Thèse soutenue

Modèles de cycles normaux pour l'analyse des déformations

FR  |  
EN
Auteur / Autrice : Pierre Roussillon
Direction : Julie Delon
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 24/11/2017
Etablissement(s) : Sorbonne Paris Cité
Ecole(s) doctorale(s) : École doctorale Sciences mathématiques de Paris centre (Paris ; 2000-....)
Partenaire(s) de recherche : établissement de préparation : Université Paris Descartes (1970-2019)
Laboratoire : MAP5 - Mathématiques Appliquées à Paris 5
Jury : Président / Présidente : Alain Trouvé
Examinateurs / Examinatrices : Julie Delon, Alain Trouvé, Sarang Joshi, Boris Thibert, Simon Masnou, Joan Alexis Glaunès, Stanley Durrleman
Rapporteur / Rapporteuse : Sarang Joshi, Boris Thibert

Résumé

FR  |  
EN

Dans cette thèse, nous développons un modèle du second ordre pour la représentation des formes (courbes et surfaces) grâce à la théorie des cycles normaux. Le cycle normal d'une forme est le courant associé à son fibré normal. En introduisant des métriques à noyaux sur les cycles normaux, nous obtenons une mesure de dissimilarité entre formes qui prend en compte leurs courbures. Cette mesure est ensuite utilisée comme terme d'attache aux données dans une optique d'appariement et d'analyse de formes par les déformations. Le chapitre 1 est une revue du domaine de l'analyse de formes par les déformations. Nous insistons plus particulièrement sur la mise en place théorique et numérique du modèle de Large Deformation Diffeomorphic Metric Mapping (LDDMM). Le chapitre 2 se concentre sur la représentation des formes par les cycles normaux dans un cadre unifié qui englobe à la fois les formes continues et discrètes. Nous précisons dans quelle mesure cette représentation contient des informations de courbure. Enfin nous montrons le lien entre le cycle normal d'une forme et son varifold. Dans le chapitre 3, nous introduisons les métriques à noyaux. Ainsi, nous pouvons considérer les cycles normaux dans un espace de Hilbert avec un produit scalaire explicite. Nous détaillons ce produit scalaire dans le cas des courbes et surfaces discrètes avec certains noyaux, ainsi que le gradient associé. Nous montrons enfin que malgré le choix de noyaux simples, nous ne perdons pas toutes les informations de courbures. Le chapitre 4 utilise cette nouvelle métrique comme terme d'attache aux données dans le cadre LDDMM. Nous présentons de nombreux appariements et estimations de formes moyennes avec des courbes ou des surfaces. L'objectif de ce chapitre est d'illustrer les différentes propriétés des cycles normaux pour l'analyse des déformations sur des exemples synthétiques et réels.