Thèse soutenue

Etude des groupes quantiques compacts avec des méthodes probabilistes : caractérisation d'actions d'action ergodiques et analogues quantiques des théorèmes d'isomorphismes de Noether

FR  |  
EN
Auteur / Autrice : Souleiman Omar hoch
Direction : Uwe Franz
Type : Thèse de doctorat
Discipline(s) : Mathématiques et applications
Date : Soutenance le 29/06/2017
Etablissement(s) : Bourgogne Franche-Comté
Ecole(s) doctorale(s) : École doctorale Carnot-Pasteur (Besançon ; Dijon ; 2012-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire de Mathématiques de Besançon (Besançon) - Laboratoire de Mathématiques de Besançon / LMB
Etablissement de préparation : Université de Franche-Comté (1971-....)
Jury : Président / Présidente : Éric Ricard
Examinateurs / Examinatrices : Uwe Franz, Éric Ricard, Julien Bichon, Janusz Wysoczański, Quanhua Xu
Rapporteur / Rapporteuse : Julien Bichon, Janusz Wysoczański

Résumé

FR  |  
EN

Cette thèse étudie des problèmes liés aux treillis des sous-groupes quantiques et la caractérisationdes actions ergodiques et des états idempotents d’un groupe quantique compact.Elle consiste en 3 parties. La première partie présente des résultats préliminaires sur lesgroupes quantiques localement compacts, les sous-groupes quantiques normaux ainsi queles actions ergodiques et les états idempotents. La seconde partie étudie l’analogue quantiquede la règle de modularité de Dedekind et de l’analogue quantique des théorèmesd’isomorphisme de Noether ainsi que leur conséquences comme le théorème de raffinementde Schreier, et le théorème Jordan-Hölder. Cette partie s’inspire du travail de recherche deShuzhouWang sur l’analogue quantique du troisième théorème d’isomorphisme de Noetherpour les groupes quantiques compacts ainsi que le travail récent de Kasprzak, Khosraviet Soltan sur l’analogue quantique du premier théorème d’isomorphisme de Noether pourles groupes quantiques localement compacts. Dans la troisième partie, nous caractérisonsles états idempotents du groupe quantique compact O−1(2) en s’appuyant sur la caractérisationde ses actions ergodiques plongeables. Cette troisième partie est dans la lignedes travaux fait par Franz, Skalski et Tomatsu pour les groupes quantiques compactsUq(2), SUq(2) et SOq(3). Nous classifions au préalable les actions ergodiques et les actionsergodiques plongeables du groupe quantique compact O−1(2).Les travaux présentés dans cette thèse se basent sur deux articles de l’auteur et al.Le premier s’intitule “Fundamental isomorphism theorems for quantum groups” et a étéaccepté pour publication dans Expositionae Mathematicae et le second est intitulé “Ergodicactions and idempotent states of O−1(2)” et est en cours de finalisation pour être soumis.