03 et les vecteurs propres
correspondants Ey, Eo, E3. Alors f*: M — S3 x S3 donné par f* = (p,qp) a les propriétés
suivantes:

(i) f* est une immersion lagrangienne,

1) la métrique induite par f et f* sur M est la méme
q D ’

(i) les fonctions angulaires sont lices par 0} = 27” —0;, oui=1,2,3 et les vecteurs propres

correspondants sont les mémes.

§ La géométrie différentielle affine

Dans ce domaine, nous étudions les sous-variétés M de R"T1. Cette étude fait partie du
programme de Felix Klein, c’est-a-dire la géométrie est 1’étude des propriétés qui restent
invariantes sous l’action d’un groupe donné de transformations. L’étude de la géométrie
différentielle affine commence par le travail de Blaschke et de ses collegues au début du siecle
précédent. Les 30 dernieres années, il y a eu une reprise d’intérét pour ce domaine et beau-
coup de géometres célebres tels que Bobenko, Calabi, Chern, Nomizu, Pinkall, Sasaki, Simon,
Terng, Trudinger et Yau ont étudié cette géométrie. Le premier probleme fondamental ren-
contré dans le domaine de la géométrie différentielle affine est comment on peut, a partir
de la structure équiaffine donnée sur R”*! introduire une structure équiaffine sur la sous-
variété M. Pour les hypersurfaces, la solution a ce probleme est bien connue. Dans le cas ou
I’hypersurface est nondégénérée, il est possible de déterminer un champ de vecteurs transver-
sal canonique et une forme bilinéaire symétrique, qu’on appelle respectivement le normal
affine et la métrique affine h.

Une hypersurface affine est appelée sphére affine si soit tous les normaux affines passent &
travers un point fixe (les sphéres affines propres), soit tous les normaux affines sont paralleles
(les sphéres affines impropres). Cette classe est, sans aucun doute, la plus étudiée, voir par
exemple les résultats de classification obtenus par Chern, Li et Yau dans le cas ou la métrique
est définie positive et complete. Cependant, dans tous les autres cas, il reste de nombreux
problemes non résolus. Malgré ce que l'on pourrait imaginer, il existe localement beaucoup
de spheres affines, propres et impropres. En effet, par exemple, I’étude des spheres impropres
est équivalente a ’étude de I’équation différentielle de Monge Ampere.

Donc si nous voulons obtenir plus de résultats, nous avons besoin de conditions supplémentaires.



Pour cela le tenseur le plus adapté a utiliser est le tenseur de différence K. Ce tenseur donne
la différence entre la connection induite et la connection de Levi Civita de la métrique affine.
Un théoreme classique, di a Berwald, montre que le tenseur K est nul si et seulement si
I’hypersurface est une quadrique non dégénérée. Une condition naturelle sur K est la notion
d’isotropie. On dit que 'hypersurface est A-isotrope si et seulement si

hK (v,v), K(v,v)) = Ap)h(v,v)h(v,v),

pour tout vecteur v tangent a un point p.

Dans le cas ou la métrique est définie positive, une classification a été obtenue par O. Birem-
baux et M. Djoric. Ils ont montré en 2012 que si K # 0, la dimension ne peut étre que 2, 5, 8,
14 ou 26. De plus, en dimension 2 toute sphere affine est A-isotrope. Dans les quatre autres
dimensions, il existe un seul exemple canonique qui est, respectivement, I'immersion standard
de Despace symétrique SL(3,R)/SO(3), SL(3,C)/SU(3), SU*(6)/Sp(3) ou Eg(_s6)/Fi. lci il
faut remarquer que l'ingrédient crucial dans la preuve est que l’espace tangent unitaire en un
point p est un espace compact et qu’ une fonction continue sur un espace compact admet un
maximum. C’est un argument qui, bien sir, ne peut pas du tout étre adapté pour traiter le
cas ou la métrique n’est pas définie positive. Néanmoins, nous avons réussi a démontrer que
le théoreme qui donne les dimensions possibles reste vrai dans le cas ou la métrique n’est pas
définie positive. De plus nous avons montré que dans le cas ou la métrique n’est pas définie
positive :

1. en dimension 5, nous avons précisément un exemple supplémentaire qui est 'immersion
canonique de l'espace symétrique SL(3,R)/SO(2,1),

2. en dimension 8, nous avons précisément deux exemples supplémentaires que sont I'immersion
canonique de I'espace symétrique SL(3,C)/SU(2, 1) et 'immersion canonique de SL(3, R),

3. en dimension 14, nous avons précisément deux exemples supplémentaires que sont
I'immersion canonique de l'espace symétrique SU* (6)/ Sp(1,2) et 'immersion canon-
ique de SL(6,R)/Sp(6),

4. en dimension 26, nous avons précisément deux exemples supplémentaires construits,
respectivement, a partir des nombres octonions et des nombres split-octonions.

§Surfaces dans E3 et L3

Rappelons que L2 est I’espace affine euclidien muni de la métrique de signature +, 4+, —. Dans
ce chapitre, je présente les résultats qui ont été obtenus en collaboration avec Rafael Lépez
([35]), sur les surfaces de translation et surfaces homothétiques dans les espaces R? et L3.
On dit qu’'une surface S est une surface de translation si elle peut étre exprimée comme la
somme de deux courbes a : I C R — R%® et §:J C R — R3. Elle peut étre parametrisée
comme X (s,t) = a(s) + B(t), s € I,t € J (voir [I5, p. 138]). La classification des surfaces
de translation ayant une courbure moyenne constante (CMC) ou une courbure gaussienne
constante (CGC) est un probleme ouvert. Un premier exemple de surface de translation est
la surface de Scherk (voir figure n° [1)) donnée par

z(z,y) = élog < cos(ay)

cos(ax)

),a>0. (1)
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Figure 1: La surface de Scherk donnée par la paramétrisation dans .

Cette surface est minimale (H = 0) et appartient & une famille plus large de surfaces de
Scherk ([45, pp. 67-73]). Les courbes génératrices « et /3 se trouvent dans des plans orthog-
onaux et, apres un changement de coordonnées, la surface peut étre representée localement
comme le graphe de la somme de deux fonctions z = f(z)+¢g(y). Les résultats connus jusqu’a
présent comportent des conditions supplémentaires sur les deux courbes génératrices. Je les
énumere ci-dessous. Si « et § sont dans des plans orthogonaux, alors les surfaces de transla-
tion de type CMC sont le plan, la surface minimale de Scherk et le cylindre circulaire ([33],
[50]), tandis que celles de type CGC ont leur courbure gaussienne K nulle et s’identifient aux
surfaces cylindriques ([33]). Dans le cas ou les courbes a et § sont toutes les deux planes,
alors les seuls surfaces minimales de translation sont le plan et une surface de la famille des
surfaces de Scherk ([I6]). Finalement, si seulement une des deux courbes « et [ est plane,
alors il n’existe pas de surfaces de translation minimales ([16]).

Nous avons obtenu un premier résultat sur les surfaces de translation qui ont leur courbure
gaussienne K constante ([35]). Sans aucune condition supplémentaire, nous montrons que les
seules surfaces de translation plates (K = 0) sont les surfaces cylindriques (voir figure n°® .
Ici, une surface cylindrique est une surface réglée, engendrée par une droite parallele a une
position fixe dans R? et dont la directrice est plane. Nous avons montré le théoreme suivant:

Theorem 10. 1. Les seules surfaces de translation a courbure gaussienne nulle sont les
surfaces cylindriques.

2. Si une des courbes génératrices est plane, alors il n’existe pas de surfaces de translation
ayant leur courbure gaussienne constante K # 0.

Dans le cas od K = 0, nous donnons une classification compléte des surfaces de type CGC
et, pour K # 0, nous étendons le résultat donné en [16] pour les surfaces de type CMC.
Un deuxiéme type de surfaces étudiées dans cette partie est celui des surfaces homothéthiques.
Elles se définissent comme les surfaces de translation, sauf qu’a la place du signe + dans la
paramétrisation z = f(z) + ¢g(y), nous avons la multiplication z = f(x) - g(y). Le premier
résultat que nous obtenons se réfere aux surfaces minimales. Précédemment, Van de Woestyne



Figure 2: Une surface cylindrique dont la directrice est un demi-cercle.

a démontré (cf.[54]) que les seules surfaces minimales homothétiques non-dégénérées dans L3
sont les plans et les hélycoides. A la fin de son article, 'auteur affirme qu’un résultat similaire
peut étre obtenu dans I'espace euclidean E3. Dans [35], nous avons donné une démonstration
différente pour le cas euclidien. Plus précisemment, nous avons prouvé les théoremes suivants:

Theorem 11. Les plans et les hélycoides sont les seules surfaces minimales homothétiques
en E3.

La paramétrisation de I'hélycoide (voir figure n° [3) n’est pas celle usuelle d’une surface
réglée, ayant I’hélice comme base, mais

2(e,y) = (& + b) tan(ey + d), @)
oub,c,d € R, ¢ # 0 ([45, p. 20]).

Figure 3: L’hélycoide donné par la paramétrisation dans .
Un dernier résultat représente une classification compléte des surfaces homothétiques dans
E? ayant une courbure gausienne constante:

Theorem 12. Soit S une surface homothétique dans E3 de courbure gaussienne K constante.
Alors, K = 0. De plus, la surface est soit un plan, une surface cylindrique ou une surface
dont la paramétrisation est :

(i)
2(x,y) = ae"*Y, 3)

ot a,b,c> 0 (voir figure n° @) ou

10



(i) N .
Az, y) = (% —l—d) (% + e) : (4

ot b,c,d,e,m €R, bye#0, m#0,1 (voir figure n° @)

~—

(a) Une surface homothétique donnée par la (b) Une surface homothétique donnée par la
paramétrisation dans le théoréme paramétrisation dans le théoréme

Figure 4: Des surfaces homothétiques de courbure gaussienne constante et, donc, nulle.
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Summary

This work is structured in four chapters. In the first one, there is a brief presentation of the
basic notions on which the studied problems rely. The second chapter develops around the
study of Lagrangian submanifolds of the nearly Kiahler S? x S3.

The nearly Kahler manifolds are almost Hermitian manifolds with almost complex structure
J for which the tensor field V.J is skew-symmetric, where V is the Levi-Civita connection. T
study non-totally geodesic Lagrangian submanifolds of the nearly Kihler S3 x S? for which the
projection on the first component is nowhere of maximal rank. I show that this property can
be expressed in terms of the so called angle functions and that such Lagrangian submanifolds
are closely related to minimal surfaces in S3.

Moreover, I study as well Lagrangian submanifolds of the nearly Kihler S? x S? for which all
angle functions are constant. In this case the submanifold is either totally geodesic or has
constant sectional curvature. Finally, if precisely one angle function is constant, I obtain a
classification of such Lagrangian submanifolds. The results in this chapter are based on two
articles written in collaboration with Burcu Bektag, Joeri Van der Veken and Luc Vrancken
(see [3], [4]).

The third chapter presents the results obtained together with Luc Vrancken on a problem
from affine differential geometry treated in [41], where I gave a classification of isotropic affine
hyperspheres. Finally, the last chapter presents some results on the study of translation and
homothetical surfaces in E? and L3. They may be found in [35], as they are based on a joint
work with Rafael Lépez, which has been finished during the first year of my PhD.

Short presentation of the results obtained

§ Lagrangian submanifolds of the nearly Kihler manifold S? x S?

The nearly Kéhler manifolds have been studied intensively in the 1970’s by Gray ([24]). Nagy
([43], [44]) made further contribution to the classification of nearly Kéhler manifolds and more
recently it has been shown by Butruille ([9]) that the only homogeneous 6-dimensional nearly
Kihler manifolds are the nearly Kihler 6-sphere S, S? x S3, the projective space CP3 and
the flag manifold SU(3)/U (1) x U(1), where the last three are not endowed with the standard
metric. All these spaces are compact 3-symmetric spaces. Note that in 2014 V. Cortés and
J. J. Vésquez have discovered the first non homogeneous (but locally homogeneous) nearly
Kahler structures in [14], while more recently, the first complete non homogeneous nearly
Kihler structures were discovered on S8 and S? x S in [23].

A natural question for the above mentioned four homogeneous nearly Kahler manifolds is
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to study their submanifolds. There are two natural types of submanifolds of nearly Kahler
(or more generally, almost Hermitian) manifolds, namely almost complex and totally real
submanifolds. Almost complex submanifolds are submanifolds whose tangent spaces are in-
variant under J. For a totally real submanifold, a tangent vector is mapped by the almost
complex structure J into a normal vector. In this case, if additionally, the dimension of the
submanifold is half the dimension of the ambient manifold, then the submanifold is called
Lagrangian.

Note that the Lagrangian submanifolds of nearly strict Kéahler manifolds are especially inter-
esting as they are always minimal and orientable (see [22] for S or [52], [27] for the general
case). Lagrangian submanifolds of S® have been studied by many authors (see, amongst oth-
ers, [19], [18], [21], [22],[57], [58], [36] and [49]), whereas the study of Lagrangian submanifolds
of S3 x S? only started recently. The first examples of those were given in [52] and [40]. More-
over, in [59] and [20], the authors obtained a classification of the Lagrangian submanifolds,
which are either totally geodesic or have constant sectional curvature. An important tool in
the study in [20] and [59] is the use of an almost product structure P on S? x S, which was
introduced in [7]. The decomposition of P into a tangential part and a normal part along
a Lagrangian submanifold allows us to introduce three principal directions, E1, Fo, F3, with
corresponding angle functions 61, 65, 63.

We study non-totally geodesic Lagrangian submanifolds of the nearly Kihler S? x S? for which
the projection on the first factor is nowhere of maximal rank. We show that this property
can be expressed in terms of the angle functions and that the Lagrangian submanifolds are
closely related to minimal surfaces, in the sense of the following two results.

Theorem 13. Let

f:M—Ss*xs?
z = f(x) = (p(x), q(x))

be a Lagrangian immersion such that p : M — S® has nowhere mazimal rank. Then 7 s an
angle function up to a multiple of m. The converse is also true.

Theorem 14. Let

fiM—SPxs?
z— f(z) = (p(z), q())

be a Lagrangian immersion such that p : M — S* has nowhere mazimal rank. Assume that
M s not totally geodesic. Then p(M) is a (branched) minimal surface in S3.

For the next part, the study of the submanifold is separated into three cases and we
manage to prove the reverse problem. That is, starting from a minimal surface in S* (which
is totally geodesic or corresponds to a solution of the sinh-Gordon equation), we can construct
a Lagrangian submanifold of S? x S3. One should remark that the Lagrangian submanifold
thus obtained is not unique, as for each solution of the sinh-Gordon equation there is locally
more than one corresponding Lagrangian submanifold. The following theorems comprise these
results.

Theorem 15. Let w and p be solutions of, respectively, the Sinh-Gordon equation Aw =
—8sinhw and the Liouville equation Ap = —et on an open simply connected domain U C C
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and let p : U — S3 be the associated minimal surface with complex coordinate z such that
0(0z,0z) = —1.
Let V ={(z,t) | z € U,t € R,e“TH — 2 —2cos(4t) > 0} and let A be a solution of

(2\/56“’

tan A

2
— 25111(275)) = e“tH — 2 — 2cos(4t)

on V. Then, there exists a Lagrangian immersion f:V — S3 x §3 : 2+ (p(x), q(x)), where
q s determined by

dq V3

Ot 2/3e¥ — 2sin(2t) tan A

dqg 1/ _, (g + wy) cos(2t) tan A

I v+ Wy —

Jou 8 (e <,u “ V/3ew — sin(2t) tan A
—4v/3sin(2t) cot A ¢ a3>,

dq 1 iy (ty + wy) cos(2t) tan A

— ==\ —¢€ u + wu +

dv 8 ( (“ V3e% — sin(2t) tan A

+4(1 + v/3cos(2t) cot A) ¢ Oég),

q &g X (3,

> q ag X ag — 4(vV3cot Acos(2t) + 1) ¢ ag—

) q as X az — 4v/3cot Asin(2t) q ag+

where ag = pp, and oz = Ppy,.

Theorem 16. Let X1, X, X3 be the standard vector fields on S®. Let B be a solution of the
differential equations

2(3 — e
X(Xa(8)) + Xa(Xa(8)) = )
on a connected, simply connected open subset U of S3.

Then there exist a Lagrangian immersion f: U — S3 x S* : x — (p(x), q(z)), where p(x) =
ziz™! and q is determined by

X1(q) = —2qhziz—'h1,
Xo(q) = q (—X3(B)haiz th~ — (1 — V/3e~2P) hajz—th™1),
X3(q) = q (Xa(8) hwiz—'h= — (1 + V3e~2%) hakz—1h~1).

Note that in the previous theorem the image of p is a totally geodesic surface in S>.

Theorem 17. Let w be a solution of the Sinh-Gordon equation Aw = —8sinhw on an open
connected domain of U in C and let p : U — S be the associated minimal surface with
complex coordinate z such that o(0z,0z) = —1. Then, there exists a Lagrangian immersion
f:UxR—S*xS?: 2+ (p(x),q()), where q is determined by

dq V3e v "

— =— Qg X (g,

ot g 1ot

dq e¥

7 ?(4ewqo¢2 — 4qag + wyq g X ag),

Jq e v

5 =3 (4qae — 4e¥qas + wyuq g X as),

for an = pp, and az = pp,.
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Finally, we indicate that a Lagrangian immersion for which p has nowhere maximal rank
is always obtained in the way indecated by the latter three theorems:

Theorem 18. Let f : M — S x S* :  — (p(x),q(x)) be a Lagrangian immersion such
that p has nowhere maximal rank. Then every point x of an open dense subset of M has a

neighborhood U such that f|y is obtained as described in Theorem or .

As already seen so far, the angle functions play an important role in the study of the
Lagrangian submanifolds of the nearly Kihler S* x S3. They provide important information
about the submanifold, as it may be further seen in the results obtained in section [2.2]

In case that all the angle functions are constant, we have the following theorem.

Theorem 19. A Lagrangian submanifold of the nearly Kdhler manifold S® x S? given by

f:M—S?xs3
x> f(z) = (p(2), q(x)),

for which all angle functions are constant, is either totally geodesic or has constant sectional
curvature in S x S3.

This means that, by applying the result of Dioos, Vrancken and Wang ([20]), we obtain a
complete classification for such Lagrangian submanifolds. One should remark that the sum
of the angle functions is always a multiple of 7. Hence, if two of the angles are constant, so
is the third one too. Therefore, one of the results obtained concerns the case when exactly
on angle function is constant:

Theorem 20. Let M be a Lagrangian submanifold in the nearly Kdhler manifold S? x S?
given by

f:M—S?xs?
z = f(x) = (p(z),q(z)),

with angle functions 01,02, 03. If precisely one of the angle functions is constant, then up to
a multiple of , it can be either 0,5 or %’T

From a geometrical point of view, the angle § corresponds to the case when p(M) is a
minimal surface in S® and therefore, the Lagrangian immersion is determined in the sense of
theorem The other two cases corresponding to the remaining values of 6 (0 and %’r) follow
easily from the case when 6 = %, by using the two constructions given in the following two

theorems.

Theorem 21. Let f : M — S? x S? be a Lagrangian immersion into the nearly Kdhler
manifold S*xS3, given by f = (p, q) with angle functions 61, 02, 03 and eigenvectors Ey, Eo, E3.

Then f: M —s S® x S* given by f = (q,p) satisfies:
(i) f is a Lagrangian immersion,
(i) f and f induce the same metric on M,
(iii) E1, Ey, E3 are also eigendirections of the operators A, B corresponding to the immersion

f and the angle functions 61,804,035 are given by 0; = m — 0;, for i =1,2,3.
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Theorem 22. Let f : M — S? x S? be a Lagrangian immersion into the nearly Kdhler
manifold S* xS3 given by f = (p,q) with angle functions 01, 0,03 and eigenvectors Ey, By, E3.
Then, f*: M — S? x S? given by f* = (p,qp) satisfies:

(i) f* is a Lagrangian immersion,
(i) f and f* induce the same metric on M,

(iii) E1, Eq, E3 are also eigendirections of the operators A*, B* corresponding to the immer-
sion f* and the angle functions 07, 05,05 are given by 07 = %” —0;, fori=1,2,3.

§Affine differential geometry

In this domain, the submanifolds M in R®*! are the main subject of interest. Their study is
part of the Felix Klein program, which sees geometry as the study of properties which stay
invariant under the action of some group of transformations. The study of affine differential
geometry starts at the beginning of the previous century with the work of Blaschke and his
collegues. In the last 30 years there was a rise of interest in this domain and many famous
geometers such as Bobenko, Calabi, Chern, Nomizu, Pinkall, Sasaki, Simon, Terng, Trudinger
and Yau have studied this geometry. The first fundamental problem that one finds in affine
geometry refers to finding a way to introduce an equiaffine structure on the submanifold
M, starting from the equiaffine structure given from R™*'. As far as the hypersurfaces are
concerned, the solution for this problem is well known. In this case, it is possible to find a
canonical transversal vector field and a biliniar symmetric form, which we call, respectively,
the affine normal and the affine metric h. An affine hypersurface is called affine sphere if
all the affine normals pass through the same fixed point (proper hyperspheres) or, if all the
affine normals are parallel (improper spheres). This class is definetely the most studied one
(see, for example, the results obtained by Chern, Li and Yau for the case when the metric is
positive definite and complete). Nevertheless, in all the other cases, there are still many other
unsolved problems. Despite what one could think, locally, there are many proper or improper
affine spheres in the sense that, in fact, the study of improper spheres is equivalent to the
study of the Monge Ampere differential equation. Therefore, in order to obtain some results,
one actually needs extra conditions and this is where the difference tensor K intervenes. This
tensor gives the difference between the induced connection and the Levi-Civita connection
of the affine metric h. A classical theorem shows that K is zero if and only if the affine
hypersurface is a non-degenerate quadric. A natural condition on K that one could look at
leads to the notion of isotropy. An hypersurface M is called A-isotropic if and only if there
exist a function A on M such that

h(K (v,v), K(v,v)) = Xp)h(v,v)h(v,v),

for all tangent vector v at p € M. In the case when the metric is positive definite, one
classification was obtained by Birembaux and Djoric. They proved in 2012 that if K # 0, the
dimension can be 2,5,8,14 or 26. Moreover, in dimension 2, any affine sphere is A-isotropic.
For the other remaining dimensions, there exists one sole canonical example, that is, respec-
tively, the standard immersion of the symmetric space SL(3,R)/SO(3), SL(3,C)/SU(3),
SU*(6)/Sp(3) and Eg(_o6)/Fy. It is important to remark that the essential argument in the
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proof in the positive definite case is the fact that the unit tangent bundle at a point p is a
compact space, and, a continuous function on a compact space attains a maximum. This
does not hold anymore when the metric is not positive definite. Nevertheless, as one may see
it is proven in chapter |3 the same theorem which gives the possible dimensions of the affine
hyperspheres in the positive definite case, holds as well for the indefinite case. Therefore, the
results of Djoric and Birembaux from the definite case are completed by the ones obtained in
chapter [3] concerning the indefinite case, as follows:

1. in dimension 5, there is precisely one additional example for the studied affine hyper-

spheres: the standard immersion of gé(é”ﬂf; in RS,

2. in dimension 8, there are precisely two additional examples,that is the cannonical im-

mersion of SL(3’C; and SL(3,R), respectively,

SU(2,1)
3. in dimension 14 there are precisely two additional examples, namely the cannonical

i ersion of 2U°6) 5nq SLOGR)
HIIMETSIon ot gy 5y 4N 5y

4. in dimension 26, there are exactly two examples which are constructed by use of octo-
nions and split-octonions.

§Surfaces in E3 and L?

Chapter {| presents the results obtained in [35], together with professor Rafael Lépez on
translation and on homothetical surfaces, respectively, in the Euclidean space R3 and L3. A
translation surface S is a surface that can be expressed as the sum of two curves a: I C R —
R3, 8 :J C R — R® In a parametric form, the surface S writes as X (s,t) = a(s) + B(t),
s€ I, te J. See [15, p. 138]. It is an open problem to classify all translation surfaces with
constant mean curvature (CMC) or constant Gauss curvature (CGC). A first example of a
CMC translation surface is the Scherk surface (see figure nofj]) given by

cos(ay)
cos(ax)

1
2(z,y) = —log <

>,a>0. (5)

This surface is minimal (H = 0) and belongs to a more general family of Scherk surfaces
([45, pp. 67-73]). In this case, the curves a and f lie in two orthogonal planes and after a
change of coordinates, the surface is locally described as the graph of z = f(x) 4+ g(y). The
progress made so far on this problem always asked for extra conditions on the two generating
curves, in the following sense. If o and f lie in orthogonal planes, the only CMC translation
surfaces are the plane, the Scherk surface and the circular cylinder ([33], [50]) and the only
CGC translation surfaces have in fact K = 0 and are cylindrical surfaces ([33]). Another case
is that when both curves « and 3 are planar: then the only minimal translation surfaces are
the plane or a surface which belongs to the family of Scherk surfaces ([16]). Finally, if one of
the curves « or (8 is planar and the other one is not, there are no minimal translation surfaces
(IT6)).

The first result obtained in [35] and, therefore, presented in this chapter, concerns the case
when the Gauss curvature K is constant. Without making any assumption on the curves «
and 3, we prove that the only flat (K = 0) translation surfaces are cylindrical surfaces. Notice
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Figure 5: The surface of Scherk given in .

that by a cylindrical surface we mean a ruled surface whose directrix is contained in a plane
and the rulings are parallel to a fixed direction in R? (see figure no@. The corresponding
theorem is the following:

Theorem 23. 1. The only translation surfaces with zero Gauss curvature are cylindrical
surfaces.

2. There are no translation surfaces with constant Gauss curvature K # 0 if one of the
generating curves is planar.

For the case when K = 0 we give a complete classification of the CGC translation surfaces
and, for K # 0, we extend the result given in [16] for CMC translation surfaces.

Figure 6: A cylindrical surface whose directrix is a semi-circle.

A second kind of surfaces studied in this chapter are the homothetical surfaces. Roughly
speaking, we replace the plus sign + in the definition of a translation surface z = f(x) + g(y)
by the multiplication operation z = f(x)g(y).

Our first result on this problem concerns minimal surfaces. Van de Woestyne proved in [54]
that the only minimal homothetical non-degenerate surfaces in L3 are planes and helicoids.
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At the end of [54] the author asserted that, up to small changes in the proof, a similar result
can be obtained in the Euclidean space R3. In the present paper we do a different proof of
the Euclidean version and in section 4.2 we prove:

Theorem 24. Planes and helicoids are the only minimal homothetical surfaces in Fuclidean
space.

The parametrization of the helicoid (see figure no@ is not the usual one as for a ruled
surface which has a helix as base, but

z(z,y) = (z + b) tan(cy + d), (6)

where b, c,d € R, ¢ # 0 ([45] p. 20]).

Figure 7: A helicoid given by the parametrization in @

The third result considers homothetical surfaces in the Euclidean space with constant
Gauss curvature, for which we obtained a complete classification.

Theorem 25. Let S be a homothetical surface in Euclidean space R? with constant Gauss
curvature K. Then K = 0. Furthermore, the surface is either a plane, a cylindrical surface
or a surface whose parametrization is:

(1)

2(x,y) = ac™ Y, (7)

with a,b,c > 0 (see figure no, or

(i) . .
Az, y) = <f;” +d) <nﬁ1 + e> , (8)

with b,c,d,e,m € R, b,c #0, m #0,1 (see figure no.
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(a) A homothetical surface given by the (b) A homothetical surface given by the
parametrization in Theorem parametrization in Theorem

Figure 8: Homothetical surfaces with constant Gauss curvature (K=0).

20



Chapter 1

Preliminaries

1.1 Affine, Riemannian and semi-Riemannian manifolds

In this section we briefly recalle the basic definitions on the geometry of affine manifolds,
Riemannian manifolds and semi-Riemannian manifolds. The summary is based on [8], [11],
[48] and [56], where one may find more details.

We say that M is a topological manifold of dimension n if it is a Hausdorff space with
a countable basis of open sets and with the property that each point has a neighborhood
homeomorphic to an open subset of R™. Each pair (U, ¢), where U is an open set of M and
¢ is a homeomorphism of U to an open subset of R", is called a coordinate neighborhood:
to ¢ € U we assign the n-coordinates z'(q),...,2"(q) of its image ¢(q) in R- each 2 is a
real-valued function on U, the ith coordinate function. We shall say that the charts (U, ¢)
and (V, 1) are C*®-compatible if U NV nonempty implies that o¢~! : ¢(UNV) — p(UNV)
is a diffeomorphism of class C* .

Definition 1. A differentiable or C* (or smooth) structure on a topological manifold M is
a family U = {(Uy, ¢0)a} of coordinate neighborhoods such that:

1. the set {Uy} covers M,
2. for any o, B the coordinate neighborhoods (Uy, o) and (Ug, ¢g) are C°-compatible,

3. any coordinate neighborhood (V,1) compatible with every (Uy, ¢o) € U is itself in U.

A C*-manifold is a topological manifold together with a C'*°-differentiable structure.
Let M be a differentiable manifold and let p € M. We denote the tangent space of M at the
point p by T,M. Let X,Y be vector fields on M. Then we define a new vector field [X, Y] by

(X, Y]f = X(Y(f)) =Y (X(f)),

which is called the bracket of X and Y. Let X' (M) be the set of all vector fields of class C*
on M and D(M) the ring of real-valued functions of class C* defined on M.

Definition 2. An affine connection V on M is a mapping
V:X(M)x X(M)— X(M)
(X,Y) — VxY,

which satisfies:
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(1) VixigvZ = fVxZ+gVyZ,
(1)) Vx(Y +2Z)=VxY +VxZ,
(iii) Vx(fY) = fUxY + X(f)Y,
in which X,Y,Z € X(M) and f,g € D(M).
We say that an affine connection V on a smooth manifold M is symmetric when
VxY - VyX = [X,Y]

for all X,Y € X(M).

1.1.1 Affine manifolds

Definition 3. A differentiable manifold equipped with a symmetric affine connection is called
an affine manifold.

The curvature tensor of an affine manifold is defined by
R(X,Y)Z =VxVyZ —-VyVxZ — VixyZ, (1.1)

where X,Y, Z are tangent vector fields on M. It can be proved that R(X,Y)Z at a point
p of M is completely determined by the values of X,Y, Z at the point p. We call an affine
manifold flat if R vanishes identically.

An affine manifold (M, V) is said to be equiaffine if there exists a volume form w, i.e. a
non-vanishing n-form, on M which is parallel with respect to V, that is

(VXW)(Xl ce ,Xn) = X(w(Xl, cee ,Xn)> —w(VXXl,. . ,Xn) I W(Xl,. . .,VXXn).

In this case, we say that (V,w) determine an equiaffine structure on M.

Ezxample 1. Take M = R". Let us denote by D the standard connection on M. Then, for
vector fields X = (X1,...,X,) and Y = (Y1,...,Y,), we have that

DxY = (X(Y1), X(Y2),..., X(Yn)).

If we take on R™ the volume form €2 given by the determinant, a straightforward computation
shows that (D, 2) detrmines an equiaffine structure on R". We also find that R is flat.

1.1.2 Riemannian manifolds

Definition 4. A Riemannian metric (or Riemannian structure) on a differentiable manifold
M is a correspondance which associates to each point p € M an inner product (-,-), (that is,
a symmetric, bilinear, positive-definite form) which varies differentiably, i.e. for any pair of
vector fields X,Y in a neighborhood V' of M, the function (X,Y') is differentiable on V.

Definition 5. A differentiable manifold with a given Riemannian metric is called a Rie-
mannian manifold.
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A connection V on a Riemannian manifold is compatible with the metric if and only if
XY, Z)=(VxY,Z)+ (Y,VxZ).

Theorem 26. (Levi-Civita). Given a Riemannian manifold M, there exists a unique affine
connection V on M, satisfying the conditions:

a) V is symmetric,
b) V is compatible with the Riemannian metric.

V is called the Levi-Civita connection or Riemannian connection and is charactherized
by the Koszul formula

2(Vy W, X) = V(W, X)+W(X, V) = XV, W) = (V[W, X]) + (W, [X, V) + (X, [V, W]). (1.2)

It is clear that (M, V) is an affine manifold. Thus, for the Levi-Civita connection, we define
the Riemannian curvature tensor R of M by (l.1). Next, given the metric, we can define a
(0,4) curvature tensor R associated with the curvature R by:

R(X.Y,Z,W) = (R(X,Y)Z,W).
We have the following properties:

R(X,Y,Z,W) = —R(X,Y,W, Z),
R(X,Y,Z,W)=R(Z,W,X,Y),
R(X,Y)Z+ R(Y,Z)X + R(Z,X)Y =0,

(VxR)(Y, Z)W + (VyR)(Z, X)W + (V4R)(X,Y)W = 0.

(1.3)

The last two identities are called the first and the second identity of Bianchi, respectively.
Let y,z € T,M. We define the Ricci curvature as

Ric(y, z) = ! 1tmce{a: — R(z,y)z},

for all x € T, M. Let {21, 22,...,2,} be an orthonormal basis of T, M. Then, we rewrite the
Ricci curvature and define the scalar curvature for M as the following averages, respectively:

1
Ricy(z,y) = ] (R(ziy )y, zi), 1 =1,2,...,n — 1, (1.4)
K(p) = =3 Ricy(z) = ——— S (R(z5, 20)20, ), = 1,2 (1.5)
p)=_ : icp(zj = =1) ) 2j, %)%, 25), ] = 1,2,...,n. .

Definition 6. Furthermore, given a point p € M and a two dimensional subspace o C T),M,
the real number

R(x,y,y,)
(z,2)(y,y) — (z,y)*

where {x,y} is any basis of o, is called the sectional curvature of o at p.

K(o) =
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If the sectional curvature is independent of the tangent plane o and of the point p € M,
then M is a space of constant curvature. A complete connected manifold of constant curvature
is called a real space form. The curvature tensor R of a space of constant curvature c is given
by

RX,Y)Z =Y, 2)X — (X, Z)Y}.

Ezxample 2. Examples of real space forms:
(i) the Euclidean space R™ is a flat space (i.e. has constant zero sectional curvature),
(ii) the n-dimensional sphere S"(r) of radius r has constant sectional curvature equal to %2,
(iii) the hyperbolic space H"(r) has constant negative sectional curvature equal to —%2.

Next, if the Riemannian manifold M, admits an endomorphism J of the tangent space
such that J? = —Id and such that J maps differentiable vector fields into differentiable
vector field, we say that M is a Riemannian almost complex manifold. M must have even
real dimension, 2n, that is, complex dimension n.

We say that J is a complex structure if the Nijenhuis tensor N defined by

N(X,Y)=[JX,JY] - [X,Y] - J|X,JY] - J[JX,Y],

vanishes identically (that is, J is integrable). By the theorem of Newlander — Nirenberg, we
know that if J is a complex structure on M, then we can choose charts on M such that the
coordinate changes are holomorphic functions from C" to C". Thus M becomes a complex
manifold of dimension n. Moreover, if for a (an almost) complex manifold, the complex
structure J is compatible with the metric, that is

(JX,JY) = (X,Y),

then we call M an (almost) Hermitian manifold.
An almost Hermitian manifold is called a nearly Kdhler manifold if the complex structure
satisfies

(VxJ)X =0,

for all vector fields X on M. A Hermitian manifold is called a Kdhler manifold if the complex
structure satisfies
(VxJ)Y =0,

for all vector fields X and Y.

Ezample 3. S? x S3 is an example of a nearly Kéahler manifold which is not a Kéhler manifold.
Its nearly Kéhler structure is described in Chapter

1.1.3 Semi-Riemannian manifolds
Definition 7. A symmetric bilinear form b on V is
(i) positive [negative| definite provided v # 0 implies b(v,v) > 0[< 0],

(7i) positive [negative] semidefinite provided b(v,v) > 0,[< 0] for allv € V,

24



(iii) nondegenerate provided b(v,w) = 0 for all w € V' implies v = 0.
Also, b is definite provided either alternative in (i) [(ii)] holds.

Definition 8. The index v of a symmetric bilinear form b on V is the largest integer that is
the dimension of a subspace W C 'V on which by, is negative definite.

Notice that we call g a scalar product on a vector space V' if it is a nondegenerate symmetric
bilinear form on V', whereas an inner product is a positive definite scalar product. The results
presented in the following part concern the case when the positive definiteness of the inner
product is weakened to nondegeneracy.

A symmetric nondegenerate (0,2) tensor field g on a smooth manifold M of constant index
is called a metric tensor on M. That is, g € T (M) smoothly assigns to each point p € M a
scalar product g, on the tangent space T),M and the index of g, is the same for all p.

Definition 9. Thus, a smooth manifold M furnished with a metric tensor g is called a
semi- Riemannian manifold.

Notice that the semi-Riemannian manifolds are often called pseudo-Riemannian mani-
folds. We will use (-,-) as an alternative notation for g.
The value v of the index of g, on a semi-Riemannian manifold M is called the index of M:
0 <v<dimM. If v =0, M is a Riemannian manifold; each g, is then a (positive definite)
inner product on T,M. If v =1 and n > 2, M is a Lorentz manifold.
The dot product on R™ gives rise to a metric tensor on R" with

(Up,wp) =v-w = Zviwi,

n n
where v = >~ v;0;, v = Y v;0; in the basis {9;} of T,M. In any geometric context R" will
i=1 i=1
denote the resulting Riemannian manifold, called the Fuclidean n-space. For n > 2, R} is
called the Minkowski n-space.

If we denote by

=1 for 1<i<vy,
ST 41 for v+1<i<n,

then the metric tensor of R} can be written g = > edu; ® du;. The geometric significance of
the index of a semi-Riemannian manifold derives from the following trichotomy:
We say that a tangent vector v € M is

spacelike if (v,v) > 0 or v =0,
null if (v,v) =0 and v # 0,
timelike if (v,v) < 0.

The set of all null vectors in T),M is called the nullcone at p € M. The category into
which a given tangent vector falls is called its causal character. This terminology derives
from relativity theory, and particularly in the Lorentz case, null vectors are also said to be
lightlike.

As for a Riemannian manifold, on a semi-Riemannian manifold M there is also a unique
connection V such that
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(i) V,\W]=VyW - VwV,
(i) X(V,W) =(VxV,W) +(V,VxW)

for all X, V, W tangent vector fields on M. V is called the Levi-Civita connection of M, and
is characterized by the Koszul formula in .

Let M be a semi-Riemannian manifold with the Levi-Civita connection V. Then relation
defines the Riemannian curvature tensor of M. Given the metric (-,-) on T,M, we
associate the curvature tensor R to the curvature R, defined by

R(X,Y,Z, W)= (R(X,Y)Z, W),

which satisfy the properties from (|1.3)).
Let x,y € T,M. Then we define the Ricci curvature as

Ric(z,y) =

! 1t7’ace{z — R(z,2)y},

for all z € T,M. Let {21, 22,...,2,} be an orthonormal basis of T, M, that is (z;, zj) = 0, for
i # j and (z;, z;) = &;, where ¢; = £1. Then, we rewrite the Ricci curvature and define the
scalar curvature for M as the following averages, respectively:

1
Ricy(z,y) = —] Z»si(R(zi,:U)y, zi),t=1,2,...,n—1, (1.6)

1 . 1 .
K(p) = - Zchp(zj) = m Zej8¢<R(zj,zi)zi,zj>7 i=12,...,n, (1.7)
12

where (z;, z;) = ;.
A two-dimensional subspace o of the tangent space T, M is called a tangent plane to M at p.
For tangent vectors v, w, define

Q(v,w) = (v, v){w,w) — (v,w>2.

A tangent plane o is nondegenerate if and only if Q(v,w) # 0 for one- hence for every- basis
v,w for o. Q(v,w) is positive if g|, is definite, negative if it is indefinite. Let o C T,M be a
nondegenerate tangent plane to M at p. The number

(R(w,v)v,w)
Qv,w)

is independent of the choice of basis v, w for o and is called the sectional curvature K(o) of
o at p.

K(v,w) =

1.2 Submanifolds

Definition 10. Let M™ and N™ be differentiable manifolds.

e A differentiable mapping ¢ : M — N is said to be an immersion if dpy, : Ty M — Ty,) N
is injective for all p € M.
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e If, in addition, ¢ is a homeomorphism onto ¢(M) C N, where ¢(M) has the subset
topology induced from N, we say that ¢ is an embedding.

e IfM C N and the inclusioni : M — N is an embedding, we say that M is a submanifold
of N.

It can be seen that if ¢ : M — N is an immersion, then m < n; the difference n — m is
called the codimension of the immersion ¢.
A mapping which associates to each point p € M a tangent vector to N at ¢(p) is called a
vector field along ¢. Then d¢ maps the tangent space of M at p € M to a subspace of the
tangent space of N at ¢(p). Since ¢ is injective, this subspace has dimension m. Usually, this
subspace is identified with the tangent space at the point p. Tangent vectors to N which do
not belong to this subspace are called transversal vectors to M.
Affine immersions. Let M and N be affine manifolds. We denote the connection of M
by V and the connection on N by D. Then we call an immersion f an affine immersion if
there exist (n — m)-transversal vector fields &; such that for every X, Y € X(M) we have

n—m
DY o =dp(VxY)+ Y h(X,Y)E,

i=1
where X (¢(q)) = dp(X(q)), Y(6(q)) = dp(Y (¢q)) and h*(X,Y) are symmetric bilinear forms
on M. It can be shown that this definition is independent of the extension of d¢(X) and
do(Y).
Isometric immersions. Suppose now that (M, g) and (N, g) are Riemannian manifolds.
Then, we call an immersion ¢ : M — N an isometric immersion if ¢*g = g. We will make
similar identifications as for affine manifolds and we will identify the metric g with ¢*g, and
denote both by (-, -).
Gauss and Weingarten formulas. A vector field £ is called a normal vector field if, after
making the necessary identifications, we have

(6, X) =0

for all tangent vector fields X to M. The normal space at a point p € M will be denoted
by TPLM . Thus, it is easy to see that every vector field on N can be decomposed into a
tangent vector field to M and a normal vector field to M. Therefore, if we denote by D
the Levi-Civita connection on N, the formula of Gauss gives the decomposition of DxY', for
X, Y € X(M) as

DxY =VxY +h(X,Y).

It is easy to see that V is actually the Levi-Civita connection on M and h(X,Y) is a bilinear
and symmetric normal vector field on M. Then, h is called the second fundamental form of
the immersion ¢.

For X € X(M) and £ a normal vector field, we have the following decomposition along a
tangent and the normal direction £, given by the formula of Weingarten:

Dx€ = —Ac¢X + Vi€

A is called the Weingarten endomorphism (or the shape operator) and V= is called the normal
connection on M. They satisfy the following properties:

Af151+f2§2 = flAEl + f2A§2a <h(X, Y)7§> = <A£Xa Y>7
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where f1, fo € C*°(M) and &1, & normal vector fields.

We call M a totally geodesic manifold if h = 0. This implies that the geodesics in M are also
geodesics in V.

Minimal submanifolds. For a point p € H we define the mean curvature vector H by

H(p) = — > hleie),
=1

where {e1,e2,...,en} is an orthonormal basis of T,M. We call M a minimal submanifold if
H is identically zero.
Curvature. For normal vector fields ¢ and n and tangent vector fields X and Y we define
[Ag, Ay X = AcAp X — A AeX,
RH(X,Y)¢ = VxVIYE = VyVEXE — Vig €

We call Rt the normal curvature tensor, which is linear in each argument.

Theorem 27. (the equations of Gauss,Codzzi and Ricci) Let R denote the curvature tensor
of N and let t(resp.) ™ denote the tangent (resp. the normal component) of a vector field, we
get that

R(X,Y)Z = (R(X,Y)2)" + Apy, )X — Apx,2)Y,

(R(X,Y)E ) = (RH(X,Y)E ) — ([Ae, 4,]X,Y)
Notice that for submanifolds of real space forms these equations reduce to
R(X7 Y)Z = C(<Y7 Z>X - <X7 Z>Y) + Ah(Y,Z)X - Ah(X,Z)Ya

(Vh)(X,Y, Z2) = (VA)(Y, X, Z),
<RL(X7 Y)fv 77> = <[A§7 An]X> Y>

Let ¢ be a normal vector field on M. We say that & is parallel at a point p, if VX€ =0,
for all v € T,M. We call £ parallel on M if £ is parallel at every point p of M.
The derivatives of h are called higher order fundamental forms. The first two are defined by

(Vh)(X,Y,Z) = Vih(Y, Z) — h(VxY,Z) — h(Y,VxZ),
(V2h)(X,Y,Z, W) = V%(VR)(Y, Z, W) — (VR)(V XY, Z,W) — (VR)(Y,Vx Z,W) — (Vh)(Y, Z,V x W),

where X, Y, Z, W € X(M). A straightforward computation shows that the following formula,
called the Ricci identity, holds:

(V2R)(X,Y, Z,W)—(V2h)(Y, X, Z,W) = R*(X, Y)W Z,W)—h(R(X,Y)Z,W)—h(X,R(Y, Z)WV).

1.2.1 On affine hypersurfaces

Let f : M — R""! be a nondegenerate affine hypersurface immersion. Let D be the covariant
derivative on R"*! and € the volume form given by Q(u, ..., un+1) = det(ug, ..., uns1), such
that R"*! is endowed with its standard equiaffine structure (D,2). In a general setting, an
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affine manifold (M", V) is said to be equiaffine if there exists a volume form w, i.e. a non-
vanishing n-form, on M which is parallel with respect to V:

(VXW)(Xl .. ,Xn) = X(W(Xl, e ,Xn)) — W(VXXl, e ,Xn) — ...
—w(X1,...,VxXn). (1.8)

In this case we may also say that (V,w) is an equiaffine structure on M™. In what follows,
we briefly recall the construction of an equiaffine structure on an affine hypersurface M" in
R+, For more details we refer to [46].

Blaschke approach. First,let p € M and X,Y € T, M. If we choose an arbitrary transversal
vector field 7 we can decompose DxY into a tangent and a normal part, denoted as:

DxY = VLY + (X, Y)n.

It is easy to see that V" is a connection on M and h" is a symmetric bilinear form. Note
that the fact whether this bilinear form is degenerate or not is independent of the choice of
transversal vector field 7. Notice that M is called nondegenerate if and only if this bilinear
form is nondegenerate. Hence, locally there exists a volume form on M associated to h',
given by

(X1, Xn) = /| det (X, X5) |

Next, we want to introduce a canonical transversal vector field £. In order to make a good
choice, we define w,(X1,...,X,) = Q(Xy,...,Xp,n), for Xi,..., X, vector fields on M"
and we ask that the volume forms we and wye coincide and that (V¢ we) is an equiaffine
structure on M™. Notice that these conditions guarantee the existence of a unique (up to
sign) transversal vector field &, see [46]. It is called the affine normal vector field, or the
Blaschke normal vector field. For convenience, we will denote from now on V := V¢,
Finally, in terms of this transversal vector field we get for M the formulas of Gauss and
Weingarten, respectively, as follows:

DxY = VxY +h(X,Y)E, (G)
Dx¢ = —SX, (W)

where we call V the induced affine connection, h the affine metric, & the affine normal field
or Blaschke normal field and S the affine shape operator. An affine hypersurface is called a
(proper) affine sphere if S is a (non zero) multiple of the identity.

Moreover, let R denote the curvature tensor of M"™. Then, the following fundamental equa-
tions hold with respect to the induced affine connection:

Gauss equation: R(X,Y)Z =hY,Z2)SX — h(X, Z)SY;
Codazzi equation for h : (VR)(X,Y,Z) = (Vh)(Y, X, Z);
Codazzi equation for S : (VxS)Y = (Vy9)X;

Ricci equation: h(SX,Y)=h(X,SY).

The Codazzi equation implies that for a proper affine sphere, the multiple of the identity is
constant, in which case, by applying a homothety of the ambient space, we may assume that
S = el, where ¢ = £1. Moreover we have that £ + ¢f, where f denotes the position vector,
is a constant vector which is called the center of the proper affine hypersphere. By applying
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a translation in the ambient space we may, of course, always assume that the center is the
origin.
As V is not necessarily compatible with the affine metric A, it is interesting to look at the

difference between the affine connection and the Levi-Civita connection (V). Thus, we obtain
the difference tensor K, a (1,2)-type vector field defined as:

K(X,Y)=VxY — VyY.

By convention, one may also write KxY instead of K(X,Y'). The classical Berwald theorem
states that K wvanishes identically if and only if M is congruent to a nondegenerate quadric.

Proposition 1. We have the following properties for K :
1. K(X,)Y)=K(Y,X);

2. for any X we have that Y — KxY is a symmetric linear map and traceKx = 0 (the
apolarity condition);

3. h(K(X,Y),Z)=hK(X,Z),Y).
Moreover, it is easy to prove that Vh is related to K by:
Vh(X,Y,Z)=-2h(Z,K(X,Y)).
We denote by [Ky, Ky] and VK the following;:

[Kx,Ky|Z = KxKyZ — KyKxZ,
VK(X,Y,Z)=VxK(Y,Z) - K(VxY,Z) - K(Y,VxZ2).

Then, the equations of Gauss, Ricci and Codazzi, respectively, may also be written out with
respect to the Levi-Civita connection as follows:

A

R(X,Y)Z = % (MY, 2)SX — h(X,Z)SY + h(SY, Z)X — h(SX,Z)Y} — [Kx, Ky]Z,

VK(X,Y,Z)-VK(Y,X,Z) = %{h(Y, Z)SX — h(X,Z)SY — h(SY,Z)X + h(SX,Z)Y},

(VxS)Y — (VyS9)X = K(Y,5X) — K(X,SY),
(VR)(X,Y, Z) = (Vh)(Y, X, Z)
and
h(X,SY)=h(SX,Y).

We have the following Ricci identity:

V2K(X,Y,Z,W) - V2K(Y,X,Z,W) =
R(X,Y)K(Z,W) - K(R(X,Y)Z,W) - h(Z,R(X,Y)W). (1.9)

Homogeneity. A nondegenerate hypersurface M of the equiaffine space R*! is called
locally homogeneous if for all points p and ¢ of M, there exists a neighborhood U, of p in
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M, and an equiaffine transformation A of R"*1 ie. A € SL(n + 1,R) x R™"! such that
A(p) = qand A(U,) C M. If U, = M for all p, then M is called homogeneous. Let G be the
pseudogroup defined by

G ={AeSL(n+1,R)x R"™|3U, open in M : A(U) C M},

then M is locally homogeneous if and only if G “acts” transitively on M. If M is homogeneous,
then G is a group and every element of G maps the whole of M into M. The following
proposition is probably well known, however, because of the lack of an explicit reference, a
small proof is included.

Proposition 2. Let M"™ be a nondegenerate homogeneous affine hypersurface. Assume that
G C SL(n+ 1,R). Then M is an affine sphere centered at the origin.

Proof. We denote the immersion by f. Let p and ¢ be in M and let g be the affine transfor-
mation which maps p to g. We have that

£(g9(p)) = dg(&(p)),

and
dg(f(p)) = g(f(p)) = f(q)

Moreover as M is homogeneous we know that the position vector can not be a tangent vector
at one point (and therefore at every point). Indeed if that were the case, we would habe
a tangent vector field X such that X (p) = f(p). This would imply that Dy X = Y, and
therefore h(X,Y) = 0 for any vector field Y. This implies that the immersion f would be
degenerate.

Therefore we may write £ = pf + Z, where Z is a tangent vector field and p a function. As
M is locally homogeneous and g belongs to SL(n + 1,R) it follows that p is constant. The
construction of the affine normal of [46] then implies that M is an affine sphere centered at
the origin. O

1.2.2  On surfaces in E? and Lorentzian space

Definition 11. A subset S C R is a regular surface if, for every p € S, there ezist a
neighborhood V. C R3 and a map r: U — VNS, U C R? an open set, VNS C R? such that

(i) r is differentiable: for r(u,v) = (x(u,v),y(u,v), z(u,v)), (u,v) € U, the functions x,y, z
have continuous partial derivatives of all orders in U,

(ii) r is a homeomorphism: since r is continuous by condition (i), this means that r has an
inverse 1 : VNS — U which is continuous,

(iii) (the reqularity condition) r, X r, # 0.

Tangent plane. By a tangent vector to S at a point p € S, we mean the tangent vector
a/(0) of a differentiable parametrized cure a : (—e,e) — S with a(0) = p, € > 0. The set of
all tangent vectors on S at a point p € S forms the tangent space at p € S.

Proposition 3. Let r : U — S be a parametrization of a regular surface S and let ¢ € U.
The vector space of dimension 2, drq(]R2) C R3, coincides with the set of tangent vectors to

S at r(q).
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The first fundamental form. The natural inner product of R?* > S induces on each
tangent plane 7,5 of the regular surface S an inner product, to be denoted by (-,-),. If
wy,we € TpS C R? then (w1, w2)p is equal to the inner product of w; and wy as vectors in
R3. To this inner product, which is a symmetric bilinear form, there corresponds a quadratic
form I, : T,S — R, called the first fundamental form of the surface S at the point p, and
which is given by

I(w) = (w,w), =| w [> 0.

The first fundamental form is the expression of how the surface S inherits the natural inner
product of R3. Geometrically, the first fundamental form allows us to make measurements on
the surface (lengths of curves, angles of tangent vectors, areas of regions) without referring
back to the ambient space R? where the surface lies. It can be expressed in local coordinates as
well. Let r(u,v) be a parametrisation of S at p and let a(t) = r(u(t),v(t)) be a parametrized
curve on S, with a(0) = p. Then for the basis {ry,7,} of T,S, we have

I,(d(0)) = B(W)? + 2Fu'v' + G(v')?,

where
E=(ry,ru), F=(ruy,m), G=(rym) (1.10)

are the coefficients of the first fundamental form. Notice that we define the area element of
the surface as dM = vV EG — F?du A dv.

Let 7 : U C R? — S be a parametrization of a regular surface S around a point p € S.
We can choose a unit normal vector at each point of r(U) by

Ty X Ty

N(q) (q), g €r(U).

_\ruxn}]

Thus, we have a differentiable map N : r(U) — R? that associates to each ¢ € r(U) a unit
normal vector N(q). More generally, if V' C S is an open set in S and N : V — R3 is a
differentiable map which associates to each ¢ € V' a unit normal vector at ¢, we say that N is
a differentiable field of unit normal vectors on V.

Orientable surface. We shall say that a regular surface is orientable if it admits a differen-
tiable field of unit normal vectors defined on the whole surface; the choice of such a field N
is called an orientation of S.

The Gauss map. A large number of local properties of S at p can be derived from the study
of the so called Gauss map, which, in a general sense, measures the rate of change at p of the
unit normal vector field N on a neighborhood of p.

Definition 12. Let S C R? be a surface with an orientation N. The map N : S — R? takes
its values in the unit sphere S? = {(x,y,2) € R3%; 2% + y?> + 22 = 1}. The map N : S — §?
thus defined is called the Gauss map of S.

The second fundamental form. Notice that the Gauss map is differentiable and that
the differential dN, of N at p € § is a linear map from 7,5 to TN(p)SQ. Since 7,5 and
TN(p)82 are parallel planes, dN,, can be looked upon as a linear map on 7,,5. The Gauss map
dN, : T, — T,S is a self-adjoint linear map and this fact allows us to associate to dN, a
quadratic form in 7,5, I, as follows.

I,(v) = —(dNy(v),v), veT,S.
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The quadratic form I is called the second fundamental form of S at p.
Curvature. Let C' be a regular curve in S passing through p € S, k the curvature of C' at p,
and cos = (n, N), where n is the normal vector to C' and N is the normal vector to S at p.
The number k,, = kcos#@ is then called the normal curvature of C' C S at p.
We know that for the self-adjoint operator dN,, there exist an orthonormal basis {e1, e2} € T},
such that

de(el) = —k‘lel, de(EQ) = —k‘leg. (1.11)

Moreover, ki and k2 (k1 > k2) are the maximum and minimum of the second fundamental
form II), restricted to the unit circle of 7},5; that is, they are the extreme values of the normal
curvature at p.

Definition 13. Let p € S and let AN, : T,S — T,S be the differential of the Gauss map.
The determinant of dN, is the Gaussian curvature K of S at p. The negative of half of the
trace of dN) is called the mean curvature H of S at p. In terms of the principal curvatures

we can write P
K =kiky, H=7=2 : 2 (1.12)
We may express the previous invariants using local coordinates as well. Let r(u,v) be
a parametrisation of S at p and let a(t) = r(u(t),v(t)) be a parametrized curve on S, with

a(0) = p. Then for the basis {ry,r,} of T),S, let dN = (aij), i, = 1,2. The following hold.

I,(c/(0) = e(u)? + 2fu'v" + g(v')?,
for

e = —<Nu,7"u> = (N, Tuu)a
= —(Nv,ru> = <N, Tuv)a
g= —(N,U,T‘v> = <N77‘vv>7

and, moreover,

o eg— )
K = det(a;j) = G — B (1.13)
and 1 1 1eG — 2fF + gE
_1 _ 1 _leG - g
H = 2(k1 + k2) 2(0011 + az) 5 EG_FI (1.14)

Lorentzian case. We consider the Lorentzian-Minkowski space L3, that is, R? endowed
with the metric (dz)? 4 (dy)? — (dz)?. A surface immersed in L2 is said non-degenerate if the
induced metric on S is not degenerate. The induced metric can only be of two types: positive
definite and the surface is called spacelike, or a Lorentzian metric, and the surface is called
timelike. For both types of surfaces, the mean curvature H and the Gauss curvature K are
defined and they have the following expressions in local coordinates X = X (s,1):

llG—QmF—FnE . In —m?
2 EG — F? ’ T EG-—F%

where ¢ = —1 if S is spacelike and ¢ = 1 if S is timelike. Here {E, F, G} and {l,m,n} are the
coefficients of the first and second fundamental forms with respect to X, respectively. See
[34] for more details.

H=¢
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Chapter 2

On the Nearly Kihler S° x S°

In this chapter we first present the homogeneous nearly Kihler structure of S? x S? and we
mention some of the known results from [20] and [59]. Next, we first explain how the metric,
the almost complex structure and the almost product structure of the homogeneous nearly
Kihler S? x S? can be recovered from the submersion 7 : S x S x §3 — S3 x S3, together
with some further properties of S* x S3. Then, in the two following subsections, we present
the results obtained in [3] and [4] , respectively, as joint work between B. Bektasg, M. Moruz,
J. Van der Veken and L. Vrancken.

The nearly Kihler structure of S* x S3. By the natural identification T{, ;) (S* x §%) =
T,S® & T,S3, we may write a tangent vector at (p,q) as Z(p,q) = (U(p,q),V(p,q)) or simply
Z = (U,V). We regard the 3-sphere as the set of all unit quaternions in H and we use the
notations i, j, k to denote the imaginary units of H. In computations it is often useful to write
a tangent vector Z(p,q) at (p,q) on S? x S? as (pa, ¢B), with a and 8 imaginary quaternions.
This is possible as for v € T),S* we know that (v,p) = 0 and, in addition, for p € S* we
can always find © € H such that v = pv . Moreover, Re(?) = 0 as 0 = (p,v) = Re(pv) =
Re(ppt) = Re(?). Hence, we will work with tangent vectors at (p,q) € S* x S? of the form
Z(p,q) = (pU,qV), for U,V imaginary quaternions.

We define the vector fields

Ei(p.q) = (9i,0),  Fi(p,q) = (0, i),
Es(p,q) = (p3,0),  Fa(p,q) = (0, 47), (2.1)

Es(p,q) = —(pk,0), F3(p,q) = —(0,qk),

which are mutually orthogonal with respect to the usual Euclidean product metric on S3 x S3.
The Lie brackets are [E;, Bj] = —2¢,Ey, [Fi, Fj] = —2¢4,F), and [E;, Fj] = 0, where
1, if (ijk) is an even permutation of (123),
gijk = 4 —1, if (ijk) is an odd permutation of (123),

0, otherwise.

The almost complex structure J on the nearly Kihler S? x S? is defined by

J(pU,Vq) (p(2V = U),q(-2U +V)), (2.2)

1
(pq) = ﬁ
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for U,V imaginary quaternions and therefore (pU, ¢V') € T(y o (S? x S?). The nearly Kéhler
metric on S? x S? is the Hermitian metric associated to the usual Euclidean product metric
on $? x S3:

o2, 7)) :%«Z, 2+ (J7,77')) (2.3)

_4
3

where Z = (pU,qV) and Z' = (pU’,qV’). In the first line (-,-) stands for the usual Euclidean
product metric on S* x S and in the second line (-,-) stands for the usual Euclidean metric
on S3. By definition, the almost complex structure is compatible with the metric g.

From [7] we have the following lemma.

(0. 0) +{V, V) = S{U V) + (U, V),

Lemma 1. The Levi-Civita connection V on S® x S® with respect to the metric g is given by

= —ciju ?E Fy = Sk (Ey — Fy)
\Y

iEj -
7B =5 (F — E)

Let G := VJ. Then G is skew-symmetric and satisfies that
G(Xa JY) = —JG(X,Y), g(G(XaY)aZ)+g(G(X7 Z)aY) =0, (25)

for any vectors fields X,Y, Z tangent to S? x S3. Therefore, S3 x S? equipped with ¢g and J,
becomes a nearly Kéhler manifold.
The almost product structure P introduced in [7] and defined as

P(pU,qV) = (pV,qU), VZ = (pU,qV) € T(4(S* x §?), (2.6)

plays an important role in the study of the Lagrangian submanifolds of the nearly Kahler
S3 x S3. It has the following properties:

P%? =1Id, i.e. P is involutive, (2.7)
PJ=—JP, ie. P and J anti-commute, (2.8)
g(PZ,PZ") = g(Z,7"), i.e. P is compatible with g, (2.9)
g(PZ, 7"y = g(Z,PZ"), ie. P is symmetric. (2.10)

Moreover, the almost product structure P can be expressed in terms of the usual product
structure QZ = Q(pU, pV') = (—pU, ¢V') and vice versa:

QZ = —(2PJZ — JZ),

Sl

PZ = (Z -3QJZ)

N | =
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and we know from [20] that
PG(Z,Z"y+G(PZ,PZ") =0, (2.11)
(V4P)7 = %J(G(Z, PZ')+ PG(Z,7')). (2.12)

In addition, the Riemannian curvature tensor R on (S? x §3,g,.J) is given by

RUVIW = (VWU g(U,W)V)

1
2

+ = (9(PV,W)PU — g(PU,W)PV

—(g(JV,W)JU = g(JU,W)JV — 29(JU,V)JW)
(2.13)

w\r—w—l

g(JPV,W)JPU — g(JPU, W)JPV).
Next, we recall the relation between the Levi-Civita connections V of g and VZ of the
Euclidean product metric (-, ).

Lemma 2. 20/ The relation between the nearly Kdihler connection V and the Euclidean
connection V¥is

VEY = VxY + = (JG(X PY) + JG(Y, PX)).

We recall here a useful formula, already known in [20].
Let D be the Euclidean connection on R®. For vector fields X = (X1, X3) and Y = (Y1, Y?)
on S? x S?, we may decompose DxY along the tangent and the normal directions as follows:

DxY =VEY + = <DXY (p, ))(p,q)+%<DXY,(—p,q)>(—p,Q)- (2.14)

Here, notlce the factor due to the fact that (p,q) and (—p, q) have length v/2. Moreover, as
(Y, (p,q)) =0, (2.14)) is equ1valent with

1 1
DxY = VXY = (Y, X)(p,q) — 5 (¥, (=X1, X2))(=p, q).
In the special case that Yo = 0, the previous formula reduces to

Dx(Y1,0) = VE(¥1,0) — (X1,Y1)(p,0). (2.15)

We find it appropriate here to prove an additional important formula not explicitly mentioned
in [7], that allows us to evaluate G for any tangent vector fields.

Proposition 4. Let X = (pa,qB),Y = (pv,qd) € T(p7q)S3 x S3. Then

GX,)Y)= (p(Bxy+axd+axy—28x%x0),q(—axd—pFXxXy+2axy—LFx0)).

2
3v3

(2.16)
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Proof. As «is an imaginary unit quaternion, we may write « = a1-i+ag-j+as-k and similarly
for B,7,0. Then, using (2.1)), we write for more convenience in computations X = U, + V3,

where U, = a1 Ey + agBEy — a3E3 and Vg = B1F) + foFy — B3F3. Similarly, Y = U, 4 V5. We
now use the relations in (2.4) and compute

9
(Uaxp — Vaxp)s GUa,Up) = —=(Uaxp + 2Vaxp)-

G(UOHVB) = 3\/3

2
3v3
As PU, = V,, we obtain that

2
G(Vo, V) = ———=Viaxg + 2Uax3)-
(Vo Vi) = =2 \/g( <8 <)
Finally, by linearity we get the relation in (2.16)). O

From now on we will restrict ourselves to 3-dimensional Lagrangian submanifolds M of
S? x §3. Tt is known from [20] and [59] that, as the pull-back of T(S? x S3) to M splits into
TM & JT M, there are two endomorphisms A, B : TM — T'M such that the restriction P|pps
of P to the submanifold equals A+ JB, that is PX = AX +JBX, for all X € TM. Note that
the previous formula, together with the fact that P and J anti-commute, also determines P
on the normal space by PJX = —JPX = BX — JAX. In addition, from the properties of .J
and P it follows that A and B are symmetric operators which commute and satisfy moreover
that A2 + B2 = Id (see [20]). Hence A and B can be diagonalised simultaneously at a point
p in M and there is an orthonormal basis e1, e2, e3 € T, M such that

Pe; = cos(26;)e; + sin(26;)Je;. (2.17)

The functions 6; are called the angle functions of the immersion. Next, for a point p belong-
ing to an open dense subset of M on which the multiplicities of the eigenvalues of A and
B are constant (see [53]), we may extend the orthonormal basis ej,eg,e3 to a frame on a
neighborhood in the Lagrangian submanifold. Finally, taking into account the properties of
G we know that there exists a local orthonormal frame {E;, E2, E3} on an open subset of M
such that

AEz‘ = COS(QQZ‘)EZ' BEZ‘ = sin(20i)Ei (2.18)

and

1

Notice that, in a general sense, for an immersion f : M — S3xS? there exist A, B : TM — TM
with eigenvectors E; and corresponding angle functions 6; such that, on the image of M we

may write by and :
Pdf(Ei) = df(AEl) + de(BEz) ~ Pdf(E,) = COS(QQi)df(EZ') + sin(29i)de(Ei), (2.20)

fori=1,2,3.
The equations of Gauss and Codazzi, respectively, state that
5
R(X,Y)Z = < (9(Y, )X (X, 2)Y)

+ % (g(AY, Z)AX — g(AX, Z)AY + ¢(BY,Z)BX — g(BX, Z)BY) (2.21)
+[Sux,Sv])Z
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and

Vh(X,Y,Z)-Vh(Y,X,Z) =

1
~ (g(AY, Z2)JBX — g(AX, Z)JBY — g(BY, Z)JAX + g(BX, Z)JAY).

3
(2.22)

For the Levi-Civita connection V on M we introduce (see[20]) the functions wfj satisfying

3
o k kE _ J
Vi Ej = g wi; By and - wi; = —wy.
k=1

As usual, we write:

VxY =VxY +h(X,Y),
VxJY = —Sjy X + VxJY,

where h is the second fundamental form on M and S;jy is the shape operator in the direction
of JY. As for the Lagrangian manifolds of a strict 6-dimensional nearly Ké&hler manifold we
have that G(X,Y") is normal (see [27], [52]), it follows that

ViJY = JVxY +G(X,Y),
Jh(X,Y)=—-S;vX.

The latter equation implies in particular that the cubic form g(h(X,Y), JZ) is totally sym-
metric. We denote by h?j the components of this cubic form on M:

hiy = 9(M(E;, Ej), J Ey). (2.23)
We recall the following lemmas.

Lemma 3. [20] The sum of the angles 61 + 02 + 05 is zero modulo .

Lemma 4. [20] The derivatives of the angles 0; give the components of the second fundamental
form '
E;(0;) = —hj;, (2.24)

except h3,. The second fundamental form and covariant derivative are related by

V3

hfj cos(0; — 0y) = ( 5

ey; — wiy) sin(60; — Or). (2.25)

Lemma 5. [20)] If two of the angles are equal modulo m, then the Lagrangian submanifold is
totally geodesic.

Remark 1. By Lemmalp] we may see that if the Lagrangian submanifold is not totally geodesic,
then sin(¢; — 6;) # 0, for i # j.
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2.1 Properties of the nearly Kihler S? x S? as a Riemannian
submersion

In this section we show how the nearly Kéhler metric g and the almost complex structure J of
S3xS? can be recovered in a natural way by looking at the submersion 7 : S3xS?xS? — S3xS3.
The results may be found in [42] and one should note that the approach used here is also
more or less implicitly present in [25], [26], [40] and [37].

We also show how the almost product structure P defined in [7] can be introduced using
the submersion 7 from a structure on S? x S? x S3. This way we actually obtain three different

almost product structures
Py = cos(%4)P — sin(%%) JP.

We show in the final subsection that these are precisely the three possible almost product
structures which preserve the basic equations for S? x §? derived in [7].

We also show how the maps which interchange the components of S? x S3 x S3 give rise
to isometries of S* x S3. We call F; (resp. F2) the isometry corresponding to interchanging
the first two coordinates (respectively interchanging the first and third coordinate). We show
that both these isometries preserve up to sign the almost complex structure. And even
though they do not preserve the almost product structures individually, they do preserve the
set of almost product structures {P;, P», P3}. This is of course the reason why in several
classification theorems for Lagrangian submanifolds, see for example [3], [4], [59], one often
has 3 isometric examples with slightly different properties of the almost product structure P.
These examples are precisely obtained one from another by applying the isometries F; and
Fo. The only exception so far to this is the classification of non totally geodesic Lagrangian
submanifolds with constant sectional curvature in [20]. This is due to the special property of
the angle functions (which determine P) of these last examples.

2.1.1 The structure on S x $% x §3

We consider S3 xS xS? with its usual induced structure. For tangent vectors (g1 Vi, g2Va, g3V3)
and (91W1792W27 g3W3) at the pOint (91792> 93) we have that ‘/1) V27 ‘/3’ W17 W27 W3 are ima‘g_
inary quaternions and that the induced metric is given by

3
((91VA, g2Vh, g3Vh), (91 W1, 92 W, gsWa)) = > Re(geVeWoedie)

— Y Re(geViWige)

!
A
S
S
N

We define the following vector fields on S x §? x S3 as

E1(91792,93) = (9193i9370’0)a Fl(glag2ag3) = (0792.@32‘9370)7 Gl(gla927g3) = (0707i93>7
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E2(91792ag3) = (glg3jg370a0>7 F2(917927.g3) = (079293jg3a0)7 GQ(glag27g3) = (Ovong?))a
E3(g1>g2a.g3) = _(glg3kg37070)7F3(91>921.g3) = _(0792g3kg370)7G3(91792ag3) = _(0707kg3)

Note that using the induced metric, it immediately follows that E1, Fo, F3, Iy, Fb, F3, G,
G2, G5 form an orthonormal basis of the tangent space.
We also have that for any (g1, g2, g3), 71 given by

7 (t) = (9193¢" 93, 92, 93)

is a curve in S? x S? x §? with initial conditions 1 (0) = (g1, g2, g3) and ¥ (0) = E1(g1, 92, g3)-
Similarly we have that the curves v2(t) = (g1, 9293¢"gs3,93) and v3(t) = (g1, 90,€"g3) are
curves in S? x S3 x S? with initial conditions respectively

72(0) = (91,92,93),  72(0) = Fi(g1,92,93),
73(()) = (91792793)7 7{'}(0) :Gl(glag2ug3)'
By replacing ¢ with j and —k in the expressions of the curves 1, y2 and 3, we define similarly

the corresponding curves for the other vectors in the basis .
We also have on each tangent space the natural linear applications:

T(g1V1, 92V2, 93V3) = (91V2, 92V3, g3 V1),
Pi(g1 V1, 92Va, 93V3) = (91V2, 92VA, 93V3),
Py(91V1, g2V, 93V3) = (g1V3, 92Va, gsVA,)
P3(g1V1, 92Va, 93V3) = (91V1, 92V3, g3V2).

Note that these applications all preserve the induced metric. Moreover we have that 73 =
I = P? =P} =P} P3P, = 7. In terms of the previously induced vector fields, we have that

TE) = Gy, TF, = Ey, TGy = Fy,
P\E, = Fy, PF,=E, PG,=G,,
DBy =Gy,  PF =F, PG, = Ey,
PsE,=FE;,  PsF,=Gy, PG,=F,

2.1.2 The nearly Kihler S? x S? as a Riemannian submersion
We look at the map
m: S x 8% x §* = §° x S 1 (91,92, 93) — (9103, 9273)-
It follows immediately that
(g1, 92,93) = 7(91, 92, 95) <= (91,92 95) = (910, 920, g3a),
where a € S? is a unit quaternion. We have that

dn(E1(g1,92,93)) = %W(glggeitg37g27g3)|t:0
= 4(9185¢™, 9293)l1=0
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9193, 9293)
ﬂ-(gla 92, 93))

1

—~~

1

By similar computations we obtain that

dr(E¢(g1,92,93)) = Ee(m(g1,92,93)),
dm(Fy(g1, 92, 93)) = Fu(m(g1, 92, 93));
dﬂ-(Gf(ghg%g?))) = _EZ(T((91792793)) - Ff(ﬂ-(glvg%g?)))'

This implies that dr is surjective (and hence 7 is a submersion). We also see that the space of
vertical vectors V is given by V = span{ E1+ F1+G1, Ea+F>+Go, E3+ F3+G3}. Therefore, we
have the space of horizontal vector fields H spanned by {%(2Eg —Fy—Gy), %(—E@—FQF@ —Gy)}.
It also follows that

dr(3(2E; — Fy — Gy)) (91, 92, 93) = Eo(n(g1,92,93),
dr(3(—E¢ + 2F, — Go)) (g1, 92, 93) = Fo(m(g1, 92, 3)-

Note that

< §(2B¢ — Fy — Gy), 5(2E; — F) — G) >
< 5(2B0 — Fy — Gy), 5(—E; + 2F) — G) >
< 3(—Ei+2F, — Gy), 2(—E; + 2F; — G}) >

2
250
1
— Lo

2
250

Moreover, as the right-hand sides are independent of the point (g1, g2, g3) for which 7(g1, g2, 93) =
(p, q), we see from the above formulas that we can define the canonical metric, g5 on S? x S3,
of the submersion 7 by

9s(Ev, Eo) = g5(Fy, Fy) = —29(Ey, Fy) = 2,

and such that all other components vanish. Note that g = 2¢g5 and therefore the nearly Kahler
metric is twice the metric induced by the submersion.

Theorem 28. The map
m: S xS xS* = §° xS : (g1,92,93) — (9193, 9203)

is a submersion. Moreover there exists a canonical metric g on S® x S® such that the submer-
sion becomes a Riemannian submersion. This metric is related to the nearly Kahler metric

by g = 2gs.

Next we look at what happens with the applications 7, Py, P, and Ps. In order to do so
we will use the following lemma.

Lemma 6. Let A be a linear application on the tangent space of S® x S3 x S3. Suppose that
1. A maps vertical vector fields to vertical vector fields

2. A preserves the metric
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8. If v,w are horizontal tangent vectors at resp. (g1,92,93) and (g1a, gaa, gsa) such that
dm(v) = dr(w), then we also have that dn(Av) = dr(Aw).

Then there exists a linear isometry A of the tangent space of S® x S3, such that

AZ(p7 Q) = dﬂ—(AZ(gthag?)))a

where (g1, 92, 93) is any point such that w(g1,92,93) = (p,q) and Z(g1,92,93) is the unique
horizontal tangent vector such that dn(Z (g1, 92,93)) = Z(p,q).

Proof. As A maps vertical vector fields to vertical vector fields and preserves the metric, A
also maps horizontal vector fields to horizontal vector fields. The third condition then implies
that the map

AZ(p,q) = dW(A (91792793))

is well defined and is an isometry. O

Note that the maps 7, ]51, ]52, ]53 satisfy the conditions of the above lemma. Therefore
we get the corresponding maps at the tangent space of a point (p,q) € S? x S? given by 7,
Py, P, and P5. In terms of the vector fields Ey and Fy, the map 7 can be described by

T(Ep) = dr(F(5(2E; — Fy — Gy))
:dT('(l(2Gg—Eg—Fg))

3
= —dn(3(2E; — F; — Gy) — dn(35(—E¢ + Fr — Gy))
=—FE,— Iy,

7(Fy) = dr(7(5(—E¢ + 2F; — Gy))
= dﬂ'( (2E; — Fy — Gy))
— B

It now follows by straightforward computations that
(Z(r+10) =1
and that the nearly Kahler structure is given by

J = (7'—}-1])

%
In particular
—E, — 2F),

JEZZ%( §E F) \[(

JE, = %(Ee +1F) = (2Ee +£).
Using similar computations, for the maps P;, P, and P3 we obtain the following lemma.

Lemma 7. We have that



Note that in a subsequent section, we will show that these are precisely the three possible
almost product structures on S x S? which preserve the basic equations. We will also see that
even though the maps F; and F, are isometries of S3 x S? which do not necessarily preserve
the almost product structure P, they do preserve the triple of almost product structures
{P1, P2, P5}.

2.1.3 Properties of the application F;, F;
We look at the maps f;b/m 3-:1 and j—"vg of S? x S3 x S? defined respectively by

Fave(91, 92, 93) = (ag1,bga, cg3),

F1(915927g3) = (92791793))

Fa(g1,92,93) = (93,92, 91),

where a, b, c are unitary quaternions. An elementary computation shows that .7?a;c, 3-:1 and
F are isometries of S? x S3 x S3. Note that these isometries all have the property that for
any unit quaternion d we have that

T Fabe(91d, 92d, g3d) = m(ag1d, bgad, cgsd) = (agi1gsc, bg2gsc),

7'[']:1 (gld7 92d7 g3d) = 7T(92d7 gld7 g3d) = (92.637 gl§3)7

F2(91d, god, g3d) = m(gsd, g2d, g1d) = (9391, 9291)

are independent of the unit quaternion d. Therefore we can define the applications Fype, F1
and Fy of S? x S? such that

7m0 Fape = Fapc O T,
moF; =Fom,

moJFy=Fgo0m.

As j:;;c, 3—"\1 and 3-:; are isometries of S? x S x S and the nearly Kéhler metric is a constant
multiple of the metric of the Riemannian submersion, it follows that Fu,., F1 and JFy are
isometries of the nearly Kéhler S? x S?. The same remains of course valid for all compositions
of these applications. Note that these applications are given by

Fabe(p, @) = (ape, bqe), (2.26)
Fi(p,a) = (¢ p), (2.27)
Fa(p,q) = (P, qp)- (2.28)

As indicated in [7], the isometries Fup. also preserve both the almost complex structure J and
the almost product structure P. As we will see in the next lemmas, this is no longer true for
the isometries 7 and Fo.

In order to investigate the behaviour of J, P, P> and P3; under the maps F; and Fy we
write an arbitrary tangent vector at a point (p,q) by

X(p,q) = (pv, gB),
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where o and [ are imaginary quaternions. This is a tangent vector to a curve §(t) =
(61(t),02(t)) in S* x S? with initial conditions:

It now follows that

dFi(pa, qB) = dF1(X

I
=
=
i~

£

and

dFs(pa,qB) = d}_2(X( q))
= L F2(5(1)) =0
= L(61(1), 02(t)01 (1)) |1=0
= (ap, q(B + a)p)
= (p(p(—a)p), qp(p(B — a)p))-

On the other hand we recall that

J(per,qB) = J=(p(26 — a),q(—2a + B)),
Pi(pa, ¢B) = P(pa, qB) = (pB, qav),

from which we deduce that

Py(pa, qB) = — P(pa, qf) — LI P((pa, qB))
= —3((pB,qa)) — 3(p(2a — B),q(—2B + av))
= (—pa,q(f — a))

and

P3(par, qB) = — 5 P(pa, qB) + L I P((pa, ¢B))
—3((pB,q0)) + 5(p(20 — B), (=2 + )
= (p(a = B),q(=p)).

Using the above formulas, if necessary at different points and for different tangent vectors,
we now can prove:

Theorem 29. The differential of the isometry F1 anticommutes with J, i.e. dFioJ =
—JodFi. For the almost product structures Py, P5 and P3 we have

d./."l o) P1 = P1 o d]:l,
dflopgngod./—"l,
dfl (¢] P3 == P2 o) d.Fl
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Proof. We have

dF(JX) = 7( q(—2a+ ), p(28 — o)),
JAFL(X) = Jgp)(aB,pa) = J=(q(2a = ), p(~26 + a)),

from which the first claim follows. The other claims follow from comparing

qa;, pB),
B —a),p(—a)),
B) pla—B)),

O

Theorem 30. The differential of the isometry Fao anticommutes with J, i.e. dFs o J =
—J odFy. For the almost product structures Py, P> and P3 we have

dfg ¢} P1 = P3 o) d./—"2,
dfg e} P2 = P2 o) d./—"2,
d]:z e} P3 = P1 o) d]:g.

Proof. We have
dF(JX) = d]'-2( =(P(28 — a),q¢(—2a + B)))
= Z5(B(=p(26 — a)p), ab(p(~a — B)p)),
JdF(X) =J<pqﬁ>%f(*( (—)p), gp(p( — @)p))
Z(B(p(28 — a)p), ap(p(B + )p)),

from which the first claim follows. The other claims follow from comparing

O]

From the above two theorems we see that J is preserved up to sign by F; and F, (and
therefore preserved by the composition of the two). On the other hand, by a suitable compo-
sition of F1 and JF>, we see that we can switch between P = P;, P, and Ps.
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2.1.4 The role of the almost product structure P

The tensor P appears in the basic equations of S* x §* in (2.7), [2.8), (2.9), (2.10), (2.11),
©-12) and @.13).

We call a tensor P* satisfying the above conditions a nearly productlike structure on
S? x S3. In order to determine all nearly productlike structures on S? x S?, we have the
following lemmas.

Lemma 8. Let P* be a structure which satisfies (2.7), (2.8]), (2.9), (2.10), and (2.13)). Then

there exists an angle 6 such that

P* =cosOP +sinfJP.
The converse is also true.

Proof. We use ([2.13]) and we take an arbitrary vector U = X. We take V =Y orthogonal to
X, JX, PPPX and JP*PX. We take W = P*Y. Then we have that

(9(P*Y, P*Y)P*X — g(P*X, P*Y)P*V
+9(JP*Y, P*Y)JP*X — g(JP*X, P*Y)JP*V)

— (g(PY, P*Y)PX — g(PX, P*Y)PY
+g(JPY, P*Y)JPX — g(JPX, P*Y)JPY).

(2.29)

Using the properties of P and P*, we see that the left hand side of (2.29) reduces to
g9(Y,Y)P*X | whereas the right hand side reduces to g(PY, P*Y)PX + ¢g(JPY,P*Y)JPX.
Hence for any X there exists an angle §(X) such that

P*X =cos(0(X))PX +sin(0(X))JPX.
Using the properties of P and P* we deduce that
P*JX =—JP*X =cos(0(X))PJX +sin(0(X))JPJX.

Hence §(JX) = 6(X). By linearity the same is now true for any linear combination of X and
JX. Take now a vector field Y, orthogonal to X and JX, such that ||Y|| = || X]|. For any
angle o, we can now compute 1), = 0(cos X + sinaY’). On the one hand we have that

P*(cosaX + sinaY) = cosa(cos(f(X))PX +sin(0(X))JPX)
+ sina(cos(6(Y))PY +sin(0(Y))JPY),
while on the other hand

P*(cosaX +sinaY) = costhy(cosaPX + sinaPY)
+ sin ¢y (cos aJ PX + sinaJPY)).

As the above formula is valid for any angle o and the vector fields X,JX, Y and JY are
mutually orthogonal (and therefore independent) we deduce that 6(Y) = 0(X) = 1,. Hence
0(X) = 0 is constant. The converse can be verified by a straightforward computation. O

Lemma 9. P* satisfies moreover (2.11)) if and only if 0 is a multiple o 2?”, i.e. if and only

if P* is either Py, Py or P3. Moreover, in that case (2.12)) is trivially satisfied.
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Proof. We write
P*(X) =cosPX +sinfJPX.

It then follows that
G(P*X,P*Y) = cos* 0G(PX, PY) + sin® G(JPX, JPY)
+ cosOsin(G(PX, JPY) + G(JPX, PY))
= cos 20G(PX, PY) — sin 20JG(PX, PY)
= —cos20PG(X,Y) +sin20J PG(X,Y).

On the other hand, we have that
—P*G(X,Y) = —cosPG(X,Y) —sin0JPG(X,Y).

As PG(X,Y) and JPG(X,Y) are mutually orthogonal, we see that equality holds if and
only if cos 20 = cos = cos(—6) and sin 20 = —sin @ = sin(—#). Hence, if and only if, 30 is a
multiple of 27.

In order to show that P* now satisfies also (2.12)) it is sufficient to consider the case that

P* = —%P + @5!]13 where € = +1. On the one hand we get that
(VxP*)Y = VxP*Y — P*VxY
1 - 3 .
=~ (VxP)Y + e\gVXJPY — e BIPVxY

1 - 3 - -
=—5(VxP)Y + E\g(G(X, PY)+ JVxPY — JPVxY)

- _%(6)(13)1/ + g\f(G(X, PY) + J(VxP)Y)

= L J(G(X, PY) + PG(X,Y)) + =Y (26G(X, PY) ~ G(X, PY) ~ PG(X,Y))

=5S

_ —%J(G(X, PY) + PG(X,Y)) + Y2 (G(X, PY) — PG(X,Y)).

On the other hand we get that

%J(G(X, P*Y) + P*G(X,Y)) = —i(JG(X, PY) + JPG(X,Y))

+ e\f(JG(X, JPY) — PG(X,Y))

= —(JG(X, PY) + JPG(X,Y))

+ e\f(G(X, PY) — PG(X,Y)).

Comparing now both right-hand sides completes the proof of the lemma. O

Combining the previous lemmas, we deduce that the only nearly productlike structures
on S? x S3 are P, = P, P, and P;. Of course applying the isometries F; and F» allows us to
switch between these structures and therefore from an isometrical point of view these can not
be distinguished. As a consequence, in many classification theorems of submanifolds, there
will appear 3 isometrical examples which slightly different tensors P.
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2.2 Lagrangian submanifolds with constant angle functions in
the nearly Kahler S? x S?

As already seen from the results of Dioos, Vrancken and Wang in [20], the angle functions
provide important information in the characterization of the Lagrangian submanifolds of the
nearly Kéhler S3 x S3. Therefore, we continue the study of these submanifolds from the point
of view of the angle functions.

In this section we show that if all angle functions are constant, then the submanifold is either
totally geodesic or has constant sectional curvature and there is a classification theorem that
follows from [20]. Moreover, we show that if precisely one angle function is constant, then
it must be equal to 0, 5 or 2% Using then two remarkable constructions together with the
classification of Lagrangian submanifolds of which the first component has nowhere maximal
rank from [3] (see the next section), we obtain a classification of such Lagrangian submanifolds.

From now on, we identify the tangent vector X with df (X).

Theorem 31. Let f : M — S? xS? be a Lagrangian immersion into the nearly Kéhler man-
ifold S? x S, given by f = (p,q) with angle functions 601,02,03 and eigenvectors Ey, Eo, F3.
Then f: M — S? x S? given by f = (q,p) satisfies:

(i) f is a Lagrangian immersion,
(i) f and f induce the same metric on M,

(iii) E1, Ey, E3 are also eigendirections of the operators A, B corresponding to the immersion
f and the angle functions 01,04, 05 are given by 0; = — 0;, fori=1,2,3.

Proof. Let f: M — S x S3 given by f = (p,q) be a Lagrangian immersion with the angle
functions 61,62, 603. Then, for any point on M, we have a differentiable frame {FE1, Eo, F3}

along M satisfying such that

df (Ei) = (pai, aBi) (p.g)» © = 1,2,3, (2.30)
where «;, 8; are imaginary quaternions. Moreover, for f we have as well

df(E;) = (aBi, pai)(gp), © = 1,2,3.
From equations and a direct calculation gives that

Pdf(E;) = (pBi; qi) (p.g)» (2.31)

Jdf (E;) = jg (0(26: — ), a(~204 + B0)) g (2.32)
and

Pdf(E;) = (g0, pBi) (g, (2.33)

JAF(Es) = —— (q(20i — ), p(=28; + 01)) ) (2.34)

V3

for i = 1,2,3. The conditions for f and f to be Lagrangian immersions write out, respectively,
as

gldf (Ei), Jdf (Ej)) = 0 for i # j,
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g(df(E;), Jdf(E;)) = 0 for i # j.

By (2.3) and by the previous relations, these conditions become

4 2

3 (@i, 26; — ay) + (B, =205 + B5)) — 5 (e, =20 + B5) + (26 — a3, 1)) = 0,

4 2

3 (B, 205 = Bj) + (i, =265 + o)) — 5 ((Bi, =265 + o) + (20 — Bj, i) =0,
respectively. Since both are equivalent to (o, ;) — (Bi, ;) = 0, we conclude that fisa
Lagrangian immersion if and only if f is a Lagrangian immersion. Therefore, one may notice
that this also implies that f is an isometry. } }
In order to prove (ii), we must show that g(df (E;),df (E;)) = g(df(E;),df(E;)). By straight-
forward computations, using ({2.3)), we have

o (B0), df (By) = (4 (o), dF (By)) + (7af (Bo), Jaf (E5))) (235)
= ({pas, 480, (poyy, a87))+

(028 — a0), a(~200 + ), (p(28; — o), a(~205 + )

== (2, a5) + 2080 By) — (B 05) — (i By) )

+ \G) \

CO\NJ

Similarly, we have
9(df(E),df(Ey) =3 ((dF(B), df (E)) + (Jdf (E:), Jaf (Ey)))

=5 (((aBispa). (a8, pa)+

3 (0201 — 5, p(~25; + 1)), (a(20 — B;), p(~25; + )

=2 (24ai,a5) + 2081, 5) — (B a5) — o, 57)

[\DM—‘[\D\}—‘

+

and we can easily notice that the metric is preserved under the transformation f .
In order to prove (iii), we see from (12.20]) that

and there exist A, B : TM — TM with eigenvectors E; and angle functions 6; such that
Pdf(E;) = cos(20;)df(E;) + sin(26;)Jdf (E;). (2.37)

From (2.30) and ([2.32), we replace df (E;) and Jdf (E;) in (2.36]) and get:

= sin(20) (20, 1 5,)) ).

+ € sin(26;)(263; — Ozi)) , q(cos(29¢)5i + NG
(2.38)

V3

Considering now equation (2.31)) as well, we obtain

Pdf(E;) = <p <cos(20i)ozi

\% sin(260;)(—2a; + B;),
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Bi = cos(26;)a; + \}3 sin(26;)(20; — o).

Replacing «; and f; in ([2.33]) with the latter expressions gives
Pdf(E;) = cos(—260;)df (E;) + sin(—260;)Jdf (E;).

Comparing this with (2.37), we see that E; are the eigenvectors of A and B with angle
functions

0, =m — 0.
L]

Remark 2. One should notice that by making use of the fact that F; defined in (2.26)) is an
isometry, conditions (i), (i¢) in the theorem become trivial to prove:

g(df(E;),df(E))) = g(dF1(df (Ey)), dFi(df(E;))) = g(df (E;), df (E;)).

This implies that f and f induce the same metric on M. Similarly, using the /7 anticommutes

Theorem 32. Let f : M — S? x S? be a Lagrangian immersion into the nearly Kdihler
manifold S® xS3 given by f = (p, q) with angle functions 01,02, 03 and eigenvectors By, By, E3.
Then, f*: M — S3 x S3 given by f* = (p,qp) satisfies:

(i) f* is a Lagrangian immersion,
(i) f and f* induce the same metric on M,

(iii) E1, Ea, E3 are also eigendirections of the operators A*, B* corresponding to the immer-
sion f* and the angle functions 07,605,035 are given by 07 = %’T —0;, fori=1,23.

Proof. Let f: M — S3 x S3 given by f = (p,q) be a Lagrangian immersion with the angle
functions 6,602, 03. Then, for any point on M, we have a differentiable frame {E;} along M

satisfying (2.20) and we may write

df (Ei) = (pi, 4Bi) (p,q) (2.39)
df*(E;) = (po, apB7) (p,ap) (2.40)
fori=1,2,3 and oy, B;, o, 5] imaginary quaternions. Moreover we have that
o; = —pa;p,
T =p(Bi — ai)p,
where we have used

df*(E:) = D, f* = (D, D, (a9)) = Dpp, (Dr,a)p + dDp) B2 (i a(B: — a)p)

for the Euclidean connection D. Furthermore, by (2.2]) and (2.6)), we obtain again (2.31)) and
(2.32)) as well as

Pdf*(E;) = ((8i — @)D, —qiD) (p,qp)» (2.41)
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1

Jdf*(E;) = 7 ((26i — )P, q(i + Bi)D) (5,4p) (2.42)
for i =1,2,3. A straightforward computation gives, for i # j, that

_ 2
V3

which, as in the proof of Theorem shows that f* is a Lagrangian immersion if and only if
f is a Lagrangian immersion. Therefore, one may notice that this also implies that f* is an

g(df*(Eq), Jdf* (Ej)) ((Bi> ) — {eui, Bj)),
isometry.

To prove (ii), we must show that g(df (E;),df (E;)) = g(df*(E;),df*(Ej)). By straightfor-
ward computations, using ([2.3)), we have

g(df*(Ei), df*(Ej)) = 5 ((df*(Eq), df*(Ej)) + (Jdf* (Eq), de*(Ej)>)

WIN W F o~ —

/N 7/ N

(~aip, a(B; — a)p), (~ap, (6 — a;)p)+
(28 — i) ale + BD), (28 — ). ala; + 5)9)))
(20 ag) + 2085, 85) = (Bis ) = 00, B7))

_l’_

—~

and, comparing it to (2.35), we can easily notice that the metric is preserved under the
transformation f*.

In order to prove (iii), we see from ([2.20]) that
Pdf(E,) = COS(QQi)df(Ei) + sin(29i)de(Ez~), (2.43)

and, associated with the second immersion f*, there exist A*, B* : TM — T M with eigen-
vectors I and angle functions 67 such that

Pdf*(E}) = cos(26;)df*(E}) + sin(20; ) Jdf* (E;). (2.44)

As in the proof of the previous theorem, we have

a; = cos(26;)6; + 1 sin(26;)(—2a; + 5;),

V3

Bi = cos(26;)a; + 1 sin(26;)(28; — o).

V3

On the one hand, replacing «; and §; in (2.41)) with the latter expressions, we see that

) 1 ) 1 )
Pdf*(E;) = ([COS@{%)(O%_BZ‘)"'% sin(26;)(Bi+a:)|p, _q[COS(29’L’)Bi+% Sln(29i)(—2ai+5i)}p)'

On the other hand, we see that for 6 = 2% — 6;, the following holds:
N . " N 47 . . Ar .
cos(20;)df* (E;)+ sin(260;) Jdf*(E;) = cos(? —20))df*(E;) + sm(? —20,)Jdf*(E;)

:% [(— cos(20; — V/3sin(260,)))df* (E;) + (—V/3 cos(26;) + sin(20;)Jdf* (E;))]
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; cos Now — B Sln(2(97,) SIH(QQZ)

Therefore, (2.44) holds for Ef = E; and 6; = 2 — ¢;. This concludes point (iii) of the
theorem.

(i + Bi)]p, qleos(20;)(—Bi) +

(20; — B3:)]D)-

O

Remark 3. One should notice that by making use of the fact that Fy defined in (2.26)) is an
isometry, conditions (i), (ii) of the theorem become trivial to prove:

g(df*(Ei), df*(Ej)) = g(dF2(df* (Eq)), dF2(df*(E;))) = g(df (Eq), df (Ej))-

This implies that f and f* induce the same metric on M. Similarly, using the fact that 7
anticommutes with J, we obtain g(df*(E;), Jdf*(E;)) = g(df (E;), Jdf (E;)).

Lemma 10. Let M be a Lagrangian submanifold of the nearly Kdihler manifold S® x S® with
constant angle functions 01,02, 03.

1. If M is a non-totally geodesic submanifold, then the nonzero components ofwfj are given
by

h?% (245)
h:iQ’ (246)

h3,. (2.47)

1. The Codazzi equations of the submanifold M are as followings:

Ej(hly) =0, i=1,2,3, (2.48)

i (2t ) + 72 ) = g sin(2(01 - 60) (2.49)

i (2t + ) - =) = gsin(2(61 - 60) (2.50)

w <2(w§’1 k) + \%) = < sin(2(6; — 05)). (2.51)

1. The Gauss equations of the submanifold M are given by

2 cos(2(61 — 62)) — ()? =~y + ol — b, (259

% + 3005(2(91 — 03)) — (hiy)? = —wiwiy + Wizwy; — Wi wsy, (2.53)

2t 5 cos(2(6s — 03)) — ()? = —whyuy + whyely — whpely (25)
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Proof. Suppose that M is a Lagrangian submanifold of the nearly Kihler S* x S? for which
the angle functions 64, 02,03 are constant. Thus, equation immediately implies that
all coefficients of the second fundamental form are zero except hi,. Using (2.25), we see
that w); = 0,i # j. As w}j = —w,, it follows that wf,,wyz, w3 are the only non-zero
components out of wf From and by Remark |1}, we calculate the nonzero connection
forms as in 2.45—. Taking F1, Fo, F3 and FEj3, Fq, Eo for the vector fields X,Y, Z in
the Codazzi equation , we get , and for F1, Esy, Fo; Fy, E3, Es; Eo, E3, E5 we obtain

(2.48)-(2.51)). Moreover, we evaluate the Gauss equation (2.21) successively for Fy, Ea, Eo;
FE1, Es, FEs; E5, Fo, F» and then we obtain the given equations, respectively. ]

Theorem 33. A Lagrangian submanifold of the nearly Kdhler manifold S® x S® for which all
angle functions are constant is either totally geodesic or has constant sectional curvature in
S3 x §3.

Proof. Suppose that M is a Lagrangian submanifold in the nearly Kahler S xS? with constant
angle functions 61, 02, 03. From equation and the fact that hfj are totally symmetric,
all coefficients are zero except hi,. Also, the Codazzi equations given by — are
valid for M. Equation implies that h3, is constant and thus, there are two cases that
may occur:

Case 1. h3, = 0, that is, M is a totally geodesic Lagrangian submanifold in the nearly
Kihler S3 x S3.

Case 2. h:{’2 is a nonzero constant, that is, M is non-totally geodesic. In this case, the
nonzero components of wfj for the submanifold M are given by —. Replacing the
coresponding wfj in the Codazzi equations given by —, we obtain the following
system of equations:

1 sin(91 — (93) sin(92 — 93)

2 . .
2(h3,)% — 7 0, —0) h3, — 3 cos(01 — 02) sin(f; — 03) sin(f — 63) = 0,
(2.55)
1 sin(#y — 02)sin(fy — 0 2 . ]
2(h:1))2)2 - ﬁ ( 1sin(2 — é:s)l 3)hi’2 —3 cos(fg — 03) sin(f; — O2) sin(0; — 63) = 0,
(2.56)
2(hiy)” 1 sin(z — 0s)sin(61 — 6) iy + 2cos(01 — 03) sin(02 — 03) sin(01 — 02) = 0.

B \/g sin(91 - 93) 3

(2.57)

Notice that by Remark (1| we have sin(; —6;) # 0. Considering the above system of equations
as a linear system in 2(h3,)?, h3y, 1 and since h3, is a nonzero constant, we see that the matrix
of the system must have determinant zero. By a direct calculation, we find

sin(6?1 + 69 — 293) sin(92 + 03 — 291) sin(@l + 63 — 202) =0.

Given the symmetry in 61,62, 63, it is sufficient to assume that sin(6; + 65 — 263) = 0. Thus,
considering also Lemma [3| we may write

01 + 03 — 205 = kqm, (2.58)
01+ 0y + 03 = kom (2.59)
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for ki,ko € Z. As each angle function is determined modulo m, there exist l1,[2,l3 € Z such
that the above equations are satisfied by new angle functions 01 + ly7, 05 + lsm and 03 + I3

(91 +l17T) + (03+l37‘(’) —2((92+l27’[‘) = k‘{?T,
(01 + lym) + (02 + lom) + (03 + I37) = k5.

This implies that

ki = k’?f — (ll + I3 — 212),
ko = ki; — (ll + I +l3)

Hence, we may assume ko = 1. Allowing now only changes of angles which preserve this
property, we must have that Iy = —I; — I3 and k; = kT — 3(l1 + [3). So we may additionally
assume that k; € {—1,0,1}. Therefore, we have three cases:

(i) 01 + 03 — 203 = —m and 01 + 02 + 03 = T,
(ii) 01 + 603 — 205 =0 and 61 + 62 + 05 =,
(iii) 61 + 03 — 203 =7 and 01 + 02 + 03 = 7.

Finally, this reduces to
(i) 2 =0 and 0; + 03 = T,

(11) 0y = % and 01 + 65 = 2%,

(111) 0y = 2% and 01 + 03 = %
Using the relations between the angles 6; and 0;, 07 of the Lagrangian immersions f and f* in

Theorem [31] and Theorem [32] respectively, these three cases can be reduced to a single case,
as shown below:

O =73 Fobh=2 o 03=0
2 > ~ 2.60
01+ 03 = 2F 014+05=1% 05 + 0% = . (2.60)
Remark that according to Theorems|31)and the metric g given by ([2.3)) is preserved under
transformations f, f* from which we deduce that the sectional curvature of M is the same in

each case. Therefore, it is sufficient to consider the case that 5 = % and 6; + 03 = 2% By

3
straightforward computations, equations ([2.49)-(2.54)) reduce to

1 1

2(h3,)? — —sin (2a) h3, — = sin? (2a) = 0, 2.61

(h12) 7 (2a) Rty 3 (2a) (2.61)

2(h3,)? — Lot e 2 acos(2a) = 0 (2.62)
12 V3 sin(2x) 1273 - ’

where o := 1 — 5. Solving this system of equations, we see that there are four cases that we
must discuss:

(a) hiy =—3% and o = —F + km,

(b) hy=—1% and a = § + k,
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(c) h?Q =
(d) h?Q =

and o = —% + k,

NI—= =

anda:%—kkﬁr

for some k € Z.
Remark that cases (c) and (d) reduce to cases (a) and (b), respectively, by changing the basis
{E\, B2, E3} with {E3, Eo, —F7}. Therefore, we will only consider cases (a) and (b).

Case (a): h}y, = —% and 6; = 0,0, = Z,03 = 2F. From (2.45)-(2.47), we find that all
connection forms are zero. Thus, M is a flat Lagrangian submanifold in the nearly Kéahler
S3 x $3.

Case (b): h3, = —% and 1 = 2£, 6, = 2,035 = 0, In this case, we have that w}, =
Wiy = wi = %. By a straightforward computation, we find that M has constant sectional
curvature which is equal to 1—36. As a result, the Lagrangian submanifold M of the nearly
Kihler manifold S? x S? with constant angle functions 61, 6, f3, which is not totally geodesic,
has constant sectional curvature. O

Combining the classification theorems in [20] and [59] and Theorem we state the
following:

Corollary 1. A Lagrangian submanifold in the nearly Kihler manifold S® x S3 whose all
angle functions are constant is locally congruent to one of the following immersions:

1 f:S3 =S¥ xS um (u,),
0SSP = S x S iues (1,u),

0 S? = S xS ues (u,u),

AR

(
(
(
0SSP = S x S3 i u s (u,ud),
(
0SSP = S xS w s (wivtumh),
(

S 5SS

f
f
f
f:S3 =S xS3ums
f
f
f

PR3 = $3x S3 0 (u,v,w) = (p(u,w), q(u,v)), where p and q are constant mean
curvature tori in S3

p(u, w) = (cosu cosw, cos usin w, sin u cos w, sin u sinw) ,

(cosv (sinu + cosu) ,sinv (sinu + cosu) ,

1
Q(uv U) = E

cos v (sinwu — cosu) ,sinv (sinu — cosu)) .

Theorem 34. Let M be a Lagrangian submanifold in the nearly Kdhler manifold S? x S?
with angle functions 01,60, 05. If precisely one of the angle functions is constant, then up to

a multiple of w, it can be either 0, 5 or %’T
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Proof. First, we may denote the three angle functions by

291 = 26,
292 =2A — C,
293 = —2A — C,

where ¢ € R and A is some non constant function. Then, we may write the conditions
following from the minimality of the Lagrangian immersion:

hiy +hiy + hiy =0,
hil + héz + h§3 =0, (2.63)
hiy + hjy + hiz = 0.

We are going to use the definitions of VA and VB in (2.92) and (2.93)) and then evaluate
these relations for different vectors in the basis in order to get information about the functions
wfj and hf] For X =Y = Fj in (2.92)) we obtain that

h’%? = _hi)Sv
h?,(cos(c — 2A) + cos(2¢))
2 11
= — 2.64
¥ sin(c — 2A) + sin(2c¢) (2.64)
R h3,(sin(2c) — sin(2A + ¢))
1 cos(2¢) — cos(2A + ¢)
If we take X = E7 and Y = FE» in (2.92)) and (2.93)), we see that
Ex(A) = b, (2.65)
3
wiy = \6[ — h3,ycot 2A (2.66)
and, for X = Fy and Y = Ej in (2.92)), we obtain
h%l =Y (2.67)
h35(sin(2¢) — sin(c — 2A))
2 13
S 2.68
21 cos(2¢) — cos(c — 2A) (2.68)
wi = —h3, cot <A + 3;) - \gg (2.69)

Then we choose successively X = FE3,Y = F, X = F»,Y = E3 and X = E3,Y = Es in
relations (2.92)) and (2.93) and obtain

h3, =0, (2.70)
wi = \ég — h3ycot <320 - A) , (2.71)
h34(sin(2¢) — sin(2A + ¢))
3 13

= 2.72
“a1 cos(2¢) — cos(2A +¢) (272)
Wiy = — cot 2Ah3,, (2.73)
wiy = — cot 2Ah3, (2.74)

o6



Es(A) = h3,, (2.75)
FE3(A) = —h3,. (2.76)

We can easily see from ([2.64]), (2.67) and (2.70]) that

wh =0 and wi =0,

and if we consider, as well, the relations in (2.91]), we have that
his = —h3s, hiy =0 and h3, = —h3;.

Next, we are going to use the definition for VA in (2.22) and take different values for the
vectors X,Y and Z. Thus, we evaluate it for Fy, Fs, By and FE1, B3, 1. Looking at the
component in F3 of the resulting two vectors, we obtain the following relations, respectively:

h3 QSIH(QA)
3y= 18 _op3 p3
El(h12) = \/?: 2h12h13 (COt(QA) + COS(QA) — COS(3C)> ’

Ei(h33) = %(cot (A + 320) (1 — cos(2A + 3¢) + 6(hiy)? + 6(hi3)?) + 6(hiy)? cot(2A) — x/§h§’2).

Taking again X = E1,Y = FEy,Z = FEj in (2.22)) as just done previously, we look at the
component of Ey this time, after replacing E(h3;) from the above equations, and we get that

sin(3¢) esc (320 - A> cse (A + 320) (cos(4A) — 2 cos(2A) cos(3c) + 12(hi,)% + 12(hi5)? + 1) = 0.

As A is not constant, this implies that cos(4A) —2 cos(2A) cos(3¢) +12(h35)2 +12(h3;)?+1 =0
or sin(3¢) = 0.

Case 1. sin(3c) = 0. In this case, considering that 6, € [0, 7], it is straightforward to see that
ce{0,%,%}.

In the following we will show that the other case cannot occur.

Case 2. sin(3c) # 0. It follows that
cos(4A) — 2 cos(2A) cos(3c) + 12(h35)% +12(h33)? +1 =0, (2.77)

and, therefore, its derivative with respect to Fy vanishes too:

h3, <sin(4A) — 2c0s(2A) sin(3¢) — 3sin(2A) cos(3c) — 12 ((h?g)Q + (h:{’3)2) cot <A + 3;)) =0.

We must split again into two cases.
Case 2.1. h3; # 0. We have, of course, that

sin(4A) — 2 cos(2A) sin(3¢) — 3sin(2A) cos(3c) — 12 ((hi,)? + (hi3)?) cot <A + 326) =0
and by (2.77), we may write

(cos(4A) — 2cos(2A) cos(3¢) + 12(h3,)* + 12(11{’3)2 + 1) cot <32€ — A) _

o7



- (sin(4A) — 2cos(2A) sin(3¢) — 3sin(2A) cos(3c) — 12 ((hi,)* + (his)?) cot (A + 3;)) = 0.
(2.78)

The latter equation reduces to —3 cos(3c¢)sin(2A) = 0, which implies cos(3¢) = 0. With this
information, we evaluate (2.22) for Fy, Fs, F; and, looking at the component of Es of the
resulting vector gives

sin(3c¢) csc <326 - A) cse <A + 3;) (cos(4A) — 2 cos(2A) cos(3c) + 12(hiy)? + 12(hi5)* + 1) = 0.

This yields cos(4A) + 12(h35)? + 12(h3;)? + 1 = 0, which is a contradiction, as, given that A
is not constant, the expression is actually strictly greater than 0.

Case 2.2 h}; = 0. From evaluated for By, Eo, Ey; E1, E3, E3; Eo, B3, E3; E3, Ey, Es,
by looking at the components of FEs, Es; Es, Eo; Es; E5, we obtain, respectively:

h3
\/37
3
Ey(h3y) = — h3,h3, (—2 cot(2A) + cot (20 - A) + cot <A + C))

3
E1 (h%g) = — h 2h22 cot <A + 2C> + h 2h22 COt(2A) —

2
0—— ésin(2A +3¢) — 2(h3,)? <cot(2A) + cot ( >> h% (2.79)
E1(h3,) :%hgg <\/§ — 3h3, (cot(QA) + cot (Z;C - A))

— h3,h3, (2 cot(2A) + cot (320 - A) + cot (A I 320>> ’

E3(hiy) =
En(h3y) = — E3(h3s),

3 1 : 312 3¢ 3¢ 3 3
Es5(hs9) :§< —sin(4A) — 6(hjy)” ( cot | A+ 5 ) cot 5 A) ) +3Ex(h3s) — V3hiy —

— 9c0t(28) ((h)? + (h3)%) ).

Next, for the vector fields F1, Es, F1, Fo, we may evaluate the sectional curvature once using
the definition for the curvature tensor, once using (2.21)), and subtract the results. This gives

— sin(2¢) sin(c — 2A) + cos(2c¢) cos(c — 2A)—

— 6(h35)? csc(2A) cos (328 — A) csce (A + ) + V/3h3, cot (32 — A) +1=0. (2.80)

From (2.79)), we obtain
V3h3y — sin(2A + 3c¢)

hiy)? = , 2.81
(i) 6 (cot(2A) + cot (3¢ — A)) (281)
so that we may replace (h3,)? in (2.80) and solve for h3,:
3c) — 2A 2A
B, = (cos(3c¢) — cos(2A)) esc( ) (2.82)

V3
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Nevertheless, (h3,)? from (2.82) does not coincide with (2.81]), as it would imply
esc?(2M)(cos(3¢) — cos(2A))(—9 cos(2A) + cos(6A) + 8 cos(3c)) = 0,

i.e. A should be constant, which is a contradiction. ]

A complete classification of the Lagrangian submanifolds with 6; = § is given in [3] and
therefore, presented in the next section. Similarly, for those with angle functions #; = 0 or

0 = 2%, we obtain the same result by constructions f and f*, respectively.

2.3 Lagrangian submanifolds of the nearly Kahler S? x S? from
minimal surfaces in S3

In this section we study non-totally geodesic Lagrangian submanifolds of the nearly Kahler
S3? x S3 for which the projection on the first component is nowhere of maximal rank. We
show that this property can be expressed in terms of the angle functions and that such
Lagrangian submanifolds are closely related to minimal surfaces in S3. Indeed, starting from
an arbitrary minimal surface, we can construct locally a large family of such Lagrangian
immersions, including one exceptional example. We also show that locally all such Lagrangian
submanifolds can be obtained in this way.

2.3.1 Elementary properties of orientable minimal surfaces in S3.

Let p: S — S C R* be an oriented minimal surface. We are going to check that, away
from isolated points, the immersion either admits local isothermal coordinates for which the
conformal factor satisfies the Sinh-Gordon equation or is totally geodesic. First, we take
isothermal coordinates u, v such that du, dv is positively oriented, (Qu, du) = (v, dv) = 2¢¥
and (Qu,dv) = 0 in a neighborhood of a point of S. As it is often more useful to use complex
notation we write z = u 4+ Iv and consider 9z = 3(du — I9v) and 9z = 3(du + 19v). Note
that we use I here in order to distinguish between the ¢, j, k introduced in the quaternions.
We also extend everything in a linear way in I. This means that (0z,0z) = (0z,0%z) = 0 and
(0z,0z) = e¥. If we write Ou = pac and dv = pf3, the unit normal is given by N = p%:f It
is elementary to check that this is independent of the choice of complex coordinate and that

the matrix (p rg—zl % N) belongs to SO(4). We denote by o the component of the second
fundamental form in the direction of N. Remark that with this choice, the minimality of the
surface implies 0(0z,0z) = 0 and we may determine the components of the connection V on

the surface:

V9,02 = w,0z, Vg,0Z=Vyz:0z2=0 and Vy; = w;0Z. (2.83)
The Codazzi equation of a surface in S? states that
Vo(0z,0z,0z) = Vo(0z,0z,0z).

So it follows that 0z(0(0z,0z)) = 0. Hence 0(0z,0z) is a holomorphic function. Then we
have two cases:

Case 1. If 0(0z,0z) = 0 on an open set, then by conjugation ¢(0z,0z) = 0 and therefore,
using the analyticity of a minimal surface, ¢ = 0 everywhere.
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Case 2. If 0(0z,0z) # 0, then there exists a function g(z) such that ¢(0z,02) = g(z).
Away from isolated points we can always make a change of coordinates if necessary such that
0(0z,0z) = —1. Notice that by conjugation we get also 0(9z,0z) = —1. Such a change of
coordinates is unique up to translations and replacing z by —z.

Next, given the immersions p : § — S3(1) <» R4, from the Gauss formula we obtain:

Pzz = WPz — N7
D2z = —€¥p, (2.84)
pzz = wzpz — N,

—Ww

where N is the normal on S? and N, = e “ps, N; = e “p,. Therefore

Pzzz = (wzé - €7W>Pz - erwpy Pzzz = _ewwzp - ewp27
which shows that w satisfies

w,s = —2sinhw <
Aw = —8sinhw (Sinh-Gordon equation). (2.85)

Notice that by Aw we denote the Euclidean Laplacian of w in R? = C.
Let P be the lift of the minimal immersion to the immersion of the frame bundle in SO(4),
ie.

P:US — SOMA):w— (pw Jw N),

where US denotes the unit tangent bundle of S and J denotes the natural complex structure
on an orientable surface. In terms of our chosen isothermal coordinate this map can be
parametrised by

P(u,v,t) = <p(u,v) cost-L% tsint L0 sint P 4 cost- LU N(u,v)),
\pu| | o |’ | Pu | | o |’

for some real parameter t. Note that we have the frame equations which state that
dP = PQf = —PQ,

where in terms of the coordinates u, v and ¢ the matrix €2 is given by

/38 0 V2e2 (cos(t)du + sin(t)dv) V23 (cos(t)dv — sin(t)du) e 0

—v/2e2 (cos(t)du+ Lo do — wdu 2¢~2 (cos(t)du—

Siil(t dv) 0 3 (wud vdu) + dt sm( )dv)

B QS;EEOC%W— — Nwadv — wydu) — dt 0 Ve C;S(Sl)“(gd“*
0 V2e™ 3 (cos(t)du — sin(t)dv) —v/2e” 2 (sin(t)du + cos(t)dv) 0

2.3.2 From the Lagrangian immersion to the minimal surface
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Now we will consider Lagrangian submanifolds in the nearly Kéhler S* x S3. We write
the Lagrangian submanifold M as

f:M—S3xs?

x> f(x) = (p(x), ¢(x)),
and we assume that the first component has nowhere maximal rank. We have the following:
Theorem 35. Let

f:M—S3xs?

x> f(x) = (p(x), ¢(x)),

be a Lagrangian immersion such that p : M — S® has nowhere maximal rank. Then
angle function up to a multiple of w. The converse is also true.

s

3 1S an
Proof. Tt is clear that p has nowhere maximal rank if and only if there exists a non zero
vector field X such that dp(X) = 0. As usual we identify df(X) with X, so we have that
X =df(X) = (dp(X),dq(X)) and QX = (—dp(X),dq(X)). Therefore p has nowhere maximal
rank if and only if

X =Q0QX
:j%@PJXZ—JX)
:;%@BX—QL&X—JX)

Comparing tangent and normal components we see that this is the case if and only if

AX = —1X BX:\fX.
So we see that X is an eigenvector of both A and B and that the corresponding angle function
is § (up to a multiple of ). O

For the remainder of the paper we will consider Lagrangian immersions for which the map
p has nowhere maximal rank. In view of the previous lemma this means that one of the angle
functions is constant, namely ) = §. Then using that the angles are only determined up to
a multiple of m and given that 26, + 262 + 265 is a multiple of 27, we may write

201 = 2?71’7
20y = 2A + 21, (2.86)
2035 = —2A + 2,

for A an arbitrary function which takes values in [~3, §]. If necessary, by interchanging

Es, E3 with —E3, Ep, we may assume that A > 0 and therefore A takes values only in [0, 7].
Similarly, if necessary, interchanging F1, F3 by —FE1, —FE3, we may also assume that h:f?) <0
(see equation ([2.23))).

Note however that at the points where A is 0 or § modulo 7, we have that two of the angle
functions coincide. If this is true on an open set, it follows from [59] that the Lagrangian
submanifold is totally geodesic and is congruent either with f: S3 — §3 x §3 : w+ (1,u) or

f:8? = $3 xS :u (wiut,u"t). So by restricting to an open dense subset of M which
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we denote by M*, we may actually assume that A € (0, 5), in which case the function A, as
well as the vector fields Fy, E5, E5 are differentiable.

Notice that the case when A is constant is treated in [4], where such Lagrangian submanifolds
are determined to be either totally geodesic or of constant sectional curvature. As we consider
here A € (0, 5), the only possibility is A = %, in which case the Lagrangian submanifold is
not totally geodesic, but of constant sectional curvature.

Theorem 36. Let M be a Lagrangian submanifold of constant sectional curvature in the
nearly Kihler S? x S3. If M is not totally geodesic, then up to an isometry of the nearly
Kihler S® x S®, M is locally congruent with one of the following immersions:

1. f: S =3 xS?us (wiv™t ujut),

2. f R = $3 xS (u,v,w) = (p(u,w),q(u,v)), where p and q are constant mean
curvature tori in S® given by

p(u, w) = (cosu cosw, cosusinw, sin u cos w, sinusinw) ,

(cosv (sinu + cosu),sinv (sinu + cosu) ,

1
Q<u7 ’U) = ﬁ

cos v (sinwu — cosu) ,sinv (sinu — cosu)) .

Note that these are precisely the two Lagrangian immersions with constant sectional

curvature obtained in [20]. These two examples will appear as special solutions in respectively
Case 2 and Case 3. However we will mainly focus on the case that A is not constant.
In the following, we will identify a tangent vector X in T, M with its image through df in
TipS® x S3, that is X = df(X) = (dp(X),dq(X)), and we can write QX = Q(df(X)) =
(—dp(X),dq(X)). Therefore, if we see dp(X) projected on the first factor of S* x 3 | that is
dp(X) = (dp(X),0), we can write

dp(X) = %(X —QX). (2.87)

We use relations (2.17) and (2.86|) to compute PE; = —%El + ?J E;. As mentioned before
this is equivalent with stating that dp(E;) = 0 and that p has nowhere maximal rank. By
straightforward computations we obtain

(dp(E3),0) = (5 = L5 sin(2A + %)) By + 5 (4 + cos(2A + F)) T By, .
(dp(F3),0) = (5 — Jzsin(—2A + %”)) B3+ 75 (5 +cos(—2A + 3)) J B3 ’
and
(dp(E»), dp(Es)) = sin® A,
(dp(E3), dp(E3)) = sin® A, (2.89)
(dp(E3),dp(E3)) =0
We denote



v3 := dp(E3) = (dp(E3),0), (2.90)

1
— " E - JE
§ A0 1

and we may easily see that Q¢ = —¢, i.e. € lies entirely on the first factor of S3 x S3. Moreover,
(vi,vj) = iy sin A, (€, v2) = (£,v3) = 0 and (£, £) = 1. Therefore, p(M) is a surface in S* and
& can be seen as a unit normal to the surface.

As far as the Lagrangian immersion itself is concerned we also have due to the minimality
that

From [20] we know that the covariant derivatives of the endomorphisms A and B are

(VxA)Y = BS;xY — Jh(X,BY) + %(JG(X, AY) — AJG(X,Y)), (2.92)

1
(VxB)Y = —AS;xY + Jh(X,AY) + §(JG(X, AY) - AJG(X,Y)). (2.93)
We are going to use the definition of VA and V B in the previous expressions and then evaluate
them for different vectors in the basis in order to get information about the functions w”. and

ij
hfj For X =Y = E; in (2.92)) we obtain that

hiy = —his,
w?, = h2 cot A, (2.94)
W} = —h3; cot A.

If we take X = F) and Y = E5 in (2.92) and (2.93)), we see that

Ey(A) = hi, (2.95)
3
wiy = *Gf — h3ycot 2A (2.96)

and, for X = Fy and Y = Ej in (2.92)), we obtain

hi =0, (2.97)

w3 = — cot Ah3,, (2.98)
3

Wi = —‘g — h3,cot A. (2.99)

Then we choose successively X = E3,Y = E, X = FE»,Y = E3 and X = E3,Y = Es in
relations (2.92) and (2.93) and obtain

h3 =0, (2.100)
wi = \f + cot Ah3y, (2.101)
wi = — cot Ah3,, (2.102)
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Wiy = — cot 2Ah3,, (2.103)
wiy = — cot 2Ah3s, (2.104)
Ey(A) = h3,, (2.105)
E3(A) = —h3, (2.106)

We can easily see from (2.94), (2.97) and (2.100) that

wih =0 and w? =0
and, if we consider as well the relations in (2.91)), we have that
his = —h3s, hip =0 and h3, = —h3;.

Later on we will also need to study the Codazzi equations for M. From [20] we know their
general form:

1
Vhi(X,Y,Z)-Vh(Y,X, Z) :§(g(AY, Z)JBX — g(AX,Z)JBY
—g(BY,Z)JAX + g(BX,Z)JAY). (2.107)
We are going to use the definition for VA in the previous relation and take different values

for the vectors X,Y and Z. Thus, we evaluate it successively for Fq, Fo, Fq; Eq, Eo, Eo;
FEy, Es, Es; E1, Es, Es and Es, E5, F3 and we obtain the following relations, respectively:

By (k) = 1(—v/3h3, + 6(h%)2 cot A — 6(h%,)? cse(2A) + sin(2A)),
P01 3 5 (2.108)

1

Es(his) — E1(h33) :ﬁh% + hiyhs cot A — hizh3s cot A — hish3, cot(24),

1

Ey(h3y) — Ea(hiy) =h33h34(2cot A — tan A) + 6h§3(2\/§ — 3h3, cot A + 93, tan A),
1

E3(his) — E1(h33) :ﬁhgz + (hi3h3y — hizh3s) cot A — (3hizh3y + 2hishss) cot(24),
1

E3(his) + E1(h3,) :ﬁhgg + hi3h3s cot A 4 hishds cot A — hiahds cot(2A), (2.109)

Es(his) — Es(hiy) =2(hish3y + hizhis) cot(24),
E3(h3y) — En(h3s) = — %(8(5{’2)2 +4(hi)” +3((h3y)* + (h33)*)) cot A~
é(ﬁhi} +sindA) + g((hgg)2 + (h3y)?) tan A,
By (1) + Ba(hly) = — 5h(V3 + 6l cot A).
Theorem 37. Let

f:M—s®xs?
x> f(x) = (p(z),q()),
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be a Lagrangian immersion such that p : M — S3 has nowhere maximal rank. Assume that
M is not totally geodesic. Then p(M) is a (branched) minimal surface in S®. Moreover

P:M*— SOM4): z— (p(x) sin2A sinSA E) ’

where vo,v3 and & are defined by (2.90), is a map which is contained into the frame bundle
over the minimal surface p.

Proof. Recall that dp(E;) = 0, hence p(M) is a surface. Denoting the second fundamental
form of the surface in the direction of £ by o, a straightforward computation yields that

0(Ey, 3) = 0(Es, Er) = 5 cos Asin A — 1y, (2.110)
O'(Eg,Eg) - —hi))g.

As dp(FE2) and dp(Es3) are orthogonal and have the same length, the above formulas indeed
imply that the surface is minimal.
Moreover we also see that the surface is totally geodesic if and only if hf; = 0 and hj, =

% cos Asin A. Note also that if we write (dp(F2),0) = (pa,0) and (dp(Es),0) = (pv,0), we

have that

G((dp(EQ)a 0)7 (dp(E3)7 0)) = G((pa7 0)? (p77 0))
= 325 (p(a x 7),2q(c x 7))

Therefore,
(p(a x 7),0) = BE(G((dp(E),0), (dp(E),0)) — Q(G((dp(E2), 0), (dp(Es), 0)))).
A straightforward computation, using (2.88]) and (2.19)), shows that this gives
(p(a x 7),0) = (sin A)2€.

Therefore £ corresponds with the normal N on the surface. O

2.3.3 The reverse construction

In the following, we will separate the study of the submanifold into three cases, according to
whether the surface is totally geodesic or not and whether the map to the frame bundle is an
immersion or not.

Case 1. p(M) is not a totally geodesic surface and the map P is an immersion
into the frame bundle

In that case, in view of the dimension, we can locally identify M with the frame bundle on
the minimal surface induced earlier. Recall that

N . * V2 U3
PizeM '_><psinA sinA§>'
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Writing again dP = —PS), we can express the matrix € in terms of {E1, Es, E3} by

0 sin(A)ws sin(A)ws 0
| (% + h3, csc(2A)> w1+ h35 csc(A)wa+
—sin(A)ws 0 h3y csc(2A)wa+ <C?S/A — h3, csc A) w3
his csc(2A)ws 3
RS 3 . cosA 33 _
in(Aws . (\/g + hiy cscg2A))w1 0 ( 3 hi, CSC(A)> w9
h3y csc(2A)wa — hig csc(2A)ws R34 csc(A)ws
0 (— C‘\)/SgA + h¥, csc A) w3— <—C?/SgA — hiy CSC(A)) w2 0
h3s csc(A)ws hiz csc(A)ws

where w;(E;) = ;. The above matrix implies that the map P into SO(4) C R'® is an
immersion if and only if

% + h3, csc(2A) # 0.

As it is an immersion, in view of the dimensions, its image is an open part of the frame
bundle and we can identify M with an open part of the frame bundle on the minimal surface.
Moreover we can write

(%)
sin A

Pu

| pu |

Pov

‘pv”

where v is some function. As P is an immersion, we have that ¢ + v(t, u, v) depends on ¢ and
can be taken as the new variable ¢ on the frame bundle. Doing so, we have that P = P and
Q = Q (for P,Q as in subsection [2.3.1). Comparing both expressions for the matrix Q we
deduce

= cos(t + (¢, u,v))

+sin(t + (¢, u, v))

1 csc2AA 1
= — QA w/2( 3 — 3. i ~ Wy _
w1 \}g h?Z p— ( <\[ S e“/%(hiy cost — hys sint) + 2w du

S11

2A 1
(\/ics‘c A e“/Q(h§2 sint 4 h3; cost) — 2wu> dv + dt) ,

1
—— UJ/2 1
wo sinA\/ie (cos(t)du + sin(t)dv),

1
= w/2 — si
ws sinA\/Ee (cos(t)dv — sin(t)du),

as well as
e ¥ cos(2t) + hff:,)sin%A =0,
{ e sin(2t) + (hi’2 csc A — ﬁA) Lo, (2.111)
which implies that
hiy = —e* cos(2t)sin® A,
{ hiy = (—e_w sin(2t) sin A + %) sin A. (2.112)
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We may express Ep, F2, F3 with respect to the basis {0t,0u,0v} as follows. For E; =
a;0t + bj0u + ¢;0v, we use the previously obtained expressions of w; in w;(E;) = 6;; and
by straightforward computations we get

E, = <\}§ + hiy csc(2A)> ot,

Fy =(csc(2A)h3y + 2\1/5 sin Ae™%/2 (cos(t)w, — sin(t)wy))Ot+
e~*/? costsin A _— e~*/?sintsin A

V2 V2
Es = (CSC(?A)h%g - 2\1/5 sin A e /2 (cos(t)wy + sin(t)wv)> ot—

e “/2sintsin A e~“/2costsin A
/2 U+ NG V.
In order to be able to proceed with the reverse construction, i.e. in order to be able to
construct a Lagrangian immersion starting from the minimal surface we need to express A,
h3, and h3; in terms of the variables ¢, u,v. Remark that, as E1(A) = h3;, we may use (2.112)
and the expression of Fj in to determine how A depends on the variable t. We get

v, (2.113)

2 cos(2t) sin? A
V3ew — 2costsinttan A

A= (2.114)

In order to solve the above differential equation, we use (2.114)) to compute the derivative of
the expression ¥3¢ — sin(2t):

tan A
V/3e® 2
e . .
ot (tanA — s1n(2t)> = 2sin(4t),

tan A
on t. Notice that this implies

y 2
which, by integration, gives <\/§e — sin(2t)) = —1 cos(4t) + ¢, where ¢; does not depend

2+/3e¥

tan A = ,
c1 — 2cos(4t) + 2sin(2t)

(2.115)

where €1 = *1 and, at the same time, the surface is defined on an open set where ¢; —
2 cos(4t) > 0. Note that as the above expression contains a square root which would compli-
cate simplifications later on, we will avoid its use as much as possible. For later use, remark

that we can write
(Nﬁew

2
A 2s1n(2t)> = ¢; — 2cos(4t). (2.116)

As we can rewrite the above equation as

(2\/36‘“

2
. 2s1n(2t)> +2cos(4t) +2 = c1 + 2,
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we see that ¢; > —2 and equality can hold if ¢t € {£7,£5T} and 2&{33{“ +2 =0. So on an
open dense subset we can write

g =eYTH -2,

Combining this with the previous expression of ¢; and taking the derivative with respect to
u and v, we can compute

sin? A (,uu + e¥ cot A (36"’ cot A(jty — wy) — 2v/3 sin(2t)) + wu)
6e2 cot A — 2+/3ev sin(2t)
sin? A (uv + e¥ cot A (36” cot A(jty — wy) — 2v/3 s sin(2t)) + wv)

Ay, = .
! 6e2w cot A — 2+/3ev sin(2t)

Ay =

Using this, together with (2.113), we can solve in (2.105) and (2.106)), for h3, and h3;.
This gives us

hs V3 (3¢ cos A((wy — ) sint + (py — wy) cost)—
V3sin A((py + wy) cos(3t) + (1o + wy) sin(3t))),
e=39/2sin? o
h3g = —————— (V3 sin A((pty + wy) sin(3t) + (—py — wy) cos(3t))—

3e” cos Ay — wy) cost — 3e” cos A(py — wy) sint) .

In order to determine a differential equation for the function p we now apply the previously
obtained Codazzi equations for M. By (2.113)), it turns out that (2.108]) and the first 5
equations of (2.109) are trivially satisfied. Recall from (2.85) that Aw = —8sinhw. The

seventh equation of (2.109)) reduces to
Ap = —4e”(cos(2A) + 2) csc? A + 8v/3 cot A sin(2t) + 8sinh w. (2.117)

A straightforward computation, using the definition of p and (2.116|), shows that this reduces
to
Ap = —et. (2.118)

Further on, with these new notations, we may see by straightforward computations that the
sixth equation of (2.109) is now trivially satisfied.

Reverse construction

We denote by p : S — S? € R?* a given minimal surface S which is not totally geodesic, on
which we take suitable isothermal coordinates as introduced before. Hence we have a solution
w of Aw = —8sinhw. Additionally, we take a solution of

Ap = —et (2.119)

and we take the open part of the frame bundle such that

(2\/56‘*’

2
— 94i — Wtk _9 _
o A 2 sm(2t)> e 2 — 2cos(4t) (2.120)
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has a solution for the function A on an open domain. We define

his = —e* cos(2t) sin® A,
cos A
hiy = (—e™“sin(2t)sin A + )sin A,
V3
—3w/2 (1142 A
h3, = ﬂ(?)ew cos A((wy — pio) sint + (fy — wy) cost)—

V3sin A((py + wy) cos(3t) + (py + wy) sin(3t))),
e3/2sin? A

T (\/g sin A((ptu + wy) sin(3t) + (= — wy) cos(3t))—

hs =
3e” cos A(py, — wy) cost — 3e” cos Ay — wy) sint)

and we define as well a metric on the open part of the frame bundle, by assuming that the

vectors

1
Ei == (\/3 — 2e “tan A sint cos t) ot,

2
—3w/2 o A
Ey=— % (\/gtanA((uu + wy,) €08(3t) + (phy + wy) sin(3t)) + 3¢ (i + wy,) sint+
e~ 2 costsin A e 2 sintsinAav’ (2.121)

(=t — wy) cos t))at + Tau + 7

e~ 3%/2 gin A .
E3 :T\/ﬁ (\@tan A((,Uu + wu) SlH(?)t) —+ (_Mv — Wv) COS(3t)) _ 3ew((ﬂu + Wu) cos t+
e 2 sintsin A e~ % costsin A

(1 + wy) sin t))@t - 7 ou + 7 ov

form an orthonormal basis.
We now want to determine the Lagrangian immersion

f:SxI—8*xs?
(u? U? t) '_> f(uﬁv7t) = (p(u7 U7t)7Q(u?U7t))'

We already know that the first component is the given minimal surface p. We write for both

bases N
2(q) =qb1, L) = pou, Ei(q) = qB, Er(p) = pan,
2:(q) = qBa, A (p) = paz, and Ey(q) = P2, Ea(p) = pao,
2(q)=qBs, L(p)=pas,  Es(q) =qbs, Es(p) = pas.

Note that a; = 0 and a9 and ag are determined by the minimal surface. In particular ao and
a3 are mutually orthogonal imaginary quaternions with length squared 2e*. From ([2.121)) we

then get that

a; =0,
_w . _w ., .
. e~ 2 costsin A +e 2 sintsin A
Qg = (0%) a3,
V2 V2
e 2sintsin A e 2 costsin A
o3

o3 = — oo +
’ V2 ? V2
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and from the properties of the minimal surface we obtain

Oag __ _Oaz __ 1 1 w

Tl = — G2 = qwue — Jwyas — €Fag X ag,
Oa 1 1

TE = qweQ2 + zwua3 + a2 X ag,

Oag __ 1

1
9 = WoQ2 + Wy 3 — 2 X 3.

Using the properties of the vector cross product, this also implies that

% = 209 + 2e¥3 + Wy X 3,
% = —2eay — 203 + wyan X 3.

Now, in order to find Bi, we remark that the vectors F1, F5 and E3 need to correspond with
eigenvectors of the operators A and B with suitable eigenfunctions. We have

El = (07q51)7
By = (péa, qf), (2.122)
Es = (pas, qfs).

The angle functions are 61 = %’T, 0y =2A + 2{, 03 = —2A + %’T and
PE; = cos(20;)E; + sin(26;)J E;, (2.123)
for i = 1,2,3. At the same time, by the definition of P in and by we have
PE; = (pp1,0), PEs= (pP2.qd2), PE3= (pfs,qds). (2.124)

Now we use the definition of J to write out JE;:

1

JE, = %(211?51,4151),
By = \}g(p@@z o), g(~2d2 + o). (2.125)
B \}§<p<253 — Gis), q(~233 + ).

Then, by using (2.125), (2.122) and the values of 6; in (2.86)), we rewrite equation (2.123))
and, by comparing it to (2.124]), we obtain

cos(2A + &) — L sin(2A + &) }

V3 1 N
- = 5(1 —v3cot A
& 1-— % sin(2A + ZF) dy = 3(1— V3ot A)d,
_cos(—2A + ) — L-sin(—2A + &)
V3 35 1 -
- a3 = $(1+ v/3cot A)as.
s 1—%sjn(—2A+%’f) 3= 3l )as

Next we continue the computations in order to determine 3;. For this, we compute G (Es, E3)
in two different ways, once using (2.19) and once using (2.16)). We obtain, respectively

_\}3 L p2517q/31)7

G(E3, E3) = —g(

JE| =
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and
G(Fa, E3) = G((paz, ¢B2), (pas, 4B3))
= 23(29(52 X a3 4 Gy X f3 + Gg X a3 — 262 x fs,
q(—Ba X a3 — Gig X B3 + 209 X &3 — [ X [3)
= 2-(p(2— (1 — 3cot® A))ds x dg,q(1 — (1 — 3cot® A))ds x ds)

£

3v3
= 5u5 (1 + cot? A)(2paz x G3, géz X G3).
Hence, comparing both expressions we get that
By = —@ csc? A dg X Gz = —\fefwaz X Q3.

Moreover, we also obtain that

~ 1 w

B2 :m(l —V/3cot A)e” 2 sin A(cos tas + sin tas),

~ 1 w

B3 :m(l + V3 cot A)e” 2 sin A(— sin tag + costa).
We then take the inverse of (2.121)) and deduce that

- \/3042 X Q3

2v/3ev — 2sin(2t) tan(A)’

L o (fy + wy) cos(2t) tan(A)
& 8 < <,uv o V3ew — sin(2t) tan(A)

—4+/3 sin(2t) cot Aag) ,

1 o N (iy + wy) cos(2t) tan(A) o X o cot(A) sin(26)a
Ps =3 < (Mu + wy + V3 — sin(21) tan(A) > 2 X oz — 4v/3 cot(A) sin(2t)ay
+4(1 + V3 cos(2t) cot A)ag) .

b=

> oo X a3 — 4(v/3cot(A) cos(2t) + 1)ay

By straightforward computations, it now follows that

061 0B .
u o R0
061 0fs B
0 o =0
0B 0B B
e 5y 2PsxB2=0,

from which we deduce that the integrability conditions for the immersion ¢ are satisfied.

Case 2. The minimal surface p(M) is totally geodesic, i.e. 0 =0

As mentioned before this means that hi; = 0, k3, = % The equations following from
(2.92) and (2.93), just like in the first case, give

hiy =0, w? =0, Wy = _7%(;;%%)7
h%l =0, wi)’l =0, w%Q - _h§2 COt(2A),

h3, =0, wd = sin2 A, 2 _ 2+cos(2A) (2.126)

V3 w3 = T o3
W%l =0, ng =0, W§2 = —hgs cot(2A)



and

E1(A) =0,
Ea(A) = hi, (2.127)
E3(A) = —h§’2.
In this case, the equations of Codazzi become
V3 V3
E(h33) = —7@2’ By (h3y) = Thgga Ey(h3,) = —E3(hd,) (2.128)

and

—1—(14+12(h3y)* +12(h33)?) cos(2A) +cos(4A) 4 cos(6A) +4(Fa(hds) — E3(h3y)) sin(2A) = 0.

(2.129)
In what follows we are going to introduce new vector fields on M by:
4
Xl = ﬁE17
2h3, csc? Asec A
Xy =22 7 Ey +2csc A Es, (2.130)
2h3, csc? A sec A
Xg=_—"23 73 Eq1+2cscA Es.
We can easily check that
[X1, Xo] = 2X3,
(X2, X3] = 2X3, (2.131)
(X3, X1] = 2Xs.

Taking a canonical metric on M such that X, X5 and X3 have unit length and are mutually
orthogonal, it follows from the Koszul formula that all connection components are determined.
From (4.1), Proposition 5.2 and its preceeding paragraph in [20] it follows that we can locally
identify M with S? and we can consider X;, X and X3 as the standard vector fields on S3
with

Xi(z) = =i,
Xo(z) = zj, (2.132)
X3(x) = k.

Using the above formulas, the component p of the map can now be determined explicitly.
First, we write
Dx,p = pa;, (2.133)

for i = 1,2,3, where D denotes the Euclidean covariant derivative. Of course, by Theorem
Dx,p = 0. Then, we may compute by ([2.87)

2cos A sin A

(dp(X2),0) = ( 3 +2sinA)Es + (—2cos A + /3 )J Es,
(dp(X3),0) = (— +2sinA)Es + (2 sA+7i )JE
) in co
P V3 ’ V3 ’
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and we see that

O J—

0) = (0,0), (2.134)
0) = )

Moreover, it is straightforward to get

(dp(X2),dp(X2)) = (dp(X3),dp(X3)) = 4, (dp(X2),dp(X3)) = 0. (2.135)

Next, we want to determine a system of differential equations satisfied by as and a3. For this,
we consider S? x S? € R* x R*. On the one hand, we use (2.133)) together with Dx (dp(Y'),0) =
(Dxdp(Y),0). On the other hand, we use (2.15)) and, therefore, we obtain

X1(ag) = 2as3, Xi(ag) = —2a0,
X2(Oé2) = 0, XQ(Ckg) = —Q X (3, (2.136)
Xg(az) = —a3 X (9, Xg(ag) =0.

We choose a unit quaternion h such that at the point p(x) = 1 we have

042(1) = _2hjh71)

asz(1) = —2hkh™ 1,

oo x az(1) = 4hih™L.
Using (2.132), we can check that as = —2hzjzr 'h™!, a3 = —2hakz ' h™" and as X a3 =
4hziz='h~! are the unique solutions for the system of differential equations in ([2.136)):

X1 (o) = X1(—2hxjz h™1) = —2(h X (z)jz th™t + haj Xy (=AY
= —4haka~'h!

= 2043,

Xi(a3) = X1 (—2hzkz'h™Y) = —2(hX1(2)kz  h ™ + hak X (¢ )R
= 4hzjz tht

= —20&2,

Xo(as) = Xo(—2hxkz 'h™1) = —2(haxjkz 'h~! + hak(—j)z th™1)
= —4hxiz h!

= —Q9g X (a3,

Xo(ag) = Xo(—2hxjz 'h™1) = —2(hxjjz 'h™t + haj(—j)z th™1)
-0,

X3(a3) = X3(=2hake h™Y) = —2(hakke ™ h ™' + hak(—k)z~'h™h)
= 07
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X3(ag) = X3(—2hajz ' h™') = —2(hakjz 'h™' + haj(—k)z~ A1)
= 4hxiz"th!

= g X (3.

This in its turn implies that
p(z) = —hiziz 'h™! (2.137)

is the unique solution of X;(p) = pa; with initial conditions p(1) = 1. Indeed we have

X1(p) = X1(—hiziz"'h™') = 0 = pa,
Xa(p) = Xo(—hiziz™'h™") = 2hizke™ h™" = (~hizie™'h~")(~2haja™ h™") = pay,
X3(p) = Xs(=hiziz™'h™") = =2hizje™ h™" = (=hiziz”'h™")(~2haka™'h™") = pas.

Before we can determine the second component g of the Lagrangian immersion, we need to
explore the Codazzi equations further. First we look at the system of differential equations

for the function A in and . Notice that by using the relations in we
have that
X1(A) =0,
Xo(A) = 2h3; csc A, (2.138)
X3(A) = —2h3, csc A,

where the last two equations can be seen as the definition for the functions hgg and h%z. The
first one is, of course, a condition for the unknown function of A. Three out of the four
Codazzi equations then can be seen as integrability conditions for the existence of a solution
of this system, whereas the last one reduces to

Xo(Xa(A)) + X3(X3(A)) = (cot(A) — tan(A)) ((X2(A))? + (X3(A))?) +4(1 +2 cos(2A)) cot(A),
Under the change of variable A = arctan(e??), this equation simplifies to

_ 48
Xa(Xa(B) + Xa(Xa(8) = 22 (2139)

Note also that for A = §, we get the solution corresponding to example (1) in Theorem
as it follows. From (2.130) and (2.138) we see that

4

Xy %Ela
4

X2 = %Eza
4

X3 =—

Ls.
\/g 3

V3

This implies that M has constant sectional curvature 3=. Hence this corresponds to example
(1) in Theorem

Remark 4. Note that there exist at least locally many solutions of the system
Xl (/8) = Oa
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_ M8
(X)) + X)) = )

This can be seen by choosing special coordinates on the usual S3. We take

x1 = cosvcos(t + u),

(t +u)
x9 = cosvsin(t + u),
x3 = sinwv cos(u — t),

(u—1)

x4 = sinvsin(u — t).

As, given (2.132), at the point x = (1, x2,z3,z4) the vectors in the basis are

Xi(z) = (—z2, 21, T4, —T3),
Xo(x) = (=23, —24, 21, T2),

X3($) = (—IL'4, xr3, —I2, wl),
it is straightforward to see that

ot = Xy,
Ou = cos(2v) X1 + sin(2t) sin(2v) X2 + cos(2t) sin(2v) X3,
Ov = cos(2t) Xy — sin(2t) X3,

and conversely,

X, = 0t,
_ sin(2t) _ cos(2v)

Xo = Sin(20) Ou — sin(2t) Sin(20) Ot + cos(2t)0v,
_ cos(2t) cos(2v) )

X3 = Sin(20) Ou — cos(2t) sin(20) Ot — sin(2t)dv.

At last, the equations in (2.139)) become %ﬁ =0 and

»*p  9°8 op
2 —4
CSC (27})@ + W + 2C0t(2'l})% = 2(36 B — 1)

(2.140)

The above differential equation is an elliptic quasilinear second order PDE. Hence, we can
apply the Cauchy-Kowalevskaya theorem (see [30]). Therefore, if we start with an analytic
regular curve without self intersections and analytic Cauchy data along the curve, we locally
have a unique (analytic) solution. Given that we can choose arbitrarily both the curve and
the Cauchy data along the curve, locally there exist many solutions for the system in .

In the following part we are going to determine the second part of the immersion. We

start with an arbitrary solution of
X1(B) =0,
2(3 — %)

Xo(Xa(B)) + X3(X3(8)) = 17
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and we are going to find a system of differential equations determining the immersion q. We
define h3, and h3; as in ([2:138) and such that A = arctan(e??). First, we can write for each
of the bases that we took, {E;} and {X;}, the following:

Xi(q) = gB1, Xu(p) =pa, Ei(q) = qf1, Ear(p) = pay,
Xo(q) = qf2, Xa(p) = paz, and Es(q) = qB2, E2(p) = pas,
X3(q) = aBs, Xs(p) = pas, E3(q) = qB3, E3(p) = pas,
where a; = 0 and as and a3 are as determined previously. Then, we prove as before that
R P
YT s 0T Y
cos(2A + 2%) — L sin(2A + 27)
By = L Vs % ay = 11— V3cot A)ds, (2.141)
1 — Zsin(2A + )
_cos(—2A+ %) — Lsin(—2A + %)
Ps = Vi o 2 as = 3(1 4+ V3ot A)ds
1-— \/gsm( 2A + 4F)

and we continue the computations in order to find the system of differential equations for the
immersion ¢ in terms of the basis {X;}. As we identify df(X;) = X, we have

30 4 o _ i(pd ab1)
- \/g 1_\/3 1, 1)

Therefore, 81 = % B1. We may compute similarly for Dy, f and Dx, f and find

Dx, f = (X1(p), X1(q)) = (0,¢61) = X1

hajxz=th=1,

cs<f A
hxkz—1h=1

B3 =2csc A By — h23 csc? Asec Ay,

Q3 = ~ e

{ Bo = 2csc A 5’2 }h32 csc? A sec ABl, { Qg =

and
Bl = —\gghxixlhl.
Using now relations (2.141]) we may express
By = —(1 —V3cot A) hajz 'h™' + h3,csc? Asec A hxiz ' h™!,
B = —(1+V3cot A) hakz 'h™ + h3;csc? Asec A hxiz 'h™'.
Finally, as X;(q) = qf;, we find
Xi1(q) = —2qhxiz—'h~1,
(q) = q(h3y csc® Asec A hziz~'h~™! — (1 — /3cot A) hajz~th™1),
X3(q) = q(h35csc? Asec A hxiz=*h™1 — (1 + /3 cot A) hakz~1h™1),
which, given ([2.138) and A = arctan(e??), is equivalent to
X1(q) = —2qhxiz—th™1,
Xo(q) = q (—X3(B)hziz™ h=" — (1 — V/3e72F) hajz='h71), (2.142)
X3(q) = q (X2(B) haiz™'h™t — (1 4+ v3e72F) hakz='h~1).

By straightforward computations, one may see that X;(X;(q)) — X;(Xi(¢)) = [Xi, X;](¢) hold
for i,j7 = 1,2,3. Therefore, the immersion f is completely determined by (2.137)) and ([2.142)).

76



Case 3. The minimal surface p(M) is not totally geodesic, but the map P is not
an immersion

As mentioned before this means that

sin(2A)
h3, = ————=. 2.143
12 — \/g ( )
Therefore, the equations in subsection which follow from (2.92) and (2.93) become
142 cos(2A
hiy = —his,  wh= %83()’ w§) = w3 = —hizcot A,
142 cos(2A 142 cos(2A
hip =hiy =0, w = 7;3%( )’ W32,1 = _7;\0/%( )v
wi =wi; =0, wih=—h3cot(27), wih = —h3;cot(2A)
and
Ei(A) =hiy, Es(A) =h3s, Es(A) = —h3,. (2.144)

Moreover, the equations of Codazzi in (2.108) yield h3; = 0 and, therefore, w3, = w3, = 0.
The first two equations in (2.109)) imply that

Ei(h33) =0 and Ei(h3,) =0
while the next three ones vanish identically. The last two equations in (2.109]) become

Es(h3y) = —E3(h3s) (2.145)
and

—[146(h35)24+6(h35)%] cos 2A+cos 4A+cos 6A+2[— E3(h3y) 4+ Fa(hds)] sin 2A = 0, (2.146)
respectively. The Lie brackets of the vector fields F1, Fs, E3 give

[E1, B3] =0
[EI)E3] = 07

142 2A
[EQ, Eg] = _‘i‘\C/OgS()E,l + th Cot(2A)E2 + hg?’ COt(2A)E3

Next, we take new vector fields X1, Xo, X3 of the form

X1 = En,

X, = \/?( hg?’)E1 + — V2 Ey— — (2.147)
31 (sin(2A))2 314/sin(2A) Z\/sm
\/i(h% + hi )El " \/i
3% (sm(ZA)) 31 \/sin(2 i« /sin(2

We can easily check that [X1, Xo] = 0, [X1, X3] = 0 and [X3, X3] = 0, therefore, by the lemma
on page 155 in [§], we know that there exist coordinates {¢,u,v} on M such that

X, = ot,
X2 = Ou,
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X3 = Ov.

Using ([2.144)) we obtain:
At = O?
A, = th + h§3
Y 31/4/cosAsin A
—h3y + his

A, = .
31/4y/cos A sin A

Furthermore, we express h3, and h3; from the previous relations as
1
h3y = 531/4(/\“ — Ay)Vecos Asin A,
1
his = 531/4(Au + Ay)Vecos Asin A

and therefore, the expression of (2.147) becomes

_Xl == El,
A, 2A 1 1
X9 = —wEl +——F———F — ——F———Fj, (2.148)
V3 33v/cosAsin A 33v/cosAsin A
A, csc(2A 1 1
X3 = CSC( )E1 + — E2 + — E3.
V3 31+v/cos Asin A 31+/cos A sin A

Finally, by straightforward computations, one may see that equation (2.146|) becomes

—V3(A2 + A2) cos(2A) + Bi(EQ(Au) — E3(Ay) + Ea(Ay) + E3(Ay))Vecos Asin A—
— 2(sin(2A) + sin(4A)) = 0. (2.149)

We compute dp(du) and dp(dv):

_\/§—2cos(2A+%)E 25in(2A+§)—\/§E 2COS(2A+2%)—|—1

dp () = + + JEqy+
p(0v) 3312, /sin(2h) 3342 /sn(2A) | 3¥4y2\/sin(2h)
2 cos (2A + %) -1
JE37
33/44/2,/sin(2A)
dp(00) — V3 — 2cos (2A—|— %)E B 2 sin (2A+ %) — \/gE 2 cos (2A—|— %’r) + 1JE2—

3942 Jsn(Zh) | 39/4y/2\/sin(2A)

2 cos (2A+§) -1

Es,
33/4/2,/sin(2A)

33/4/2,/sin(2h)

2tan A

and we remark that they are mutually orthogonal and that their length is NI So, as u,v
are isothermal coordinates on the surface, for which (Ou,du) = (0v,dv) = 2¢“, we obtain
that ton A
an
e¥ = . 2.150
V3 (2.150)
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On the one hand, for z = x + Iy as in subsection we may compute dp(0z):
1
dp(9z) = 5 [dp (Ou) — I - dp (9v)]

1-1) (V3 - 2cos (2A+%)) Es

1
©2y/2 33/4,/sin(2A) [(
2
(1+1) (\f— 2sin <2A+ g)) B3+ (1-1) <2005 (2A+ ;) + 1) JEst
T

(1+1) (ZCOS <2A—|— g) - l) JE3:| :
As
V3 —2cos (2A + %) = 2sin A(V3sin A +cosA), 2sin (2A + g) — V3 =2sinA(cos A — V3sin A),

2
2 cos <2A—|— ;) +1=2sinA(sinA —v3cosA), 2cos (2A+ g) — 1= —2sinA(sin A + V3 cos A),

we finally have

sin A
V2 33/4, /sin(2A)
(1-1) <sinA — \/gcosA) JEy — (1+1) (sinA + \/gcosA) JEg} .

dp(0z) = [(1 —1) (\/gsinA + cosA) Ey+(1+1) (cosA - \/gsinA> Es+

Moreover, from (2.150)), it follows that w, = m (Ay — 1A,).
On the other hand, we may compute ngdp(az) using the Euclidean connection V¥ :

1 e~ Tsin?A (V3cot A+ 3 Ay — A,
Vi.dp(9z) = ——=E1 + A (V3 3 ) )E2+
V3 3v/3sinz (2A)
T sin A(A, +iAy) (V3cos A — 3sin A
e in A( iAy,) (;fcos sin )E3 o
3v/3sin2 (2A)
e~ T sin A(Ay —iAy) (V3sin A — 3cos A) JE
y—
B%Sin%(QA)
(% + %) sin A(Ay —iAy,) (V3sinA 4+ 3cos A) JE
\/i\‘ygsin%(QA) >

From the previous computations we see, indeed, that
V5.dp(0z) = =N + w.dp(dz),

which corresponds to (2.84)). From here, we remark the component in the direction of the
normal N = & (see subsection [2.3.2) and we see that the choice of coordinates {t,u,v}
following from (2.147) is the right one, as we have indeed o(9z,0z) = —1, as in subsection

Using @-150) together with the fact that, by taking the inverse in ([2.148)), we have

B = o,
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1 T
B, = S1V/sin(2A) ( Ay = Ay at+au+au> ,
2v/2 V3sin(2A)
b ~31/5in(2A) ( Ay + Ay
° 22 V3sin(2A)

8t+8u—8v>,

we may prove that equation ([2.149) is equivalent to the Sinh-Gordon equation in (2.85]), which
characterizes the minimal surface.

Reverse construction

Let S be a minimal surface given by p : § — S* C R?*, on which we take isothermal
coordinates u and v as in subsection [2.3.1] Hence, we have a solution w of the Sinh-Gordon
equation Aw = —8sinhw. Next, we define a function A € (0, §) such that

tan A
7
Remark 5. If w = 0, then A = %, which corresponds to example (2) in Theorem

w

We then define a metric on an open part of the unit frame bundle of the surface by
assuming that the vectors

E, = ot,

V/3ew/? <wv — Wy >
Ey = Ot + du+ v ) , 2.151
2T ovT 3 \ 2V3 v (2.151)

V3ew/? (wv + wy )
Es = — ot +0u — 9
ST T o/Tx3e \ 23 oo

form an orthonormal basis. Next, we want to determine the Lagrangian immersion

f:SxT—>S¥xs?
(u? U, t) }_) f(u,’l},t) = (p(uﬂvﬂt)7q(uﬂvﬂt))’

for which we already know that the first component is the given minimal surface p. We write
for both bases

2(q) =qb1, £ (p)=pau, Ei(q) = B, Ei(p) = pau,
2(q) = qpo, %(p) = pa, and Fa(q) = qfz, Ea(p) = paa,
2(q) =qBs, 2(p) =pas E3(q) = qBs, Es(p) = pas.

Note that a; = 0 and a2 and a3 are determined by the minimal surface. In particular as
and a3 are mutually orthogonal imaginary quaternions with length squared 2e¢*. From the
derivates of p in the latter relations together with (2.151)), we obtain

(a2 +as), (2.152)



& __ﬂ(a — ag)
2T oI 3 2T

We then follow the same steps as in Case I and obtain

_ Ve

Bi=-"

N \/g(ew/Q _ e—w/?)
_ + , 2.153

S e 2t es) (2.153)

N \/g(ew/2 _ e—w/2)

/83 = - 4@ (012 - 043).

Finally, we take the inverse of the matrix which give {E;} in the basis {9t, Ou, dv} in (2.151))
and obtain

a9 X (g,

B = 12 X,
efw
Bo = ?(46‘”0&2 — dag 4+ wyag X ag),
oW
B3 = —?(4042 — 4e¥ a3 + wyag X as).
By straightforward computations, it now follows that
961 0B
e e ) =
9 ot B1 % B2 =0,
061 0fs
it S ) =
90 o p1 x B3 =0,
0B 0B
90 92 =0
9 Bu B3 X B2 =0,

from which we deduce that the integrability conditions for the immersion ¢ are satisfied.

2.4 Conclusion

The results in Section can now be summarized in the following theorems.

Theorem 38. Let w and p be solutions of, respectively, the Sinh-Gordon equation Aw =
—8sinhw and the Liouville equation Ap = —et on an open simply connected domain U C C
and let p : U — S? be the associated minimal surface with complex coordinate z such that
0(0z,0z) = —1.

Let V. ={(z,t) | z € U,t € R, e — 2 — 2cos(4t) > 0} and let A be a solution of

2
2/3ev . — wtn
( A 281n(2t)> = e¥"H — 2 — 2cos(4t)

on V. Then, there exists a Lagrangian immersion f:V — S3 x $3: 2+ (p(x), q(x)), where
q is determined by

dq V3
ot 2v/3ev — 2sin(2t) tan A

q a2 X O3,
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dqg 1/ _, (o + wy) cos(2t) tan A

— =—e v + wv —

ou 8 ( <,u V3ew — sin(2t) tan A
4v/3sin(2t) cot A ¢ oz;;) ,

dq 1 iy (1 + wy) cos(2t) tan A

-~ —Z\— u + m +

ov 8 ( c <M “ V3e® — sin(2t) tan A

4(1 + V3 cos(2t) cot A) ¢ ag),

> q as x az —4(V3cot Acos(2t) +1) q ap—

) q ag X a3 — 4v/3cot Asin(2t) q ao+

where ag = pp,, and oz = Ppy .

Theorem 39. Let X1, X, X3 be the standard vector fields on S®. Let B be a solution of the
differential equations

X1(B) =0,
_ A8
X(Xa(8)) + Xa(Xa(8)) = )

on a connected, simply connected open subset U of S3.
Then there exist a Lagrangian immersion f: U — S3 x S3 : 2 — (p(x), ¢(z)), where p(x) =
ziz™' and q is determined by

X1(g) = —2qhaiz—1h 1,
Xo(q) = q (= X3(B)hwiz=th™! — (1 — V/3e™28) haja—th7!),
X5(q) = q (Xa(B) haiz™'h™ — (1 + v/3e~ %) haka™'h71).

Note that in the previous theorem the image of p is a totally geodesic surface in S3.

Theorem 40. Let w be a solution of the Sinh-Gordon equation Aw = —8sinhw on an open
connected domain of U in C and let p : U — S® be the associated minimal surface with
complex coordinate z such that 0(0z,0z) = —1. Then, there exist a Lagrangian immersion
f:UxI—S*xS?: 2 (p(x),q()), where q is determined by

dq \/§e*w

a = — 4 q a9 X OZB,

0 e

873 = —5~(4e¥gar — dgas + wig a2 X a3),
0 e v

a% = ——5 (4902 — 4e“gas + wuq a2 X a3).

where g = Ppy, and g = Ppy.

Theorem 41. Let f : M — S x S? :  — (p(),q(x)) be a Lagrangian immersion such
that p has nowhere maximal rank. Then every point x of an open dense subset of M has a

neighborhood U such that f|y is obtained as described in Theorem or .
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Chapter 3

A classification of isotropic affine
hyperspheres

The notion of a submanifold with isotropic second fundamental form was first introduced in
[47] by O’Neill for immersions in Riemannian manifolds and recently extended by Cabrerizo et
al. in [10] for pseudo-Riemannian manifolds. We say that M has isotropic second fundamental
form h if and only if for any tangent vector X at a point p we have that

< h(X(p),X(p),M(X(p), X(p)) >= A(p) < X(p), X (p) >*.

If X is independent of the point p, the submanifold is called constant isotropic. Given the
similarities between the basic equations that charactherise the manifolds and the important
role played by the difference tensor it is natural to introduce the equivalent notion of isotropy
in affine geometry. That is, a hypersurface M has isotropic difference tensor K if and only if
for any tangent vector X at a point p we have that

h(K (X (p), X (p)), K(X(p), X (p))) = A(p)h(X(p), X (p))?,

where h is the affine metric on the hypersurface. Note that a 2-dimensional affine surface is
always isotropic. In case that the affine metric is positive definite such submanifolds have
been previously studied in [5] and [6]. In [5], beside a restriction on the dimension, a complete
classification was obtained in case that the affine hypersurface is an affine sphere. In [6] a
complete classification was given of 5 dimensional positive definite affine hypersurfaces.
Here we will always deal with the case that A £ 0. Therefore, if necessary, by replacing &
with —¢£, we may assume that A is positive and therefore there exists a positive function u
such that A = u2.

In the present study we deal with the case that the induced affine metric has arbitrary
signature. We will first show that the restriction of the dimension remains valid in the
indefinite case. Even though the proof remains based on the Hurwitz theorem it is essentially
different from the proof in the definite case. This is because unlike in the definite case, the
unit tangent bundle at a point p is no longer a compact manifold. Instead of this null vectors
will play an important role in the proof of the restriction of the dimension.

In the second part of our study we will then restrict ourselves to the case that M is
an affine hypersphere and we will deduce that in that case the immersion also has parallel
difference tensor (and is a pseudo-Riemannian symmetric space). We then look at each of the
possible dimensions and determine in each case explicitly by elementary means the form of
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the difference tensor and the possible examples. Note that for this second part also a more
involved Lie group approach would be possible. We show the following theorems.

Theorem 42. Let M be a 5-dimensional affine hypersphere of RS. Assume that M is \-
isotropic with A\ # 0. Then either

1. the metric is positive definite, M 1is isometric with SSLO(?EZS) and is affine congruent to an

open part of the hypersurface {gg’ |g € SL(3,R)} of R% = 5(3) C R3*3 (see [3]) , or

2. the metric has signature 2, M is isometric with % and is affine congruent to

an open part of the hypersurface {gAg”|g € SL(3,R)} of RS = 5(3) C R3*3, where

1 0 0
A=(0 -1 0
0 0 -1

Theorem 43. Let M?® be an 8-dimensional affine hypersphere of R?. Assume that M is
A-isotropic with A # 0. Then, either

1. the metric is positive definite, M is isometric with SSL[S?E’?S) and M is affine congruent

to an open part of the hypersurface {gg’|g € SL(3,C)} of R?, identified with the space
of Hermitian symmetric matrices (see [3]), or

2. the metric has signature 4, M is isometric with gle(é’%) and M is affine congruent to

an open part of the hypersurface {gAg"|g € SL(3,C)} of R identified with the space of

1 0 0
Hermitian symmetric matrices, where A= |0 —1 0 |, or
0 0 -1

3. the metric has signature 3, M is isometric with SL(3,R) and M is affine congruent
with SL(3,R) considered as a hypersurface in R? identified with R3*3.

Theorem 44. Let M be a 14-dimensional affine hypersphere of R®. Assume that M is
A-isotropic with A # 0. Then, either

1. the metric is positive definite, M is locally isometric with SSZ::(,)G) and is affine congruent

with the connected component of the identity of the matrices with determinant 1 in

a= {(_EF g) ,E=ET F = —FT} C C%%6 (see [3]), or

2. the metric has signature 6 and we may identify R with the set of the skew symmetric
matrices in R6*S and therefore M is isometric with Sglg?éﬂ){{) and is affine congruent with

the connected component of

0 0 0O 0 01
0 0 0O 010
0 0 0O 1 00 . . ) )
Iy = 0 0 100 0 of skew symmetric matrices with determinant 1, or
0O -1 0 0 0 O
-1 0 0O 0 00
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3. the metric has signature 8 and we may identify RS with the set of matrices a =

{ (_EF g) ,E=FET F = —FT} C C%%6 . such that M is locally isometric with sz*(Es)

(1,2)
10 0 00 O
01 0 OO0 O
and is affine congruent with the connected component of Iy = 8 8 _01 (1) 8 8
00 0 01 0
00 0 OO0 —1

of a, consisting of matrices with determinant 1.

Theorem 45. Let M2 be a 26-dimensional affine hypersphere of R?". Assume that M is
A-isotropic with A # 0. Then, either

1. the metric is positive definite, M is locally isometric with Fg(—26)/Fy and is affine
congruent to the connected component of the identity of the hypersurface {NNT|N €
h3(0),det(N) = 1}, where h3(0) denotes the set of Hermitian matrices with entries in
the space of octonions Q (see [5]), or

2. the metric has signature 16 and we may identify R?" with h3(Q), such that M is affine

1 0 0
congruent with the connected component of A = [0 —1 0 of the hypersurface
0 0 -1

{NANT|N € p3(0),det(N) =1}, or

3. the metric has signature 12 and we may identify R*" with the set of Hermitian matri-
ces with entries in the space of split-octonions, such that M is affine congruent with

10 0
the connected component of A = |0 —1 0 of the hypersurface {NANT|N €
0 0 -1

h3(0),det(N) = 1}.

Before proceding with the presentation of the results obtained, we mention the following
known lemmas and theorems:

Lemma 11. ([/6]) Let F : M — R"™! be an equiaffine immersion. If the metric on
Rt s indefinite, then the immersion is isotropic if and only if for any tangent vectors
X1,X9,X3,Xy4 € T,M, we have that

h(K(X1, X2), K(X3, X4)) + h(K (X1, X3), K(X2, X4)) + h(K (X1, X4), K(X2, X3)) =
/\(p){h(Xl,XQ)h(Xg,X4) + h(Xl,Xg)h(XQ, X4) + h(Xl, X4)h(X2,X3)}. (31)

By using lemmaand property (3) in Proposition [2.137|we get that an affine submanifold
M™ in R™"! is isotropic if and only if for any tangent vectors X1, Xo, X3 € T,M we have

that

Kx, Kx, X3+ Kx,Kx, X3+ Kx,; Kx, X2 =
A(p) (h(Xa2, X3) X1 + (X1, X3) X2 + h(X1, X2)X3) . (3.2)
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Theorem 46. ([13]) Let (M]!, h) be an n—dimensional simply connected pseudo-Riemannian
manifold with index k. Let V denote the Levi Civita connection, R its curvature tensor and
let TM denote the tangent bundle of M. If K is a T'M-valued symmetric bilinear form on
M} satisfying that

i) h(K(X,Y), Z) is totally symmetric

i) (VK)(X,Y,Z2)=VxK(Y,Z) - K(VxY,Z) — K(Y,VxZ) is totally symmetric,

i) R(X,Y)Z = c¢(h(Y,2)X —h(X,2)Y)+ K(K(Y,Z),X) - K(K(X,Z),Y),

then there exists an affine immersion ¢ : M} — R™ 1 as an affine sphere with induced
difference tensor K and induced affine metric h.

Theorem 47. ([13]) Let ¢!, ¢* : M — R be two affine immersions of an pseudo-
Riemannian n-manifold (M, h) with difference tensors K K2, respectively. If

h(KNX,Y), 6,2) = M(K*(X,Y), $:2)

for all tangent vectors fields X,Y,7Z € T,M}, then there exists an isometry ¢ of R such
pMy
that ¢! = ¢ o ¢2.

3.1 Possible dimensions and choice of frame

From now on we will always assume that M’ is an affine isotropic hypersurface in R+,
Here n denotes the dimension and k the index of the affine metric. In case that the metric is
definite, a classification was obtained already in [5]. In view of this we will also assume thay
M is neither positive nor negative definite, i.e. 1 < k < n. Also recall that because of the
properties of K any surface is isotropic. Therefore we will also assume that n > 2. First, we
have the following lemma:

Lemma 12. Let M} be an n-dimensional isotropic affine hypersurface and let p € M;'. If
for any null vector v € TyM we have that K(v,v) is a null vector such that h(K (v,v),v) =0,
then the difference tensor K vanishes.

As its proof is very similar to the proof of Lemma 3.1 in [32], we omit it here. From now
on, we will assume that A # 0. By Lemma there exists a null vector vy such that vy and
K (vg,v0) are linearly independent and h(vg, K (vo,vg)) # 0. Using Lemma we have that
for any null vector u

h(K (vg, vo), K (v, u)) = Ah(vo, v9)h(vg, u) = 0. (3.3)

As K, is a symmetric operator with respect to the metric h, we get that K, ,K,,vo = 0.
Moreover, taking in particular u = vy in (3.3)), we get that K (vg,vp) is a null vector.
We can now take a null frame such that

€1 = Vo, €9 = KUO’U().
By rescaling vy if necessary, we may assume that h(K (vg,vg),v0) = —4A2. Then we get

h(€1,€1> = h(eg,eg) =0 h(€1,€2) = —4)\2,

3.4
K(el, 61) = €9, K(el, 62) = KUOK’UQUO =0. ( )
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Using the isotropy condition in (3.2]) for X; = Xy = e1, X3 = e we get that
K8262 = —8)\361.

From relation (3.4) we can see that the space span{ei,es} is invariant under the operator
K.,. As the operator K., is symmetric with respect to the metric, it follows that also the
space span{ey, e} is invariant under K., .

Now we follow precisely the computations of [32]. We get a basis {e1, €2, u1, ..., up,
wi,wi, ... Wl wh}, which satisfies that {uy,...,um wi,wi, ... W W} is an orthogonal basis

of {e1, ez}t and

{ h(el,el) = h(eg,eg) = 0, h(el,eg) = —4)\2, (3 5)
h(ui,uj) = Ei&j, g = :|:1, h(wf‘,w?) = 1, h(wg‘,wg‘) = —1, )
K. e1 =63, Keea=0, Keui =y,

Kow® = =3 — awg,  Kew§ = —3ws + Lows,

Ke,ea = —8X\3e;, Ke,u; = —2X%u;,

Ke,wf = N2w§ —V3BA2wg,  Ke,ws = vV3\2w§ + \2w§, (3.6)

dijei
Ko, Kyuj = %55 (2Xe1 — e3),  Kuowd = L(wf, wf) — gx(2Xe1 — e2),
Kugw§ = L0, wl) + & (2he1 — e2),  Kuow§ = L (20er + e2),
Kupw) = L(wg,w)), k1€ 1,2, 1 <a# B <.

\

In the above formulas, U and W correspond to the invariant subspaces of K., and the
operator L is an operator on W x W, defined by

1 1
L(w,w) = K, & + mh(wa, e2)er + mh(Kwd), er)ez, w,w €W, (3.7)
which is a symmetric operator, satisfies ImL C U = span{uy,...,ux} and

L(wf,wf) = L(wg,ws), Lwfws) =0, Kuew§=Y3 (e + fed),

[e4 « a « (38)
L(wf,w)) = L(ws,wp),  L(wf,w)) = ~L(ws,wy).
As in [32], changing the frame by taking
fi = (201 —e2)/(4p°),  fa = (2Xer + e)/(4p%), (3.9)
we get that
h(fi, f1) = =h(f2, f2) =1, h(f1,f2) =0 (3.10)
and
Kpfi=—-ph, Kpfo=pfe, Kpfo=—pf, Kpui=pu, Kpu =0,
Kpwf = —fuf, Kpef = —bu, Kpof =3hef, Kpef ==Yt o))

Kuyuj = peidijfi, Kopwd = @,Ufféa Kyowf = L(wf,wi) — 5 f1,
Kugw§ = Lw§, o) + 4 f1, Kopw) = Lwf,w)),k1€1,21<a#B <.
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Therefore, in order to determine the difference tensor explicitly, we only need to determine
all the terms L(wk,wl ), k,l € {1,2},1 <, < r. In order to do so we will summarize the
above properties in a more invariant way.

Let I be the identity map and define for any w € W

2 1
Tw = T <K€1 + 2)\I> w. (3.12)

We can easily check that T satisfies

thll = wgv ng = _w?a T2w = —-w, h(Tv,w) = h(v’Tw)’
Tw) =w§, Tw§ =—-wy, h(Tw,Tv)=—h(w,v), h(Tv,w)=h(v,Tw),

for w,v € W. In addition, from (3.8) it follows that L(w,Tv) = —L(v,Tw) and L(Tw,Tv) =
T
L(v,w). We also have that L satisfies an isotropy condition. Indeed, let w = 3 aqw{ +

a=1
T
> bgwg . By using @ in lemma |11| we have
B=1

h(Kyw,e1) = Z aaagh(Kelwl,wl Z babgh( Kelwg,wg)

,ﬁ 1 ,ﬁ 1
+ Z aabgh( Kelwl,wQ Z baagh( Kele,wf)
a,f=1 a,f=1 (3.13)
A \f A o
=3 Z anag — babg)das — Z (aabp + baag)das
a75 1 ,,3:].
A A
= ——h(w,w) + 7\/§ h(w, Tw).
2 2
Similarly, we obtain
h(Kpw,es) = Ah(w, w) + V3N2h(w, Tw). (3.14)

By combining (3.7)), (3.13)) and (3.14]) we get

1
+ ﬁh(wa, e1)h(Kyw, e2)

_ L (1 2, 33 2
= \h(w,w)? + 2 ( 2)\ h(w,w)* + 2)\ h(w, Tw) (3.15)

h(L(w,w), L(w,w)) = h(Kyw, K,w)

3
= 1/\(h(w,w)2 + h(w, Tw)?).
Linearizing the previous expression for arbitrary vectors Wi, Wy, W3, W4 € W, we obtain:

h(L(Wy, Wa), L(W3, Wy)) + h(L(W1, W3), L(Wa, Wy)) + h(L(Wy, Wy), L(Wa, W3))
34/\(h(W1, Wa)h(Wa, Wa) + h(Wy, Wa)h(Wa, Wa) -+ h(Wy, Wi)h(Wa, W)

+ h(Wl, TWQ)h(Wg, TW4) + h(Wl, TW3)h(W2, TW4) + h(Wl, TW4)h(W2, TW3)). (3.16)

Note that given a metric of neutral signature on { f1, fo}* and operators T' and L satisfying
the previous conditions, we can define a frame such that (3.11]) holds. We start with a vector
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u € {f1, f2}* with length 1. Then Tu has length —1. We now write w = au + bT'u. The fact
that w has length 1 and is orthogonal to Tw implies that

(a? = b%) + 2ab < u, Tu >=1,
(a®> = b*) < u,Tu > —2ab =0,

which determines a and b uniquely up to sign. It is then sufficient to take wi = w and
w} = Tw and to complete the construction is an inductive way.

In what follows we are going to determine the possible dimensions of the studied subman-
ifold M™. In order to do this, we will use a well known result from the theory of composition
of quadratic forms, namely the ’1,2,4,8 Theorem’ proved by Hurwitz in 1898. One can find it
for example in [51]. It states that there exists an n-square identity over the complex numbers
of the form

(4. )P+ R =2+ 42 (3.17)

where X = (z1,...,2,) and Y = (y1,...,yn) are systems of indeterminates and each z; =
z(X,Y) is a bilinear form in X and Y, if and only if n = 1,2,4 or 8.
We are going to see how this result applies in our case and then determine the values of L on
the components of the basis in order to determine the difference tensor of our immersion.

In order to apply the 1,2,4,8 Theorem, we are going to find conveniently defined complex
vector spaces and an operator which preserves lengths.
First, we denote by UC the complex linear extension of U and by WC the complex linear
extension of W. We now take

Wi ={v+iTvlv e W},
Wy = {w —iTw|w € W}.

Note that these are indeed complex linear vector spaces as i(v + iTv) = F(Tv F iv) =
(FTv+4iT(FTv)) and we complexify the metric and the previously defined operator L. Note
that L is symmetric and that from the properties of L and T it follows that the restriction
of L to Wy x Wy and Wy x W, vanishes identically. Therefore in order to determine L it is
sufficient to study L on

LWy x Wy — UC (3.18)
L(w,@) = Ko@ + pzh(Ko@, e2)er + pah(Kub, e1)es, ‘
where U® := span{us, ..., u,} over C.
Proposition 5. The operator L defined in (3.18) satisfies:
1. For any vectors x € Wy and y € Wa we have
_ 3 .

2. Given xo in Wy such that h(zo,xo0) = 1, we have that L(xo, —) preserves norms in the
sense that

3
h(L(z0,y), L(z0,y)) = foh(y, Y), Yy € Wa;

3. Given xy a non-null vector, we have that L(xg,—) : Wa — UC is a bijective operator;
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4. For any x,2' € Wy,y,z € Wy we have that
3
h(L(z,y), L(2',2)) + h(L(2",y), L(x, 2)) = §M2h(m,x’)h(y, z). (3.20)
Proof. 1. Take W7 = W3 = wy and Wy = Wy = ws in relation (3.16: , where wy := v+iTv €

Wi and wo := w — T'w € Ws. Using the properties of T" in (3.12) and the fact that w;
and wy are orthogonal, we obtain h(L(wy,ws), L(wi,w2)) = 3” h(wy,w1)h(wa,ws).

2. This property follows directly from the previously proved one.

3. We linearize in the second argument in property (3.19)), that is y ~ y+ z, for y, 2 € Wy
and we get for arbitrary x € W,

WL (z, y), L(z, 2)) = Z,th(x,az)h(y, 2). (3.21)

Fix x = xg, for x¢ arbitrarily chosen in Wi, and write equation once for y = 1
and once for y = yo. Assuming L(zg,y1) = L(zo,y2), as h is nondegenerate and x
is a non-null vector, we get that L(zg, —) is injective. This gives dim I'm(L(zg,—)) =
dim W5 = r, but, as dim U® = r, we obtain that L is also surjective.

4. The property in (3.20) follows immediately by liniarizing in (3.21)) for z ~ x+2/,Vx, 2’ €
Wi.
]

Theorem 48. Let M;' be a A-isotropic affine hypersurface. Assume that X # 0. Then either
n=2,5,8,14 or 26.

Proof. We assume that n > 2. We can write out equation - 3.19) for the elements of the bases.
For more convenience, choose {e;};— {17 b Uiti=0, s {9k b =11,....ry bases for Wi, Wh U

respectively, and let u = Z Ui€;, U = E vj fj. With this choice, relation (3.19) becomes
=1 7j=1

2

(W4 ... +ud)P 4. ) =24+ 22 (3.22)

where L(e;, f;) = I 9k and zj, = Z Ujv; fj Equation (3.22)) yields an r-square quadratic
7j7

equation. Thus, we may apply now the theorem of Hurwitz and obtain r = 1,2,4, 8, which

implies that n = 5,8, 14, 26. O

3.2 Isotropic affine hyperspheres

From now on, we will assume that M is a A-isotropic affine hypersphere with A # 0.

Proposition 6. Let n > 3 and M"™ be an n-dimensional affine A-isotropic hypersphere in
R™ 1. Then M™ is constant isotropic.
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Proof. Let €] := fi,€5 := fo, €y i=u1,..., € 0 = Up,€h g = W],...,€h o = W[ eh g =
wy. Then {e},...,e},} is an orthogonal basis with h(e}, e}) = €;d;5,&; = 1. We denote by
Ric the Ricci tensor of M™ with respect to the affine metric h. As M™ is an affine sphere,
we have that the shape operator is a multiple of the identity, say S = eI. Using as well the
Gauss equation, the apolarity condition in proposition and the isotropy condition
we have

Ric(€}, e},) = Zez e}, € )er, €;)
:h(e(ejéjkei—siéike’) (K Ko ]ek, e;) (3.23)

= ’I’L&Sj(s]‘k — 55j5jk: — 251‘ K6i7K8j]ek7 ei)'

For k # j we obtain

=1
= Eih(K(egve/)7K(e;7€;c))
; J (3.24)
= 3 Db (e ), K (€ eh)
=1
=0
and for k = j
Rie(e;,&5) = 3" eh(K (¢}, &), K (), ¢})
i=1
2
—Z (¢}, €}), K (e}, ) + 2A\(p)ds; + A(p)eie] (3.25)

= (5 + 1) gjA(p).

Since n > 3, by using the fact that the Levi-Civita connection on M™ is torsion free and using
the second Bianchi identity, we get that X is constant. O

Similarly to [32], Proposition 3.6, we can prove the following:

Proposition 7. Let M™ be an n-dimensional affine submanifold in R"t1. If M™ is constant
isotropic with A # 0, then M™ has parallel difference tensor.

Proof. Since M™ is constant isotropic, we have A\ = h(K(v,v), K(v,v)) and by taking the
derivative, we obtain h(@xK(v,v),K(v,v)) =0,Yp e M" Vv, x € T,M", h(v,v) = 1.

In the isotropy relation we take X1 = V,v, Xo = X3 = X4 = v and obtain h(K (V,v,v), K (v,v)) =
)\h(@xv,v)h(v,v) =0, for h(v,v) = 1. This implies

A

h((VK)(x,v,v), K(v,v)) =0 (3.26)
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for any v, x € T, M" such that h(v,v) =1 and in particular, we have
h(VE)(v,v,v), K(v,v)) = 0. (3.27)
Further on, we take the derivative with respect to some vector w € T, M in equation ({3.1)) for
X1 =Xy = X3 =v,X4 =w and for h(v,w) = 0 and obtain
h(VE)(v,v,0), K (v,w)) = h((VE)(v,v,w), K (v,v)) = 0.
As VK is totally symmetric, using also (3.26) we have
h((VK)(v,v,v,), K(v,w)) =0, (3.28)
for any v,w € T,M such that h(v,v) = 1. We can write K (v, K(v,v)) = av + bw, for
v e T,M", wan (n — 1)-dimensional tangent vector , h(v,w) = 0. Since
h(K (v, K(v,v)),v) = h(K(v,v), K(v,v)) = A,
h(K(U7 K(Uv U))v w) = bh(w7 w) =0,

we get a = \,b = 0 so that K (v, K(v,v)) = Av. If we take w = K (v,v) in equation (3.28]) we
get
A((VK)(v,v,v),v) = 0. (3.29)

As X\ # 0, using (3.29) and the symmetry of VK, we also have VK = 0. O

Proposition 8. Let n > 3 and M"™ be an n—dimensional A\—isotropic affine hypersphere in
R such that S = eI, with € constant. Assume that X # 0. If R"! is endowed with an
indefinite metric and M™ is not totally geodesic, then M™ is a locally symmetric space and
_ 1

A= —55.

Proof. From the previous propositions we conclude that VK = 0. Hence, by the Gauss
equation we have VR = 0, which means that M™ is a locally symmetric space. Using the
Ricci identity, from VK = 0 we also have R.h = 0, that is

R(X,Y)K(Z,W) - K(R(X,Y)Z,W) - K(Z,R(X,Y)W) =0, (3.30)
for X,Y, Z, W tangent vector fields. If we take X = Z =W = f1,Y = fo, it implies
R(f1, f2)K(f1, fr) = 2K (R(f1, f2) fr, 1) (3.31)

and then from (3.11)) and Gauss equation we have

R(f1, f2)f1 = —(e +2)\) fo,
which together with (3.31) implies € + 2A = 0. O

Proposition 9. Let n > 3, fi : MP — R"™! and fo : M} — R"! be n—dimensional
\—isotropic affine hypersphere in R" L, such that Sy = So = €I, with ¢ = +1 constant. Let
p1 € My and pa € My and assume that there exists an isometry A : T, My — T,, M such
that

AK;(v,w) = Ko(Av, Aw),

i.e. A preserves the difference tensor. Then there exists a local isometry F : (My,hy) —
(Ma, ha) such that
dF(K1(X,Y)) = Kz(dF(X),dF(Y)),

for any vector fields X, Y on My. Moreover the immersions fi1 and faooF are locally congruent.
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Proof. From the previous propositions we know that A is a constant, and that with respect to
the Levi Civita connection, M; and My are locally symmetric spaces whose difference tensor
is parallel with respect to the Levi Civita connection.
We take p; € M; and we take a basis {e],...,e},} of T, M;. As A is an isometry we take

as basis of T, My the vectors {Ae], ..., Ae] }. By the initial conditions we have that

hi(e}, €5) = ho(AejAel) (isometry)

hi(Ki(e;, €)), er,) = ha(AK (e}, €}), Aey) = ha(Ka(Aef, Ae}), Aey).
We now extend {e],...,e),} to a local differential basis {X1,..., X,,} by parallel translation
along geodesics with respect to the Levi Civita connection of the affine metric. In the same
way we extend {Ae], ..., Ael,} to local vector fields {Y1,...,Y,}. As the difference tensors are
parallel, we have that the components of the difference tensor stay constant along geodesics.
Therefore by construction, we have that

hl(X’Lan) — hQ(YYlH}/j)v
hi(K1(Xi, X;), Xi) = ha(K2 (Y3, Y5), Yi).

Hence by the lemma of Cartan, see [12], we know that there exists a local isometry F' such
that dF'(X;) = Y;. In order to complete the proof it is now sufficent to apply Theorem ]

So in order to complete the classification it is now sufficient to determine, up to isometries,
the possible forms of the difference tensor and for each of those forms obtained to determine
an explicit example of an affine hypersphere with isotropic difference tensors. This is done
explicitly for the 4 remaining dimensions 5, 8, 14 and 26 in the next sections.

3.3 Affine hyperspheres of dimension 5

3.3.1 The form of L, diml =1

We start with w = v + iTv € Wy, a vector of length 2. As the length of w is 2, it follows
that v has unit length and is orthogonal to Tw. So we can take wi = v and wi = Tw. Note
that by the properties of L we have that L(v + iTw,v — iTw) is a real vector in 4* whose
square length is 3u2. Hence we can pick a unit vector u; in U such that

L(v 4+ iTv,v — iTv) = v/3puu;.
By the properties of L this implies that
L(wi,wi) = ?uul.
From the properties of 7' we see L(wi,wi) = 0 and L(wi,wi) = L(wi,wl), hence L is com-

pletely determined. Therefore L and also K are completely determined and the signature of
the metric, if necessary after replacing & by —¢ in order to make A > 0, equals 2.
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3.3.2 A canonical example

We consider RS = 5(3) as the set of all symmetric 3 x 3 matrices and we take as hypersurface
M those symmetric matrices with determinant 1. We define an action o of SL(3,R) on M
as follows

o: SL(3,R) x M — M, such that (g,p) — o4(p) = gpg” .

Note that M has two connected components and that the action is transitive on each of the
connected components. The connected component of I has been studied in [5], where it was
shown that it gives a positive definite isotropic affine hypersurface. It also appears in [2§].

1 0 0
Here we are interested in the component of the matrix A= {0 —1 0 |, which we denote
0 0 -1

by M. So My = {gAg"|g € SL(3,R)}. The isotropy group of A consists of the matrices g of

determinant 1 such that gAg” = A. This Lie group is congruent to SO(2,1) and therefore,

by Theorem 9.2 of [§], we know that M is locally isometric with gé((g’ R;

Note that, of course, every element of SL(3,R) acts at the same time also on $(3) and
that this action belongs to SL(6,R), see [46]. This implies that M is at the same time an
homogeneous affine hypersurface and by Proposition [2| an equiaffine sphere centered at the
origin.

In order to determine the tangent space at p = gAg”’, we look at the curves in M

sX esXT T

v(s) = ge g -

These are indeed curves in M, provided that e*X & SL(3,R) or, equivalently, provided that
Tr X = 0. Note that /(s) = ge** (XA+AXT)esX" g7 where v = (XA+AXT) is a symmetric
matrix. So by using a dimension argument we see that the tangent space is given by

{gugT|v =2XA, XA =AX" Tr X =0,X € R¥3} = T,M;.

Working now at the point A, taking g = I and X € s0(2,1) = {X € R¥>3|Tr X =
0, XA = AXT} we see that
vw’(s)’yl(s) + h(’ylv ’Y/) = ”(5)
sX(4X2A)esXT
— X (X2 = AT (X)) A)e X" + 4 Tr(X2)esX A"
— X ((AX? — A Tr(X2) D) A 4+ 4 Te(X2)y(s).
As the matrix (4X? — 3 Tr(X?)I) commutes with A, we can decompose the above expression

into a tangent part and a part in the direction of the affine normal given by the position
vector, and therefore we find that

h(Y (s),7'(s) = 5 Te(X?).

So we see that s is a constant length parametrisation of the curve v and therefore we have
that h(y',Vyv') = 0 and
h(', V) = h(v', K(+',7")).
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In addition, we have

Y"(8) = V() Ve (s)Y (8) + h(Y, Y)Y + h(7, K(Y', 7))y
sX(8X3A) sXT
— X ((BX? = E (X)) A)e™X 4+ §Tr(X3)(s).

Therefore, working at s = 0 and writing v = 2X A as tangent vector, we obtain that

h(v,v) = 4Tr(XQ)
h(v, K(v,v)) = 8TrX3

Linearising the above expressions, i.e. writing v = a;jv] 4+ agvs, respectively v = ajv1 +agvs +
agvs, for v; = 2X;A,i = 1,2,3, and looking at the coefficient of ajas, respectively ajasas,
we obtain that

h(vi,v2) = 3 Tr(X1X3) = 3 Tr(X2X1),
6h(K (v1,v2),v3) = %(Tr X1 XoX3 4+ Tr X3 X7 X0 4+ Tr XoXs X1+
+ Tr X1 X3Xo + Tr X3XoX + Tt X2X1X3)
= 8(Tr X1 X2 X3 + Tr XoX1 X3).
So we see that
K(Ul,vg) = 2(X1X2 + X9 X7 — %TI‘(XlXQ)I)A.

Indeed, we have that (X7 Xs + Xo X7 — %Tr(Xng)I) has vanishing trace, commutes with A
and therefore K (v1,v2) is indeed the unique tangent vector such that

h(K (v1,v2),v3) = 3(Tr(X1X2X3) + Tr(X2X1X3)).

As by Cayley Hamilton, for a matrix X with vanishing trace, we have that X3 = 1/2 Tr(X?) X+
det(X)I, we deduce that
Tr X4 = 2 (Tr X?)?,

and therefore we have that

hK(v,v), K (v,v)) = 3 Tr(2X? — 2 Tr X°1)?

ATr X* + 3(TrX?)*Trl — §(Tr X?)?)

)2

)%

Hence M; is isotropic with positive A. A straightforward computation also shows that the
index of the metric is 2. Combining therefore the results in this section with Proposition [9]
and the classification result of O. Birembaux and M. Djoric, see [5] in the positive definite
case, we get theorem [42]
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3.4 Affine hyperspheres of dimension 8

3.4.1 The form of L, dimlU =2

Let W = span{wl,wi, w? w3} and Wy = span{w! +iwd, w? +iwd}, Wy = span{w! —iwd, w? —

iw3}. Remark that all the bases are orthogonal and in addition

h(wi + iws, wi 4 iwd) = h(w? + iwd, w? + iws) = 2,

h(wi —iwh, wl —iwd) = h(w? — w3, w} —iwl) = —2.
Then, straightforward computations lead to
L(w1 +iwy, w — iwy) = 2L(wy, wi),
L(wi + iwd, w? —iw?) = 2L(wi, w?) — 2iL(wi, w?), (3.32)
L(w? + i, ] — iwh) = 2L(w],w?) + 2L (] ). '
L(w? + iw3, w? — iws) = 2L(w?, w?).

Notice that the vector L(wi + iws,wi — iw3) is a real vector of length 3u?. So we can pick

u; € U, h(u1,u1) = 1 such that
L(w} 4 iwd, wi — iwd) = V3puy. (3.33)

With this choice, from property we obtain that L(w] + iwl, w? — iw3) is orthogonal to
u1. Moreover as its length is a real number, we must have that Re(L(wi + iwi, w? —iw3) and
Im(L(w} + iw},w? — iw?) are orthogonal to each other. As they are also both orthogonal to
u1, one of them has to vanish. Therefore, we get two cases:

Case II-1. Re(L(wi + iws,w? —iw3)) =0

Now we obtain that L(w{,w?) = 0 and L(w] + iws,w? —iw3) is an imaginary vector of length
3u?, orthogonal to uj. Thus, we can pick uz € U in the direction of L(wi + iw], w? — iw3)
such that h(ug,us) = —1 and such that

L(w} + iw}, wf — iw3) = iv/3pus. (3.34)

Consider now L(w} + in,wl sz) It is a real vector orthogonal to ug, of length 3u% and
thus we can write L(w1 + sz, W1 iw?) = +v/3puy.
Furthermore, from (3.32] , and Prop081t10nl- 4), we obtain

3u? = —h(L(wl + iwd, w} —iw?), L(w? + iw3, wi —iwd))

= h(L(w% + iw%,w% - iw%), L(w% + iw%,w% - zwg))

= V3uh(uy, L(w? + iw?, w} — iw?)).

So we get that L(w? + iw2,w? — iw?) = v/3pu;. In this case, the signature of the metric is 4.
Case I1-2. Im(L(w] + iw}, w? — iw3)) =0

Reasoning in a similar way, we choose us € U a real vector in the direction of L(w;i +iwd, w? —
iw?), with h(ug,u2) = 1 such that L(w} + iwd,w? —iw?) = v/3pug. We find L(w? + iw3, w? —
iw?) = —v/3puy and in this case the signature of the metric is 3.
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3.4.2 Two canonical examples

First we consider R? as the set of Hermitian symmetric matrics Y € C3%3. We take as
hypersurface M those Hermitian symmetric matrices with determinant 1. We define an
action o of SL(3,C) on M as follows

o: SL(3,C) x M — M, such that (g,p) = o4(p) = gpg’ -

Note that M has two connected components and that the action is transitive on each of the
connected components. The connected component of I has been studied in [5], where it was
shown that it gives a positive definite isotropic affine hypersurface. It also appears in [2§].

1 0 0
Here we are interested in the component of the matrix A= [0 —1 0 |, which we denote
0 0 -1

by Mi. So My = {gAg"|g € SL(3,C)}. The isotropy group consists of the matrices g of

determinant 1 such that gAg” = A. This Lie group is congruent to SU(2,1) and therefore,
SL(3,C)
SU2.1)"

Note that of course every element of SL(3,C) acts at the same time also on R? in a linear
way and that, therefore, this action belongs to GL(9,R). A straightforward computation
shows that this action actually belongs to SL(9,R). This implies that M is at the same time
an homogeneous affine hypersurface and, by Proposition [2| an equiaffine sphere centered at
the origin. So, in order to determine the properties of Mj, it is sufficient to look at a single
point.

In order to determine the tangent space at the point p = gAg?, we look at the curves in
My

by Theorem 9.2 of [8], we know that M is locally isometric with

sXAes)_(T =T

v(s) = ge g -

These are indeed curves in M; provided that e*X € SL(3,C) or equivalently provided that
Tr X = 0. Note that 7/(s) = ge*X (XA+AXT)esX" g7 where v = (X A+ AX7T) is a Hermitian
symmetric matrix. So by using a dimension argument we see that the tangent space is given
by

{gugtlv=2XA, XA = AXT Tr X = 0,X € C¥3} = T, M;.

Working now at the point A, taking g = I and X € su(2,1) = {X € C¥3|Tr X =0, XA =
AXTY} we see that
vy’(s)’yl(s) + h('ylv 'Y/)’Y = ”(5)
— sX(4X2A)esXT
— X (X2 — AT (X)) A)e X" + 4 Tr(X2)esX At
— X ((AX? — A Tr(X2) D) A 4+ 4 Te(X2)y(s).
As the matrix (4X2 — 2 Tr(X?)I) commutes with A, we can decompose the above expression
3 p p

into a tangent part and a part in the direction of the affine normal given by the position
vector, and therefore we find that

h(y'(s),7'(s) = 3 Tr(X?).
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So we see that s is a constant length parametrisation of the curve v and therefore we have
that h(y',V,v') = 0 and
h(Y', V') = h(+', K(v',7)).
As
7" (8) = V() V()7 (8) + h(7', 9 + h(Y, K (v, )y
sX(8X3A) sXT
— X ((8X3 — ETr(XP) 1) A)e*X " + E Tr(XP)y(s),

working at s = 0 and writing v = 2X A as tangent vector, we have that

h(v,v) = 3 Tr(X?),
h(v, K(v,v)) = %TrX?’.
Linearising the above expressions, i.e. writing v = ajv1 4+ agvs, respectively v = ajv1 +agvs +
agvs, for v = 2X;A,i = 1,2,3, and looking at the coefficient of «ajas, respectively ajasas,
we obtain that
h(vi,v2) = 3 Tr(X1X;) = 3 Tr(X2X1),
Gh(K(’Ul, ’UQ), Ug) = %(Tr X1 XoX3 4+ Tr X3 X1 X0 4+ Tr Xo X3 X 1+
+ Tr X1 X3Xo + Tr X3XoX 7 + Tr X2X1X3)
= 8(T‘1“ X1 X0 X3+ TI‘X2X1X3).
So we see that
K(Ul, 2)2) = 2(X1X2 + Xo X7 — %TI‘(X1X2)I)A.

Indeed, we have that (X1X3 + XoX; — 2 Tr(XY)I) has vanishing trace, commutes with A
and therefore K (vy,v2) is indeed the unique tangent vector such that

h(K (v1,v2),v3) = 3(Tr(X1X2X3) + Tr(X2X1X3)).

As by Cayley Hamilton for a matrix X with vanishing trace we have that X3 = 1/2 Tr(X?) X+
det(X)I, we deduce that
TrX*=1Tr X2

and therefore, we have that

WK (v,v),K(v,v)) = 3T (2X2—2T1"X2I)2
TATT X + H(TrX?)°Trl — §(Tr X?)?)
5(IrXx?)
= 3(h(v,v))%.

Hence M, is isotropic with positive A\. A straightforward computation also shows that the
index of the metric is 4.

Next, we consider RY = R3*3, We take as hypersurface M, those matrices with determi-
nant 1. We define an action o of SL(3,R) on M, as follows

o: SL(3,R) x My — M>, such that (g,p) — o4(p) = gp.
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The isotropy group of the identity matrix consists only of the identity matrix. Therefore, by
Theorem 9.2 of [§] we know that M, is locally isometric with SL(3,R).

Note that, of course, every element of SL(3, R) acts at the same time also on R in a linear
way and that therefore this action belongs to GL(9,R). A straightforward computation shows
that this action actually belongs to SL(9,R). This implies that My is at the same time an
homogeneous affine hypersurface and, by Proposition [2] an equiaffine sphere centered at the
origin. So in order to determine the properties of M> it is sufficient to look at a single point.

In order to determine the tangent space at a point p, we look at the curves in My

v(s) = e**p.

These are indeed curves in Ma, provided that e5* € SL(3,R) or equivalently, provided that
Tr X = 0. Note that +/(s) = e*X Xp, so by using a dimension argument we see that the
tangent space is given by

{Xp|Tr X =0,X € R¥3} = T,,Ms.
Working now at the point I and X € sl(3,R) = {X € R3*3| Tr X = 0}, we see that
V()7 (8) + by, ) v ="(s)

— eSXX2

=N (X2 - %Tr(XZ)I) + %Tr(X2)eSX

=N (X2 - %Tr(XZ)I) + %Tr(XQ)’y(s).
As the matrix (X?—1 Tr(X?)I) commutes with e** and has vanishing trace, we can interprete
e (X? — $ Tr(X?)I) as a tangent vector at the point e**. By decomposing the above

expression into a tangent part and a part in the direction of the affine normal given by the
position vector, we deduce that

h(7'(s),7'(s)) = 5 Tr(X?).
So we see that s is a constant length parametrisation of the curve v and therefore we have
that h(vy',V,+') =0 and
h(Y, Vo) = h(y, K(, 7).
As
7"(8) = V() Vo (Y (8) + h(Y A ) + h(v, K(Y A )y
— esXX3
= eSX(X3 — %Tr(XS)I)eSXT + %Tr(Xg)fy(s),
working at s = 0 and writing v = X as tangent vector, we have that
h(’U,’U) = %TI‘(XQ),
h(v, K(v,v)) = %TrX?’.
Linearising the above expressions, i.e. writing v = a3v1 4+ agvs, respectively v = a1v1 +aovg +

asgvs, for v; = X;,1 = 1,2,3, and looking at the coefficient of ayjae, respectively ajasas we
obtain that

h(vi,v2) = 3 Tr(X1X3) = § Tr(X2X1),

1
3
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Gh(K(’Ul, ’1}2), Ug) = %(T‘I‘ X1X2X3 + 'TI“X3X1X2 =+ TI“X2X3X1+
+ Tr X1 X3Xo + Tr X3XoX 7 + Tt X2X1X3)
= (TI' X1 X9 X3+ Tr X2X1X3).
So we see that
K(’Ul,’Ug) = %(XlXQ + X9 X7 — %’I‘I'(XlXQ)I).

Indeed, we have that (X1Xo + XoX; — %Tr(Xl,Xg)I) has vanishing trace and therefore
K (v1,v2) is indeed the unique tangent vector such that

h(K (v1,v2),v3) = g(Tr(X1X2X3) + Tr(X2X1 X3)).

As by Cayley Hamilton for a matrix X with vanishing trace we have that X3 = 1/2 Tr(X?) X +
det(X)I, we deduce that

and therefore we have that

WK (v,v), K(v,v)) = £ Tr(X? — £ Tr X?1)?
(Tr X* + $(TrX?)*Trl — 2(Tr X?)?)
(TrXx?)?

h(v, v))z.

Wl Wl

|~

N|— =
—~ @

Hence M, is isotropic with positive A. A straightforward computation also shows that the
index of the metric is 3. Combining therefore the results in this section with Proposition [9]
and the classification result of O. Birembaux and M. Djoric, see [5] in the positive definite
case, we get theorem

3.5 Affine hyperspheres of dimension 14

3.5.1 The form of L, dimU =14

We start with w; € W a vector with length 1. As L(w; + iTwi,w; — iT'w;) is a real vector
in U with length 3p? there exists a real unit length vector u; in U such that

L(wy + iTwy,w; — iTwy) = \/guul.

We now complete u; to a basis of U by choosing orthogonal uso, us, s in {ul}J- such that
h(ug,ur) = €k, where g = £1. We also introduce ¢, for k=2,3,4, by

O =1, ifep,=—-1 and §, =1, if e, = 1.
Now we apply Proposition [5] which tells us that we can find vectors we, w3, w4 such that

L(w1 + iTwy, wy — iT’LUQ) = \/§M52U2,
L(w1 + iTwy, ws — iT’LUg) = \/§M53U3,
L(w1 + iTwy, wy — iTw4) = \/§M54U4.
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The first two properties of Proposition [5| then tells us that {wq, Twi, ..., w4, Tws} is a basis
of W, as in Lemma 7. Of course the previous equations also imply that

L(wk + 1T wg, wy — iTwl) = \/g,ugkuk

We now look at L(wg + iTwe, ws — iTws). From the last part of Proposition |5| it follows
that this vector is orthogonal to L(ws + iTwq,w; — iTw1), L(wy + iTwy, w3 — iTws) and
L(wy + tTwy,w; —iTwy). So this implies that there exists a complex number by such that

L(’LUQ + T wa, w3 — z'Tw3) = byuy.
Similarly, we have that

L(’LUQ + 1T wa, wy — iTw4) = bsus,

L(w3 + iTws, wy — z'Tw4) = byusy.
Using again Proposition |5 we see that there exists real numbers c; such that
h(L(wk + T wy, w — ika), L(wk + 1T wy, wg, — ika)) = CLUEL-

From

h(L(wk + ika, W — ika), L(w1 + iTwl, w1 — z'wal)) =
— h(L(wg + iTwg, w1 —iTwy), L(wy + (Twy, wi — iTwg)), (3.35)

it follows that ¢ = —v/3uey. Next we use the fact that for different indices k and ¢ we have
that

h(L(wy + iTwg, wy, — iTwy,), L(wg + iTwg, we — iTwy)) =
— h(L(wy + iTwg, we — iTwy), L(wy + iTwy, wy, — iTwy)). (3.36)

Expressing this for the different possibilities for £ and ¢ we find that

3p’eses = —|by|*e4,
3/,626254 = —‘b3|2€3,
3#28483 = —‘62‘284.

Hence, up to permuting the vectors, we see that there are two possibilities. Either eg = €3 =
€4 = —1, in which case the index of the metric is 8 or e9 = —1 and 3 = ¢4 = 1, in which case
the index of the metric is 6.

Computing the length of L(wg + iTwe, w3 — iTw3) we have in both cases that b2ey = 3u?.
So if necessary, by changing the sign of u4 and w4, we may assume that by = v/3u. We now
complete the argument by looking at

h(L(QUQ + 1 Two, wy — iT'UJg), L(w1 + ¢ Twy, wy — z'Tw4) =
— h(L('LUl + ¢Twy, wy — ing), L(UJQ + ¢ Two, wyq — iT'UJ4). (3.37)

This yields that b3 = —v/3u. Interchanging the indices 2 and 3 in the formula above finally
gives that by = —v/3p in the first case, and —+/3pi in the second case.
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3.5.2 Two canonical examples

First we look at the following example. We identify R'® with the set of all skew symmetric
matrices in R6%6. So an element p € R'® is of the form

0 al a9 as aq as
—aq 0 ag ay as ag
_|—a2 —as O alp a1 a2
P= 1 ez —a7 —awe 0 a3 a4

—as —ag —ain —a13 0  as
—as —ag —aiz —ai4 —ais 0

We take as hypersurface M in R'® the skew symmetric matrices with determinant 1. Let
G = SL(6,R). Then, we have an action p of G on M by p(g)(p) = gpg’ Here we are
interested in the connected component of the matrix

0 0 0 001
0 0 0 010
To = 0 0 0 1 00
0 0 -1 000
0 -1 0 000

-1 0 0 0 00

If necessary, we restrict now M to the orbit of I. Its isotropy group consists of the matrices

g of determinant 1 such that glog” = Iy. This Lie group is congruent to Sp(6) and therefore
e

Note that of course every element of SL(6,R) acts at the same time also on R in a linear
way and that therefore this action belongs to GL(15,R). A straightforward computation
shows that this action actually belongs to SL(15,R). This implies that M is at the same
time an homogeneous affine hypersurface and by Proposition [2| an equiaffine sphere centered
at the origin. So in order to determine the properties of M it is sufficient to look at a single
point.

In order to determine the tangent space at a point p = glpg’, we look at the curves in M

v(s) = ge ¥ Ipe™" g7

by Theorem 9.2 of [§] we know that M is locally isometric with

These are indeed curves in M, provided that X € SL(6,R) or equivalently, provided that
TrX = 0. Note that 7/'(s) = ge**X(X1Iy + LXT)esX" g7 where v = (XIo + IpX7T) is a
symmetric matrix. So by using a dimension argument we see that the tangent space is given
by

{gvgT|v =2X Ty, XIp = X", Tr X = 0,X € R*C} =T, M.

In fact, such a matrix X is of the form

al a9 as ayg as ag
bl bg b3 b4 0 —as
y_|a ¢ —a- by 0 —by —ay
d1 d2 0 —al — b2 b3 as
€1 0 —dg C9 bg a
0 —eq —d; Cc1 by ai
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Working now at the point Iy, taking g = I and X € {X € R*6|Tr X = 0, X1y = [ X'} we
see that

Va7 (8) + (7 )y =" (s)
sX(4 ) sXT
X ((AX2 = A Te(XA))[)eX + E Te(X2)es N pes™”
SX<<4X2 § Te(X*)D)Io)e™ + § Tr(X?)y(s).

As the matrix (4X2 — % Tr(X?)I) commutes with Iy, we can decompose the above expression
into a tangent and a part in the direction of the affine normal given by the position vector,
and therefore we find that

h(v'(s),7'(s)) = § Te(X?).
So we see ‘Ehat s is a constant length parametrisation of the curve v and therefore we have
that h(v',Vy+') = 0 and
h(Y, Vo) = h(y, K(, 7).
As
7" (8) = V() V()Y (8) + h(7', 9 + h(v, K(v, 7))y
= X (8X3I)e*X
— N ((8X® = (X)) )™ + 8 Tr(X3)y(s),
working at s = 0 and writing v = 2X Iy as tangent vector, we have that
h(v,v) = & Tr(X?),
h(v, K(v,v)) = 8TrX3

Linearising the above expressions, i.e. writing v = a3v1 4+ asvs, respectively v = a1v1 +aove +
agvs, for v; = 2X;1p,i = 1,2,3, and looking at the coefficient of ajaq, respectively ajasas,
we obtain that

h(v1,v2) = 2 Tr(X1X,) = 2 Tr(XoX1),
6h(K (v1,v2),v3) = g(Tr X1 X0 X3 +Tr X3 X1 X5 +Tr Xo X3 X1+
+ Tr X1 X3X2 + Tr X3 XX + Tr X5 X X3)
= 4(Tr X1 X2X5 + Tr X5 X1 X3).

So we see that
K (v1,v2) = 2(X1X2 + Xo X1 — 2 Tr(X1 X2)1) .

Indeed we have that (X1Xo + XoX; — %Tr(Xng)I) has vanishing trace, commutes with Iy
and therefore K (v1,v9) is indeed the unique tangent vector such that

h(K(Ul,vg) ) %(TI‘(XlXQXg) + TI‘(XQXng))
By straightforward computations we deduce that

TrX* = H(Tr x?)?
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and therefore we have that

h(K (v,v), K(v,v)) = (2X2 _ g Tr XQI)Q
(4 Tr X' + 4(TrX?)2Trl — §(Tr X%)?)
X?)?

)%,

Hence M is isotropic with positive A\. A straightforward computation also shows that the
index of the metric is 6.
Next, the following example ilustrates the case when the signature of the indefinite metric

on M is 8. First we identify R'® with the set of matrices a = { < E F) E=ET F = —FT}

A

N[—= ©OIN) O~ Cn\yb

A

A
<
<

-F E
C6%6, An element in «a is of the form

al as + tasg a4 + tas 0 ag + tay ag + tag
as — iag aig ail + a1 —ag — tay 0 a3 + ia14
R 2 iCL5 a1l + ialg ais —ag — iCLg —ai3 — ia14 0
p= 0 —ag + a7 —ag + tag al as — tas aq — tas
ag — ia7 0 —a13 + ia14 as + iag aio ail — ialg
ag —iag a3 — a4 0 aq +ias  ai +iae ais

We take as hypersurface M in R'® all such matrices with determinant 1. Let G = SU*(6).
Then, we have an action p of G on M by p(g)(p) = gpg”. Note that M has two connected
components and that the action is transitive on each of the connected components. The
connected component of I has been studied in [5], where it was shown that it gives a positive
definite isotropic affine hypersurface. Here we are interested in the connected component My
containing the matrix

10 0 00 O
01 0 00 O
To = 00 -1 00 O
00 0 10 O
00 0 01 0
00 0 OO0 -1

Its isotropy group consists of the matrices ¢ of determinant 1 such that ¢gIpg? = Iy. This

Lie group is congruent to Sp(1,2) and therefore, by Theorem 9.2 of [§], we know that M is
SU*(6)
Sp(1,2)*

Note that of course every element of SU*(6) acts at the same time also on R in a linear
way and that therefore this action belongs to GL(15,R). A straightforward computation
shows that this action actually belongs to SL(15,R). This implies that M; is at the same
time an homogeneous affine hypersurface and, by Proposition [2| an equiaffine sphere centered
at the origin. So in order to determine the properties of My, it is sufficient to look at a single
point.

In order to determine the tangent space at a point p = ¢glpg’, we look at the curves in
M,

locally isometric with

T
sXIOesX =T

v(s) = ge g
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-1, 0
Note that v/(s) = ge*X (X1 + IOXT)eSXTgT. So by using a dimension argument, we see that
the tangent space is given by

These are indeed curves in My, provided that Tr X =0 and XJ = JX, for J = ( 0 I").

{gvgT|v =2X 1Ty, XIp = X7, Tr X =0,XJ = JX, X € C®*C} = T, M.

In fact, such an X if of the form

—xr — Tg 1 + 1y To + 1Y 0 T3 —1Ys T4 — Y4
— Y1 x Ts5 +1ys —x3+1ys 0 —xg + 1Yg
—T3 +iy2 —T5 + Y5 To T4 —1Ys Te — Y6 0
0 —X3 — Y3 —T4— Y4 —T—To T1—WY1 —T2— Y2
T3 + Y3 0 —Tg — 1Y X1+ Y1 T —x5 + Y5
Tat+1ys  Te+ Y6 0 T2 +iy2  Ts+ Y5 xo

Working now at the point Iy, taking g = I and X € C*6 satisfying X1y = [(XT, Tr X =
0,XJ = JX, we see that
()7 (8) + (YA )y =7"(s)
sX(4X2IO)esXT
— X (X2 — AT (X)) Ip)eX " + A Tr(X2)esX [pes X
— X ((AX? — 2 Te(X2) D) 1o)X + 4 Tr(X2)(s).

\Y

As the matrix (4X? — % Tr(X?)I) has the same properties as X, we can decompose the above
expression into a tangent part and a part in the direction of the affine normal given by the
position vector, and therefore we find that

h(7'(s),7'(s)) = § Te(X?).
So we see that s is a constant length parametrisation of the curve v and therefore we have
that h(vy',Vy+') =0 and
h(Y, Vo) = h(y, K(, 7).
As
7" (s) = Vw( Vs /(5)7’(8) +h(y' ;) +h(Y K (Y A)y
sX (8X3I )
$X<<8X3 § Te(X*)DIo)e™ + & Tr(X*)(s),
working at s = 0 and writing v = 2X I as tangent vector, we have that
h(v,v) = 4 Tr(X ),
h(v, K (v,v)) = & Tr X°.
Linearising the above expressions, i.e. writing v = a;3v1 4+ asvs, respectively v = a1v1 +aovg +

asvs, for v; = 2X;1p,7 = 1,2,3, and looking at the coefficient of ajas, respectively ajasas
we obtain that

h(vi,v2) = 3 Tr(X1X;) = 2 Tr(X2X1),
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Gh(K(’Ul, ’1}2), Ug) = %(T‘I‘ X1 XoX3 4+ Tr X3 X1 X0 4+ Tr XoXs X 1+
+ Tr X1 X3Xo + Tr X3XoX 7 + Tt X2X1X3)
= 4(TI‘ X1 X9 X3+ TI‘X2X1X3).

So we see that
K (v1,v2) = 2(X1X2 + Xo X1 — 2 Tr(X1X2)1) .

Indeed we have that (X1 Xe + XoX; — %Tr(Xng)I) has vanishing trace, commutes with I
and therefore K (v1,v2) is indeed the unique tangent vector such that

h(K (v1,v2),v3) = 2(Tr(X1X2X3) + Tr(X2X1 X3)).
By straightforward computations we deduce that
TrX* = H(Tr X?)?,

and therefore we have that

WK (v,v), K (v,v)) = £ Tr(2X? — 2 Tr X*1)?
LAT X + H(TrX?)°Trl — §(Tr X?)?)
%(TrX2)2
= 3(h(v,))?

Hence M; is isotropic with positive A. A straightforward computation also shows that the
index of the metric is 8.

3.6 Affine hyperspheres of dimension 26

3.6.1 The form of L, diml =8

Before treating each case of the signature for the metric, we first will give some lemmas which

will be very useful in order to simplify the proof significantly. We start with an arbitrary
vector w + iTw € Wy with length 2 and define a real vector u; such that

V3uu = L(w + iTw, w — iTw). (3.38)
We call w} = w and w% = Tw. Next, we choose arbitrary orthogonal vectors us, ..., ug such
that wq,ug,...,us forms an orthonormal (real) basis in U, that is h(uj,uy) = €;0;,, where
e; = +1 indicate the length of uj. As the operator L(w] + iwi,—) is bijective, for every u;
we find wjl, wJQ-, such that
1 .1 g .7 1, ife=1
L(wi +iwg, w] —iw)) = V3udju;, where §; = i ife— 1 (3.39)
Lemma 13. For the previously defined vectors, L satisfies
L(Wh + ik, Wl —iwh) = —V/3Buepuy.
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Proof. The result is straightforward, by properties (3.20)) and (3.21)):

ML(WF + iwh, Wb —iwh), L(w} +iws, w! —iwl)) =
= _h(L(w% + iw%vwlf - iwé:)a L(wlf + iwlgaw{ B zw%))

5 .
= —Sh(L(Wf +iwy,wp = iwy), L(w] + iws,w] — i)

0,0 (3.40)
= — b + i, ] — )
_J0 g#F1
‘{ —3uer, j=1.
O

Lemma 14. Let u; and uy determine €; and € such that €; = €, for k,j > 1. Then

L(wlf + Z'wg, wi —iwj) s an imaginary vector.
Proof. Let us define the orthonormal basis of U given by

uy = cos(t)uy + sin(t)u;,
*

uj = —sin(t)uy, + cos(t)uy,

uf = u, L #k,j.
By relation (3.39)), we compute
L(w] + iwl, cos(t) (wh — iwh) + sin(t)(w] — iwd)) = V/3ud;(cos(t)uy, + sin(t)u;)

and therefore we find wi* +'iw§k = cos(t)(wh + iwh) + sin(t)(w! + zw%) and ij + iw;j =
— sin(t)(wF + iwh) + cos(t)(w] + iwj) such that

L(wi 4 iws, wik + iwsk) = V3,uf.

Next, by lemma we may write

L(wi® + iwi®, wif —iwik) = —V3uepu
and using the bilinearity of L, we get the conclusion. O
Lemma 15. Let uj and ui, determine €; and €y, such that €; = —1 and e, = 1, for k,j > 1.

Then L(wF + iwh,w] —iwd) is a real vector.
Proof. First, define an orthonormal basis of U given by

uj = cosh(t)uy, + sinh(t)u;,
w} = sinh(t)uy, + cosh(t)ug,

J
wky = uy, # k,j
and notice that L(w} 4 iwd,wf — iwk) = vBuug and L(w! + iwl,w! — iw))vBuuj. We take
a, b, ¢,d complex functions and find wi* — w3k = a(w — iwh) + b(w] — iw)) and wi? —iwy? =

c(wh — iwk) + d(w] — iw)) to be the unique vectors satisfying
L(w} 4 iwd, wif —iw3®) = V3uu; and  L(wi + iw%,wfj - iw;j)\/guu;.
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Therefore, we find
a = cosh(t), b=isinh(f), c¢= —isinh(f) and d = cosh(t).
Finally, using the bilinearity of L, the conclusion follows easily from
L(wi* + w3k, wif —iwsk) = —v/3pu.
O]

In what follows, we will study different cases depending on the structure of the metric
on U. First we deal with the case that the signature of the metric is 4, 5 or 6. Let u; be
defined as in the beginning of this section. Next, choose us L wuy such that h(’l,LQ,'LLQ) = —1,
w? and w3 such that L(w] + iwd w? — iw?) = V3Buug and uz L uj,up and w} and w3
such that h(us,usz) = —1,L(w] + iws,w} — iw3) = v/3uuz. Then, we look at the vector
L(w? +iw3, w? — iw3) and see, by property (3.20] -7 that it is orthogonal to w1, us and ug and
has length 32 and by lemma , that it is an imaginary vector. Therefore, we define uy of
length —1 such that

L(w? + iw?,w? —iwd) = V3piuy.

Next, by surjectivity of L(wi + iwi, —) and by (3.39) we can pick w{ and wj such that
L(w} + iwd,wi — iw3) = V3uiug. In the following, we pick us L wug,us,us,us of length
1 and obtain w,w) such that L(w] + iwd,w? — zw2) V3pus. Remark that the vectors
L(w? 4w, w} — iw)), L(w} + iw,w? —iw3), L(w] +iwj, w} — iw3) are real, of positive length,
mutually orthogonal and orthogonal to u1, us. Therefore, the choice of ui, ..., us implies that
the metric on {u2,u;»,,u4}L is positive definite. Therefore, the cases when the metric has
signature 4,5 or 6 cannot happen.

In case that the index of the metric is 0, we proceed as follovvs. Let uq be defined as before,
choose up L u; of length 1 and obtain the existence of w?, w3 such that L(w}+iwd,w] —iw3) =
\f,m@ and L((,u1 —|—zw2, Wi —Zw2) \[,uul Then, choose u3 L u1,us of length 1 and obtain
again L(wi + iwl, w} —iwd) = v3pus and L(w} +2w2,w‘;’ iw3) = —/3puy. Moreover, the
vector L(w? + iw?,w} — iw3) is an imaginary vector, orthogonal on uj,ug,u3 (by relation
(3.20)) and therefore, we get the existence of a unit vector of negative length, u4, such that
L(w? + iw?,w?} — iw3) = v/3piug. This contradicts the fact that the index equals 0.

Next, we start anew, with different choices of vectors in order to eliminate the case when
the signature of the metric is 1.

Let v be deﬁned as before, choose us L u; of length —1 and obtain the existence of w1 , w2 such
that L(w] +iws,w? —iw3) = V3uiug and L(w} + iw3, w? —iw3) = v3uui. Then, choose ug L

u1, ug of length 1 and obtain again L(wi +iws, w} —iw3) = v/3pug and L(w? +zw2,w5f iw3) =

—+/3pui. Moreover, the vector L(w% + iw%, wi)’ — zwg’) is a real vector, orthogonal on u1, us, us

(by relation (3.20))) and therefore, we get the existence of a unit vector of positive length, wuy,

such that L(w? +iw?,w? —iwd) = v/3puy. Consequently, L(wi +iwd, wi —iw]) = v3uuy and

L(wi +iws, wi — iwy) = —/3puy. Next, we pick us L ui, ug, us, us of length 1 and find

L(w} 4 iwd, w) —iwd) = V3uus and  L(w) + w3, wi — iwd) = —v3Buu.

Finally, by lemma and the property in (3.20)), we see that the vectors L(w$ +iws3, w? —iw3)
and L(w} + iw3,w} — iwj) are orthogonal imaginary vectors. This implies that the index of

the metric is at least 2.
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Now, we will prove that the metric on U cannot have signature 2. Let u; be defined as in
, choose us L u1 of length —1 and obtain w%, w2 such that L(wl +iw2,w%—iw§) N
and L(w? + iw?, w? —iw?) = v/3pu;. Then, choose uz L u, us of length —1 and obtain again
L(wi + iwd, w} — iwd) = VBuiug and L(w} + iw3, w? — iw3) = 3pu;. Remark now that
the vector L(w? + iw?,w} — iw3) is an imaginary vector, orthogonal on uy,uz, us (by relation
(3:20)). So we have that L(w? + iw?, w? — iw3) = v/3piug, where uy has negative length and
belongs to {u1,uz,u3}*, where the metric is positive definite, which is a contradiction.

Next we deal with the case that the index of the metric equals 7. So on {u;}* the metric
is negative definite. We may take us € U such that h(ug,us) = —1 and h(ug,u2) = 0.

As L(wi +iwd, —) is a surjective operator, we can pick wi and w3 = Tw} such that

L(w! 4 iws, w? — iwd) = V3pius, (3.41)

L(w? 4 w2, wi — iwd) = —V/3uiuy. (3.42)

By the lemma we have L(w? + iw?,w? — iw3) = v/3uu;. Next, we take uz € U such that
h(us,u3) = —1. In a similar way as before, we define w} and w3 and obtain

L(wi + iwd, w? —iwd) = V3pius. (3.43)

By the lemma this implies that L(w? + iw3,w? — iwd) = v/3uuy. Next, we find that L(w] +

w3, w? — iw3) is an imaginary vector which is orthogonal to uj,us and uz such that we

may write L(w} + iws, w? — iwd) = V3uiug, for some uy € U, ugy L up,uz,ug. Given ug,

we define new wf and wj in Wy such that L(w! + iwd,wi — iw]) = V3uius and we have

L(w} + iwi, wi — iw) = V3uuy. Next, we want to determine L(w? + iw3,wi — iwj). We

immediately obtain that it is an imaginary vector of length 3% which is orthogonal to wy, uo
and ug. As

h(L(w% + iw%aw% - iw%)’ L(w% + 7;("}%7("‘):13 - ’ng)) =

= h(L(w] + i), wf — iw), L(w) + dwg, wi — iwy)) = 347,
it follows from the Cauchy- Schwartz 1nequahty on {up }* that L(w? +iw?, wi—iws) = V/3uius.
Similarly it follows that L(wi + iws,w? —iw3) = v/3pius.

Remember that so far we have defined wuj,us,u3 and uy € U and wi,wl, w? w3, w3 w3

wi,ws € W. We take now some arbitrary us € {u1,uz,us,us}* such that h(us, us) = —1
and use again the surjectivity of L(wi + iwi, —) to define w} and wj = Tw] such that
L(w} +iwd, w? —iwd) = V3uius and

L(w} 4 iwd, w) — iwd) = V3puy. (3.44)

Next, we proceed with the computations as we did, for instance, for L(wi3 + iwg’,w% — Zcu%)

and define ug, u7, ug € U such that
L(w) + iwd, w? — iw3) = V3puiug,
L(W) + iwd, w} — iwd) = V3uiur,
L(w) + iwl, wi — iw3) = V3pius.

Given ug, ur,ug, we use the surjectivity of L(u)1 + iws, —) and just like previously done, we
define wf, w§ €U, for k =06,7,8 and determine

L(wi +iwd, wf —iwh) = V3uiuy,.
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Next, we find L(w§ + iwh, wh — iwh) = /3puy for k = 6,7,8. Then, we compute similarly as

for L(w? + iw3, w — iw3) in order to determine

2

L(w8 + iw§, w? — iw?) = —v/3pius. (3.45)

As for the vectors L(w} + w3, w$ — iw$), L(w] + iw3, w) —iws) and L(w? + w3, w] — iw}), by
using property (3.21]) and the determined vectors so far, we see they are in the directions of

ug, uy and ug respectively. We can easily determine their components by following the same

procedure as for L(w} + iw3,w? — iw?). Thus, we may write

L(w? 4 w3, wd —iws) = eus,
4 . 4 -
L(w] +iwy, w —iws) = equy,

7

L(w% + iw%,wl — zwg) = goug,

where €, 1, &2 = ++/3ui. Further on, in order to determine L(w$ +iw3, w] — iw}), we first see

by property (3.21)) that it is orthogonal to {u1, ua, us, uq, u7, ug}. Next, as

h<L(wZ:L)’ + iw%v w’{ - iw;)? L(w% + iw%7w? - ’ng))_‘_

h(L(wi + iws, wl —iws), L(w? + iws, w8 —iws)) =0 (3.46)
and

h<L(wZ:L)’ + iw%v w’{ - iw;)? L(w% + iw%:‘“ui) - ’ng))_‘_

h(L(wi + iws, w] —iws), L(wd 4 w3, w) —iwd)) =0 (3.47)
we find
L(w} 4 w3, w] —iws) = V3uius. (3.48)
It is easy to see that L(w} + iwj,w] —iw}) is colinear with ug. From we obtain

h(L(wi + iws, w8 —iws), L(w + iws,w] —iwd))+

h(L(wi + iwy, wd —iws), L(w] 4 iwd, w] —iwd)) =0 (3.49)

h(ug, L(w] + w3, w] — iw])) = €1,

so that L(w} + w3, w] —iwl) = —eug.
Using similar methods we consecutively obtain that

2. .2 8
L(wi + w3, wi —

3, .3 8
L(wi + w5, wi —

Note that by applying (3.20)) on
8 -8

h(L(wi)) + iw§7wl - Zw?)v L(w% + Z.w%?wir) - ng))v

iws) = —V/3eqpiug,
iwS) = —V/3epius.

we see that € = —e5. Using similar arguments, we proceed to find that

8

L(wil +iw§17w1 ZWQ) \/>€1€2,u1u5,
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€1 = €2,

L 6

wl + zw2,w1 w

wl + sz,wI w

SIS~

wl + sz,wI w

h

6
( >
7
( >
(W3 + iws, wh — iwd
7
( >
(W8 + 0w, wh — iwd
( 8

2

L wl +zw2,w1 — W

Moreover it now immediately follows that es = 1.

At last, we will study the solution given by the case when the metric on U has signature
3. Start with u; defined as in (3.39)), choose us L wup of length —1 and by surjectivity
of L(w! + iwd, —) find w? w3 such that L(w} + iws,w? — iw?) = v/3uius. Similarly, choose
uz L uy,us of length —1 and find L(wi +iws, w? —iws) = v/3piug. Then, by lemma we can
see that the vector L(w? + iwg,w:f —iw3) is imaginary, therefore, it defines a unit vector uy, of

length —1, such that L(w?+iw2,w? —iw3) = v/3uiug. Moreover, we find the unique vectors w

and wj such that L(w] +iwd, wi —iw)) = vBuiug and L(w] +iwj, wi —iws) = /3uui. Further
on, we see that L(w} +iw3, wf —iwj) and L(w} +iw3, wi —iw]) are orthogonal to u1, us, us and
u1,u3, us. We compute by property h(L(w? +iw?, wi —iws), L(wi +iws, wf —iws)) and
h(L(w} + iws, wi — iw3), L(wl +iwl, w? —iw3)) and, as the metric on {us, u3, us}* is positive
definite, we find

4

L(w? +iw?, wi —iwd) = —V3Buiuz and  L(w} + iwd, wi — iwg) = V3puiug.

Next, we choose uz | u1,uz, us, ug of length 1 and find w?, w§ such that L(wi+iwi, w)—iwd) =

V/3pus. Then, we notice by property that L(w? + iw?,w) —iwd), L(w} + iws, w) —iw3)
and L(w{+iw], w? —iw3) are real vectors and satisfy the orthogonality conditions which allow
us to pick ug, u7, ug of length 1, in their directions respectively, and complete {u1, ug, us, uq}
to an orthonormal basis, that is L(w?+iw3, wf —iw]) = v3uue, L(w} +iws, w) —iwd) = v/3uuy
and L(w} + iw§,w] — iwd) = v/3uug. Notice that, by lemmas (T4) and property we
obtain

L(w$ —}—sz,wl iw§) = —/3pu, (wl —|—2w2,w1 iw§) = /3pug,

L(w] + iw],w] —iw]) = —/3pu, (W + ZW27W1 iwg) = V/3puz,

L(

L(w§ + iw§, wf —iwl) = —v/3pu, wi +iwd, w§ —iw§) = 3Buus.
In the following, we determine L(w? +iw?,wf —iws) = —v/3uus, as it is a real vector of length

32, orthogonal on wui,us, us, u4, ug, and given that its component in the direction of us is
—+/3u ( by property (3.20)). Furthermore, we find L(w? + iw3, w] — iws) = elx/guu& as it is

orthogonal to L(w? + iw3,w¥ —iwh) and L(wi + iwd,w] —iwd), for k =2,...,6 and &1 = £1.
Similarly, we determine for ¢; = &1, j = 2,...,8 the following vectors

L(w? 4 iws, wf —iwl) = eav/Buur, L(w) +iwd,wf — iwd) = —iv/3uus

L(w} + iws, w$ —iw§) = e3v/3puus, L(w) +iwd,w] — iwd) = —iv/3uus,

L(w} +iwd,w] —iws) = —V3pus, LW} + iwd,wd —iwd) = esv/3pua,

L(w} +iwd, wf — iw§) = egv/Buug, L(w§ +iws, wl —iwd) = —e5iv/3uuy,

L(w} +iws, w8 — iwd) = e5v/Buuz, L(w§ +iws, wf — iw§) = —eziv/3uus,

L(w} + iw,w] —iws) = e6v/3pug, L(w] +iwd,w —iwd) = —e1iv/3pus.

L(wi + iws, wf — iws) = e7v/3pus,

111



Then, we can easily find the relations between the coefficients €; using property : €9 =
—&1, €4 = —€3, €¢ = —¢5 and ¢7 = —1,eg8 = —i. Moreover, we can find e; = —1,e3 = 1 and
g5 = —1 by applying property successively to L(w§ +iw§, w] —iws) and L(w?+iw?, wf —
iwd), L(w? + iws,w] —iwd) and L(w} + iw,w — iw3), and finally, to L(w$ + iws, w§ — iw§)
and L(w? + iw3, wi — iw3).

3.6.2 Two canonical examples

When the indefinite signature on U is 7, we have the following example.
Let h3(0) denote the set of Hermitian matrices with entries in O, the space of octonions
endowed with the Jordan multiplication o:

h(0)s = {N € M3(0)|N” = N},
XoY =-(XY +YX).

N —

By definition, we have that the determinant of N € h3(Q) is given by

1 1 1
det N = gTr(N oNoN)—Tr(NoN)+ 6(TrN)?’.

§1 w3 T2
Remark that a matrix N € h3(Q0) is of the form N = (23 & 1 |, where & € R, z; € O.
re T1 &3

For more details for the space of octonions see [1I]. Next, we define G = {N € h(Q)3z|det(N) =
1}. We take as hypersurface M; = {NANT|N € G} and we define an action of G on M; by

p: G x M1 — M1
p(N)X = NXNT,

1 0 0
where A= |0 —1 0 |.By construction, this action is transitive and therefore, by The-
0o 0 -1

orem 9.2 of [§], M is locally isometric with G/H, where H = {N € GJANANT = I}. Note
that p(N) can be seen as a linear transformation acting on R?7 and a straightforward com-
putation shows that p(IN) € SL(27,R). Therefore, M; is an homogeneous affine hypersphere
in R?7. Tt is now sufficient to work around a point. We introduce local coordinates around a
point p € M, by taking y1,--- , y26 such that & =1,

7 7 7
=11, &L=, 1= E Y3+4i€i, T2 = E Y114i€i, T3 = E Y19+i€4,
i=0 i=0 i=0

for {eg,--- ,er} a basis of Q. Therefore, the parametrization for our hypersurface is given by

F :R* — R
(1R oE
p—9(p) 5 (1,p),
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where p = (y1,---,y26) and g(p) := det N. By using the multiplication table for octo-
nions, we can determine ¢(p) and then, straightforward computations around the point

1 0 0
N =0 —1 0 | allow us to find that the isotropy condition holds for A = % Thus,
0 0 -1

the signature of the metric on M is 16.

When the indefinite signature on U is 3, we have the following example.

Consider the set of Hermitian matrices with entries in the split-octonions space endowed with
the Jordan multiplication o, as previously defined. Note that for {1,4,7, k,(i,1j,lk} an or-
thogonal basis of the split-octonion space, the length of a vector x = xg 4+ x1% + x2j + z3k +
x4l + z5li + x6lj + z7lk is given by

h(z,z) = 7z = (2§ + 23 + 23 + 23) — (25 + 22 + 22 + 22).

We define the manifold in a similar way as in the previous example and, by similar arguments,
we get that M is an isotropic affine hypersphere of dimension 26 for which the signature of
the metric is 12.
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Chapter 4

Translation and homothetical
surfaces in Euclidean space with
constant curvature

This chapter is based on the results obtained in [35], and presents as well as some general
considerations on minimal surfaces from [2], where one may find extra details.

Translation and homothetical surfaces. Two types of surfaces make the object of study
of this chapter - translation surfaces and homothetical surfaces. A translation surface S is
a surface that can be expressed as the sum of two curves «: I CR - R3, 3:J C R — R3.
In a parametric form, the surface S writes as X (s,t) = a(s) + 8(t), s € I,t € J. See [15,
p. 138]. Similarly, the homothetical surfaces are defined by replacing the plus sign + in the
definition of a translation surface by the multiplication operation. That is, a homothetical
surface S in Euclidean space R? is a surface that is a graph of a function z = f(x)g(y), where
f:ICR—Randg:J CR— R are two smooth functions.

A translation surface S has the property that the translations of a parametric curve s =
constant by ((t) remain in S (similarly for the parametric curves t = constant).

It is an open problem to classify all translation surfaces with constant mean curvature (CMC)
or constant Gauss curvature (CGC). An example of a CMC translation surface is the Scherk

surface )
z(m,y):alog( >,a>0.

This surface is minimal (H = 0) and belongs to a more general family of Scherk surfaces
(45, pp. 67-73]). In this case, the curves o and f lie in two orthogonal planes and after a
change of coordinates, the surface is locally described as the graph of z = f(x) + g(y). Other
examples of CMC or CGC translation surfaces given as a graph z = f(z) + g(y) are: planes
(H = K = 0), circular cylinders (H = constant # 0, K = 0) and cylindrical surfaces (K = 0).

cos(ay)
cos(ax)

Minimal surfaces. A surface with the property that the mean curvature H vanishes every-
where is called minimal. The study of minimal surfaces originates with the work of Lagrange in
[31]. He considered surfaces in R3 that were graphs of C2-differentiable functions z = f(x,%).
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For such surfaces the area element is given by
dM = (14 f2 + f2)2dx A dy.

He studied the problem of determining a surface of this kind with the least possible area
among all surfaces that assume given values on the boundary of an open set U of the plane
(with compact closure and smooth boundary). Let z = f(z,y) be a solution for this problem
and consider a 1-parameter family of functions z(x,y) = f(x,y) + tn(z,y), where n is a
C?-function that vanishes on the boundary of U, and we define

A(t):/U(1+(Zt)§+(Zt)§)1/2dxdy. (4.1)
It follows that
A(t) = /U (Lt 21 12+ 24(fato + fymy) + 2 + 2 Y2 dady. (4.2)

We set p := fu, ¢ = f, and w = (1 + p? + ¢*)/? and derive with respect to ¢ in the above
equation. We obtain

b q
A'0) = /U (Enx—l—any) dzdy.

Next, we integrate by parts and recalling that 75 = 0, we have

A(0) = /(7 [(,;1 <§> + aay (5})} ndxdy. (4.3)

Since z = f(z,y) is a solution for the problem, then A(0) is a minimum for the function A(t)
and hence A’(0) = 0. This occurs for any function n which vanishes on the boundary of U. It

follows that 9 /p 9 14
3 () + 3, () =0

Joa(L+ [2) = 2fufyfoy + fyy(1+ f2) = 0. (4.4)

The solutions of the above equation were called minimal surfaces, and they are given by real
analytic functions. It was only in 1776 that Meusnier gave a geometrical interpretation for

(4.4) as meaning that

which implies that

k1 + ko
2
where k1 and ko stand for the principal curvatures. Meusnier also found the catenoid as
the only minimal surface of revolution in R3. In 1835 Scherk discovered another example of
minimal surface, by solving the equation for functions of the type f(z,y) = g(x)+ h(y),
which resulted in the Scherk’s minimal surface. In 1842 Catalan proved that the helicoid is
the only ruled minimal surface in R3.

H= —0, (4.5)

Results obtained. The progress on the problem of classification of translation surfaces
with constant mean curvature or constant Gauss curvature has been as follows.

1. If @ and S lie in orthogonal planes, the only minimal translation surfaces are the plane
and the Scherk surface [50].
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2. If a and S lie in orthogonal planes, the only CMC translation surfaces are the plane,
the Scherk surface and the circular cylinder [33].

3. If a and S lie in orthogonal planes, the only CGC translation surfaces have K = 0 and
are cylindrical surfaces [33].

4. If both curves a and 8 are planar, the only minimal translation surfaces are the plane
or a surface which belongs to the family of Scherk surfaces [16].

5. If one of the curves « or 8 is planar and the other one is not, there are no minimal
translation surfaces [16].

The first result presented in this chapter, and therefore in [35] as well, concerns the case when
the Gauss curvature K is constant. We prove that, without any assumption on the curves
a and S, the only flat (K = 0) translation surfaces are cylindrical surfaces. By a cylindrical
surface we mean a ruled surface whose directrix is contained in a plane and the rulings are
parallel to a fixed direction in R3. The corresponding theorem is the following.

Theorem 49. 1. The only translation surfaces with zero Gauss curvature are cylindrical

surfaces (see figure no.

2. There are no translation surfaces with constant Gauss curvature K # 0 if one of the
generating curves is planar.

For the case K = 0, we give a complete classification of CGC translation surfaces and for
K # 0, we extend the result given in [16] for CMC translation surfaces.

Figure 4.1: A cylindrical surface whose directrix is a semi-circle.

The first approach to this kind of surfaces appeared in [54], when studying minimal homo-
thetical non-degenerate surfaces in Lorentz-Minkowski space L? (see also [55]). Some authors
have considered minimal homothetical hypersurfaces in Euclidean space and in semi-Euclidean
spaces ([29, 55]. The first result concerns minimal surfaces. Van de Woestyne proved in [54]
that the only minimal homothetical non-degenerate surfaces in L3 are planes and helicoids.
At the end of [54] the author asserted that, up to small changes in the proof, a similar result
can be obtained in Euclidean space R3. In the present paper we do a different proof of the
Euclidean version and in section we prove:

Theorem 50. Planes and helicoids are the only minimal homothetical surfaces in Fuclidean
space.
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The parametrization of the helicoid is not the usual one as for a ruled surface which has
a helix as base, but

z(z,y) = (z +b) tan(cy + d), (4.6)
where b,c,d € R, ¢ # 0 ([45, p. 20]) (see figure no[d.2).

Figure 4.2: A helicoid given by the parametrization in .

The third result gives a complete classification of homothetical surfaces in Euclidean space
with constant Gauss curvature.

Theorem 51. Let S be a homothetical surface in Euclidean space R® with constant Gauss
curvature K. Then K = 0. Furthermore, the surface is either a plane, a cylindrical surface
or a surface whose parametrization is:

(i)
2(x,y) = ae+y, (4.7)

where a,b,c > 0 (see figure no, or

br m cy 1-m
z(x,y) <m+d> (m_l—i-e) , (4.8)
with b,c,d,e,m € R, b,c # 0, m # 0,1 (see figure no.

(i)
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This theorem is proved in section [£.3] Finally, in section [£.4] we extend Theorems (9] and
[61] in Lorentz-Minkowski space, obtaining similar results.

Figure 4.3: A homothetical surface given by the parametrization in Theorem

Figure 4.4: A homothetical surface given by the parametrization in Theore (ii)

4.1 Proof of Theorem [49|

Throughout this chapter, we consider the rectangular coordinates (x,y, z) of the Euclidean
space R3. Assume S is the sum of the curves a(s) and §(t). Locally, a and 3 are graphs
on the axis coordinates of R?, so we may assume that a(s) = (s, fi(s), fa(s)) and B(t) =
(g1(t),t,92(t)), s € I, t € J, for some functions fi, fa, g1, g2 Let us observe that if we
replace the functions f; or g; by an additive constant, the surface changes by a translation
of Euclidean space and thus, in what follows, we will take these functions up to additive
constants. The Gauss curvature in local coordinates X = X (s,t) writes as

In —m?

K=——-=
EG — F%’

where {E, F,G} and {l,m,n} are the coefficients of the first and second fundamental form
with respect to X, respectively. In our case, the parametrization of S is X (s,t) = a(s) + 5(¢)
and as 0% X = 0, then m = 0. The computation of K leads to
o= U2 = [l + 91 (f1fa = [113)) (92 — fogi + f1(9195 — 9192)) (4.9)
= 5 ) )
(L4 [P+ A+ 97 +95) = (fi + 91 + f295)%)
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4.1.1 Case K =0

Then I =0 or n = 0. Assume [ = 0 and the argument is similar if n = 0. Thus

2 — Mo+ di(fifa—fifs) =0 (4.10)
We distinguish several cases.

1. Assume f{ = 0. Then fi(s) = as, a € R, and gives f5/(1 —agy) = 0. If f =0,
then fs is linear, proving that the curve « is a straight-line and the surface is a cylindrical
surface whose base curve is (3 (see figure no. If fIl #0, then a # 0. Solving for gy,
we obtain g;(t) = t/a. Then X(s,t) = (s +t/a,as +t, fo(s) + g2(t)) and the surface is
the plane of equation ax —y = 0.

2. Assume f{' # 0 and ¢gf = 0. Then ¢1(t) = at, a € R, and (4.10) implies

1! 1 gl ! el
2"‘@(1];2 fi 2)29/2. (4.11)
1

As the left hand-side of this equation depends only on s, while the right hand-side only
on t, we conclude that both functions in must be equal to the same constant
b € R. In particular, go(t) = bt. Now the curve (3 is a straight-line and the surface is a
cylindrical surface with the curve « as base. Let us notice that under these conditions,
equation does not add further information on the curve a.

3. Assume f{'g{ # 0. Differentiating (4.10)) with respect to ¢, we have —f{gy + g7 (f1 f} —
f1/%) = 0. With a similar argument as above, one proves that there exists a € R such
that

1 £l ) !

1f2_f12_ 9
1" =a=—.
1 91

The identity ¢4 = ag} implies that det(5’, 5", 3"”") = 0 and this means that the torsion
of £ is 0 identically. This proves that § is a planar curve. Now we come back to the
beginning of the proof assuming that /5 is included in the yz-plane (or equivalently,
g1 = 0). We compute K again obtaining

G~ Flgh) =0,

If g§ = 0, then g is linear and S is a straight-line, proving that S is a cylindrical surface
with the curve a as base. If g5 # 0, then fy — f'g5 = 0 and it follows that there exists
a € R such that

1"
2 /

7 = =9z
1

and so, g4 = 0, a contradiction.

4.1.2 Case K #0

We will follow the same ideas as in [16] by distinguishing two cases: first, we suppose that
both curves are planar, and second, we assume that only one is planar.
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1. Case when « and S are planar curves. By the result of Liu in [33] , we only consider the
case when the curves a and § cannot lie in planes mutually orthogonal. Let us notice
that if the curves lie in parallel planes, the translation surface is (part) of a plane.
Without loss of generality we can assume that « lies in the zz-plane and § in the plane
of equation x cosf — ysinf = 0, with cos6,sinf # 0. Then « and 3 write as

a(s) = (s,0, f(s)), B(t) = (tsind,tcost, g(t))
with f and g smooth functions on s and t, respectively. The computation of K leads to
0082 0f”g”
(f2+ g% + cos20 — 2sinff'g' )2

Notice that K # 0 implies f”, g" # 0. Differentiating with respect to s and with respect
to t, we obtain respectively

cos?0f"g" = AK (f"? + g" + cos® 0 — 2sin0f'¢) (f' f" — sin@f"g')
cos?0f"g" = AK (f? + g'* + cos? 6 — 2sin b f'g") (¢'g" — sin O f'g").
Using f"g¢"” # 0, we have

f/// g///
W(g’ —sinff’) = ﬁ(f’ — sinfg’). (4.12)

Differentiating now with respect to s and next with respect to ¢, we get

f/l/ / g/// /
<f.//2 g// — f// W .
Dividing by f”¢”, we have an identity of two functions, one depending on s and the

other one depending on ¢t. Then both functions are equal to the same constant a € R
and there exist b, c € R such that

f/// , g/// ,
— =af +b, = =ag +c.
f//2 g

Substituting in (4.12)) gives
asin0f? +bsin0f + cf’ = asinfg’? + csinbg’ + by’

Again we have two functions, one depending on s and other one depending on t. There-
fore both functions are constant and hence, f’ and ¢’ are constant, which is in contra-
diction with f”¢"” # 0.

2. Assume that « is a planar curve and 5 does not lie in a plane. After a change of
coordinates, we may suppose

Oé(S) = (S,O,f(S)), /B(t) = (gl(t)7t792(t))a

for smooth functions f, g1 and go. The contradiction will arrive proving that 3 is a
planar curve. For this reason, let us first observe that g is planar if and only if its
torsion vanishes for all s, that is, det(5'(t), 8”(¢), 3" (t)) = 0 for all ¢, or equivalently,

gi'95 — 9195’ =0. (4.13)
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We compute K obtaining

neono el o1
K= 2 f/2(92 /2f/gl) Tl )2 (4.14)
(1+953 + 2+ 297 — 2f'9195)
As K # 0, we have f” # 0. We move f” to the left hand-side of equation (4.14) and
we obtain a function depending only on the variable s. Then the derivative of the right

hand-side with respect to ¢ is 0. This means
A(f'gr — g2)(f'91 — 92)* = (f'91" — 95 ) (1 + f2 (1 + g7*) — 2f'g195 + 95°) = 0.
For each fixed ¢, we can view this expression as a polynomial equation on f’(s) and thus,

all coefficients vanish. The above equation writes precisely as Zi:o A () f(s)™ = 0.
The computations of A, give:

Ao = (1495)95 —49595°

Al = 8419595 +4g195° — (1+95)g!" — 2919595

Ay = —8gig1gs — 491%gh + 241 9h91 + (1 + 1) g5’

Az = —(1+gP)g)" + 49191
From Ag =0 and A3 = 0 we get for ¢ = 1, 2,

(1+97)g" — 4gig” = 0, (4.15)
or
9" _ 4gig}

g7I:/ 1+ g§2‘

A first integration leads to

g/ = N1+ gH2 N >0i=1,2 (4.16)
In particular, from (4.15)),

g = ANigi(1 + g?)°.

Before continuing with the information obtained so far, we rewrite the condition (4.13))
that § is a planar curve. In terms of g] and g}, and using (4.16)), the equation (4.13) is
equivalent to

Mgh(1+g7) = dagh(1 + g5) = 0. (4.17)
From the data obtained for g/ and g;”, we now substitute into the coefficients A; and
As. After some manipulations, the identity A;gh(1+ ¢i2) + Aag) (1 + gi) = 0 simplifies
into

[(Mgh(1 4+ g7) + Aagh (1 + 957)] [Mgi (1 + g7) — Aagh(1 + ¢5)] = 0.

If the right bracket is zero, then f is planar by (4.17)), obtaining a contradiction. If the
first bracket vanishes, then

A1 gé 2
——=(1+4+ .

)\2 gi( g1 )
We place this information together with (4.16)) into the coefficient A;, and we obtain
that A1 = 0 is equivalent to the identity

9+ g5 + 9t + g5 + 29795 = 0.
Then g} = ¢g5 = 0, that is, the curve § is planar, obtaining a contradiction again. This
finishes the proof of Theorem [49] for the case K # 0.

1+ g5 =
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4.2 Proof of Theorem 50!

Assume that S is a homothetical surface which is the graph of z = f(x)g(y) and let X (x,y) =
(z,y, f(x)g(y)) be a parametrization of S. The computation of H = 0 leads to

9L+ f29%) —2ff299” + fg" (1 + f?g%) = 0. (4.18)

Since the roles of f and g in (4.18) are symmetric, we only discuss the cases according to the
function f. We distinguish several cases.

1. Case f/ = 0. Then f(z) = A, A € R and (4.18) gives f¢g” = 0. If f = 0, S is the
horizontal plane of equation z = 0. If ¢” = 0, then g(y) = ay + b, a,b € R and X (z,v)
parametrizes the plane of equation Aay — z = Ab.

2. Case f" =0, f' #0, and by symmetry, ¢ # 0. Then f(z) = ax +, for a,b € R, a # 0.
Now ([4.18)) reduces into
_2(1299,2 +g//(1 + a292) — O
Then

/! /

9" o g9

=20" ————.

g/ 14 a292
By integrating, we obtain that there exists a constant £ > 0 such that

g =k(1+dg).

Solving this ODE, we get

1
9(y) = o tan(aky + d), d € R.

It only remains to conclude that we obtain a helicoid. In such a case, the parametrization
of S is

X(z,y) = (z,y, f(x)g(y)) = (0,y,09(y)) + 2(1,0, ag(y)),
which indicates that the surface is ruled. But it is well known that the only ruled

minimal surfaces in R? are planes and helicoids ([2]) and since g is not a constant
function, S must be a helicoid (see figure no.

3. Case f” # 0. We will prove that this case is not possible. By symmetry in the discussion
of the case, we also suppose g’ # 0. If we divide (4.18)) by ff"2gg%, we have

1/ 1 /! 1
]/; 2 + Lj -2+ 2g 2 + %
ff=g f =99’ g

Let us differentiate with respect to x and then with respect to y, and we obtain

f// / 1 / 1 / g// /
<ff’2 ) T\7) \g2) =% (4.19)
Since f"g" # 0, we divide ({#.19) by (1/¢"?)'(1/f?)" and we conclude that there exists a
constant a € R such that

7\ 1 . (9 1 .
<ff’2> <¢>’_ (gg’2> < )’

d
f/2 g/2

=0.
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Hence there are constants b, c € R such that

f// 1 g// 1
pE Tt T T e
or equivalently,
f"=fla+bf?), ¢"=—gla+cg?). (4.20)

Taking into account (4.20), we replace f” and ¢” in (4.18), obtaining
(a+bf)(1+ f2g%) =229 — (a + cg®) (1 + [?¢%) = 0.
If we divide by f2¢’%, we get

c—af?
f/2
We use again the fact that each side of this equation depends on x and y respectively,
hence there exists A € R such that

b— ag?
+2-bf?= g/zg — cqg?.

2 2
2 c—af n_b—ag
— _ = ) 4.21
=37 =2 9 "t (421)
Differentiating with respect to x and y, respectively, we have
-2
f,,:_f(bc—i—a(/\ ) = aX + bc (4.22)

(A+bf2—-2)2"7 (X +cg?)?’

Let us compare these expressions of f” and ¢” with the ones that appeared in
and replace the value of f’? and g’ obtained in . After some manipulations, we
get

(be+a(X—2)) (A —1+bf?) =0.

(be 4 aX) (A — 1+ cg?) = 0.
We discuss all possibilities.

(a) If be+ a(A—2) = be+aX = 0, then a = 0 and be = 0. Then (4.22)) gives f” =0 or
g” =0, a contradiction.

(b) If bc + a(A —2) =0 and ¢ = A — 1 = 0, we obtain a = 0. From (4.22)), we get
g” =0, a contradiction.

(¢) Ifbe+aX =0and b= A—1 =0, then a = 0 and (4.22) gives f” = 0, a contradiction.

(d) If b = c =0 and A = 1, from the expressions of f? and ¢’? in (#.21]), we deduce
f? = af? and ¢’> = —ag?, that is, @ = 0. Then (4.22) gives f = ¢ = 0, a

contradiction again.

4.3 Proof of Theorem [51]
The computation of K for the surface X (x,y) = (z,y, f(z)g(y)) gives

fgf//g// _ f/Qg/Z
K= 1+ f2¢2 + f2g2)2 (4.23)
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4.3.1 Case K =0

If K =0, then
ff'ag" = 29" (4.24)

Since the roles of the functions f and g are symmetric in (4.24)), we discuss the different cases
according to the function f.

1. Case f' = 0. Then f is a constant function f(x) = xg and the parametrization of the
surface writes as X (z,y) = (0,y,z0g(y)) + x(1,0,0). This means that S is a cylindrical
surface whose directrix lies in the yz-plane and the rulings are parallel to the z-axis.

2. Case f" =0 and f',¢g # 0. Now f(x) = ax +b, a,b € R, a # 0. Moreover, (4.24)
gives ¢ = 0 and g(y) = yo is a constant function. Now S is the plane of equation
z = xo(azx + b).

3. Case f” # 0. By the symmetry on the arguments, we also suppose ¢’ # 0. Equation

(4.24) writes as
ff// g/2
/% ag”
As in each side of this equation we have a function depending on x and other depending
on y, there exists a € R, a # 0, such that
ff// g/2

7 g

A direct integration implies that there exist b, ¢ > 0 such that

fr=0f" g =cg'”

(a) Case a =1. Then
f(z) = pe™, g(y) = g, p,q> 0.

(b) Case a # 1. Then

1 a—1 a—1
f@) = (= ap + )T, )= (“rera)
for p, ¢ € R. This concludes the case K = 0.

4.3.2 Case K #0

The proof is by contradiction. We assume the existence of a homothetical surface S with
constant Gauss curvature K # 0. Let us observe the symmetry of the expression on f
and g. If f =0 or f/ =0, then implies K = 0, which is not our case. If f” = 0, then
f(z) = ax + b, for some constants a,b, a # 0. Then writes as

K(1+4a*¢® + (az + b)*¢*)? + a’g* = 0.

This is a polynomial equation on z of degree 4 because K # 0. Then the leading coefficient,
namely Ka*g™, must vanish. This means ¢’ = 0 and (4.23)) gives now K = 0: contradiction.
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Thus f” # 0. Interchanging the argument with g, we also suppose ¢g” # 0. In particular,
faf'g" #0.
We write (4.23)) as

( f/2 2 f2g/2) fgf” " + f/2912 =0. (4'25)

Then
log <(1+f/2 2+f29/2) 4 f/2 /2) _10g< fgf// //>

and so
2

0xdy

1
log <( + f/2 2 f29/2)2 + Kf/29/2> —0.

This implies

(£29” + KD (19" + 2K (D(f"g + £9") + (£9” + 1'9)(1 g + 29"

_ (f// /2+2KD(fgl2—|—fU 2)) <f/2 ”—I—QKD(f’Qg-f-ng”)) —0, (4.26)

where D = 1+ f"?¢2+ f2¢’*>. On the other hand, we take the derivative in (f.25) with respect
to x and obtain

AKf'D(fg” + f"g°) + 21 f"9% = (f' "+ f1")g9g" = 0. (4.27)
Next, from equation (4.25) we obtain ¢” as

0 KD2+fIQg/2
f1'g

and we replace it first in equation and then in equation , obtaining two equations
P(f, " ", 9,9) = 0 and Po(f, f', 1", ", 9,9") = 0. We see both expressions as two
polynomials in ¢’. As they have a common solution for ¢’, then their resultant will vanish.
The computation for their resultant gives a polynomial in g, with coefficients depending on f
and its first, second and third derivatives. Taking the coefficients identically zero, we obtain a
system of equations for f and its derivatives. We are only interested in the leading coefficient,
namely, the one for ¢?8, which must vanish. This is equivalent to

K16f16f/20(f/2 o ff”)14 —

This implies f? — ff"” = 0 and leads to f(z) = ce®, for ¢,d positive constants. Finally, we
will prove that this gives a contradiction. For this value of f, we substitute f into (4.25)),
obtaining

K + ¢ (2d2Kg2 + (d* + 2K)g"” - dQQg") e L AR (d2g% 4 g2t = 0.

dzx

This expression is a polynomial equation on e** and so, the coefficients vanish. This implies

K =0, a contradiction.
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4.4 The Lorentzian case

Again we ask for those translation and homothetical surfaces in L3 with constant mean curva-
ture and constant Gauss curvature. Recall that the property of a surface to be a translation
surface or a homothetical surface is not metric but it is given by the affine structure of R?
and the multiplication of real functions of R.

We generalize the results obtained in the previous sections for non-degenerate surfaces of
3. The proofs are similar, and we omit the details.

1. Extension of Theorem [49] Assume that S is a translation surface. The computation of
K gives
(fs — flgs + 91 (1 f5 — f115)) (95 — fo91 + f1(9195 — 9195))
5 .
(A+ 2 = )+ g — 97) — (f1 + 91 — f395)°)
If K =0, then the numerator coincides with the one in (4.9)) and the conclusion is that
S is a cylindrical surface. In the case K # 0, the result asserts that, under the same
hyposthesis, there are no further examples. We discuss the cases when « and S lies

in two non-orthogonal planes and when one curve is planar. In the former case, the
expression of K is

K=—

cos 0 f"qg"
(—f% — g% +cos?20 + 2sinff'g" )2
The proof works in the same way. In the second case,
/(g3 = I'91)
(1— g8 = f2 = 297 + 2f'9190)*
Again, the proof is similar because we can move f” to the left hand-side, differentiate

with respect to ¢ and observe that there appears an expression which is a polynomial
on the function f’.

K=-

K=-—

2. Extension of Theorem As we have pointed out, this result was proved in [54].

3. Extension of Theorem Assume now that S is a homothetical surface and we study
those surfaces with constant Gauss curvature. If S is spacelike, then the surface is
locally a graph on the xy-plane and S writes as z = f(z)g(y). The expression of K is

"o 12 12
K — f9f g withl—f’2g2—f29'2>0.

(1= f2g2 — f2g2)2’
If S is timelike, then the surface is locally a graph on the zz-plane or on the yz-plane.
Without loss of generality, we assume that the surface writes as x = f(y)g(z). Now the
Gauss curvature K is

fgf//g// _ f/Qg/Z .
K=— , with 1+ f2¢”2 — f2¢% < 0.
(1 + f2g/2 _ f/292)2
Because both expressions are the same as in (4.23) and the arguments are the same
as in Euclidean space, we only give the statements. If K # 0, then there are no
exist homothetical (spacelike or timelike) surfaces with constant Gauss curvature K. If

K =0, then fgf"g" — f?¢’?> = 0, which is the same as (4.24). Then the conclusion is:
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(a) The surface is a plane or a cylindrical surface whose directrix is contained in one
of the three coordinates planes and the rulings are orthogonal to this plane.

(b) The function z = f(x)g(y) agrees with Theorem items 1) and 2).
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Résumé

Cette these est constituée de quatre chapitres. Le premier contient les notions de base qui
permettent d’aborder les divers themes qui y sont étudiés. Le second est consacré a I’étude
des sous-variétés lagrangiennes d’une variété presque kahlérienne. J’y présente les résultats
obtenus en collaboration avec Burcu Bektag, Joeri Van der Veken et Luc Vrancken. Dans
le troisieme, je m’intéresse a un probleme de géométrie différentielle affine et je donne une
classification des hyperspheres affines qui sont isotropiques. Ce résultat a été obtenu en col-
laboration avec Luc Vrancken. Et enfin dans le dernier chapitre, je présente quelques résultats
sur les surfaces de translation et les surfaces homothétiques, objet d’un travail en commun
avec Rafael Lépez.
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