Thèse soutenue

Mouvements collectifs et structure sociale chez le zebrafish en environnement fragmenté.

FR  |  
EN
Auteur / Autrice : Axel Seguret
Direction : José Halloy
Type : Thèse de doctorat
Discipline(s) : Biologie. Ethologie
Date : Soutenance le 20/04/2017
Etablissement(s) : Sorbonne Paris Cité
Ecole(s) doctorale(s) : École doctorale Frontières de l'innovation en recherche et éducation (Paris ; 2006-....)
Partenaire(s) de recherche : établissement de préparation : Université Paris Diderot - Paris 7 (1970-2019)
Laboratoire : Laboratoire Interdisciplinaire des Energies de Demain (Paris ; 2014-....)
Jury : Président / Présidente : Filippo Del Bene
Examinateurs / Examinatrices : José Halloy, Filippo Del Bene, Andrea Perna, Claire Detrain, Mathieu Coppey
Rapporteurs / Rapporteuses : Andrea Perna, Claire Detrain

Résumé

FR  |  
EN

La prise de décision collective est un des mécanismes usités par les espèces sociales lors d’événements de collectes de nourriture, d’optimisation de chemins, de mouvements collectifs, de fuites face à un prédateur ou bien même de sélections d’habitat. Les zebrafish (Danio rerio), animaux grégaires de référence en biologie, n’ont jamais été étudiés dans des contextes de choix collectifs binaires et ils nous semblait légitime d’analyser leurs comportements décisionnels. L’objectif de cette thèse est de répondre aux attentes du projet ASSISI|bf de création d’un système expérimental modulable capable d’accueillir robots comme poissons, de mise au point d’une société mixte adaptative auto-organisée, et de caractérisation des comportements individuels et collectifs des zebrafish implémentables dans les robots. Nos observations montrent que la prise collective de décision et la cohésion des groupes en environnement ouvert, et présentant deux points de repère identiques, sont des processus dynamiques qui varient selon la souche de Danio rerio (AB ou TL) et sont liées à la densité des populations. Constamment en mouvement, les poissons oscillent entre les deux points de repère identiques installés dans leur environnement. La souche AB est toujours plus attirée par ces hétérogénéités et est beaucoup moins cohésive que la souche TL. En environnement contraint, de type deux chambres reliées par un couloir, nous réitérons le même type d’expérience chez la souche la plus à même de prendre des décisions collectivement (AB) et en faisant varier la densité des groupes de 1 à 20 individus. Il ressort que les Danio rerio de type AB restent essentiellement en groupe mais que l’augmentation de leur densité tend à les diviser. Nous remarquons aussi que la densité influe partiellement sur la topologie du groupe : il existe, lors des sorties collectives, une corrélation entre l’ordre de sortie des zebrafish (les suiveurs) et l’ordre de distance de chaque individu par rapport à l’initiateur desdites sorties. Cette corrélation est d’autant plus forte quand les suiveurs sont soit très proches, soit les plus éloignés de l’initiateur. Le dispositif expérimental précédent nous permet d’autre part de nous concentrer sur la notion de leadership chez des groupes de 2 à 10 Danio rerio AB. Nous mettons en évidence que chaque poisson initie au moins une fois un départ collectif, le nombre d’initiations effectives est proportionnel au nombre de tentatives d’initiations, que tous les poissons présentent le même taux de succès d’initiation après une tentative et qu’il existe une corrélation positive entre initiations et vitesse moyenne de nage.Une analyse poussée des mouvements collectifs nous fait constater que les zebrafish se déplacent essentiellement en groupe et transitent sans interruption ni périodicité entre les chambres. Nous sommes actuellement en train d’améliorer cette étude en apportant de nouveaux points de comparaison afin de vérifier si la non-périodicité des transitions entre les chambres est liée à la densité des groupes testés. Enfin, nous nous inspirons du précédent système expérimental – les deux chambres reliées par un couloir – pour créer une version actualisée d’un labyrinthe en Y. Ce labyrinthe en Y est dit perpétuel car il combine tout le savoir faire que nous avons développé dans l’élaboration des précédents systèmes expérimentaux : une faible habituation des zebrafish pour leur milieu, une réduction des interactions entre l’expérimentateur et les animaux et la possibilité pour les poissons de circuler dans un labyrinthe à symétrie centrale, sans zone de départ ni zone de fin formalisées (typiques des labyrinthes en Y)