Développement de composites bio-sourcés à base de fibres de canne à sucre : caractérisation mécanique et acoustique
| Auteur / Autrice : | Gérémie Postdam |
| Direction : | Stéphane Fontaine, Benoit Piezel, Papa Birame Gning |
| Type : | Thèse de doctorat |
| Discipline(s) : | Mécanique et énergétique |
| Date : | Soutenance le 12/12/2017 |
| Etablissement(s) : | Bourgogne Franche-Comté |
| Ecole(s) doctorale(s) : | École doctorale Sciences Physiques pour l'Ingénieur et Microtechniques (Besançon ; 1991-....) |
| Partenaire(s) de recherche : | Laboratoire : Département de Recherche en Ingénierie des Véhicules pour l'Environnement (DRIVE) (Nevers) |
| Jury : | Président / Présidente : Patrick Ienny |
| Examinateurs / Examinatrices : Vincent Placet, Fabienne Touchard | |
| Rapporteurs / Rapporteuses : Pierre Ouagne, Jean-Yves Drean |
Mots clés
Mots clés contrôlés
Mots clés libres
Résumé
Pour des raisons liées au confort, les constructions modernes exigent des matériaux isolants acoustiques et thermiques, offrant de bonnes performances mécaniques. Dans ce cadre, la valorisation des fibres végétales issues de l’industrie agro-alimentaire, présente des avantages économiques et environnementaux. C’est ainsi que, la présente étude a pour objectif le développement d’un agro-composite multifonctionnel à base de fibres de canne à sucre, alliant de bonnes propriétés acoustiques et mécaniques.Les renforts étudiés présentent des distributions morphologiques (longueur et diamètre) pouvant être approchées par une loi log-normale. De plus, leur comportement hygroscopique révèle une forte capacité de reprise en eau (23%) en fonction de l’humidité relative et de la température, même si la masse volumique reste constante, malgré l’hétérogénéité des fibres.Les composites thermo-comprimés avec une matrice époxy, ont été caractérisés à l’aide d’un plan d’expériences ayant pour paramètres le diamètre des fibres (entre 0,5 et 4 mm) et leur taux massique (entre 40 et 70%). L’analyse de la microstructure révèle une isotropie dans le plan de fabrication et une anisotropie transverse. L’étude des propriétés acoustiques a montré que l’absorption sonore augmente avec le diamètre des fibres, tout en diminuant avec leur proportion massique, sur une gamme de fréquences comprises entre 500 et 1000 Hz. La caractérisation mécanique par des essais de flexion, a montré un comportement fragile, avec des écarts de raideur et d’effort maximal de l’ordre de 30%. En flexion, les matériaux dont le diamètre et le taux massique de fibres sont élevés ont les propriétés mécaniques optimales. De plus, l’analyse par stéréo-corrélation d’images a révélé un gradient de déformations non linéaire dans l’épaisseur de l’éprouvette, dû à l’hétérogénéité du matériau. Cette analyse a permis de montrer qu’une localisation des déformations normales conduit à la rupture de l’éprouvette. Par ailleurs, les essais de compression ont souligné l’anisotropie des matériaux et ont montré que les propriétés optimales sont obtenues pour des matériaux dont le taux massique de fibres se situe autour de 55% avec les fibres les plus fines. Enfin, un outil a été mis en place afin de trouver un compromis entre les propriétés mécaniques et acoustiques.