Thèse soutenue

Etude de la dynamique des liquides par microscopie à sonde locale

FR  |  
EN
Auteur / Autrice : Caroline Mortagne
Direction : Thierry OndarçuhuPhilippe Tordjeman
Type : Thèse de doctorat
Discipline(s) : Nano-physique, nano-composants, nanomesures
Date : Soutenance le 27/10/2017
Etablissement(s) : Toulouse 3
Ecole(s) doctorale(s) : École doctorale Sciences de la Matière (Toulouse)
Partenaire(s) de recherche : Laboratoire : Centre d'élaboration de matériaux et d'études structurales (Toulouse ; 1988-....) - Institut de mécanique des fluides de Toulouse (1930-....)

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

L'étude de la dynamique interfaciale des liquides à l'échelle du nanomètre est cruciale pour la compréhension de nombreux phénomènes biologiques et industriels. Pour aborder cette question, nous étudions l'interaction en champ proche d'une sonde et de liquides peu visqueux. La thèse s'articule autour de deux grands axes : le premier s'intéresse à la déformation de l'interface liquide lorsqu'une pointe est approchée et à l'instabilité hydrodynamique du "jump-to-contact" qui en résulte. Le second, plus intrusif, décrit la réponse hydrodynamique d'un liquide soumis à l'oscillation d'un nanocylindre (R ~ 20-100 nm) partiellement immergé. Les mesures sont réalisées par microscope à force atomique (AFM), en mode modulation de fréquence (FM), qui permet de mesurer la force exercée sur la sonde ainsi que les composantes conservatives et dissipatives de l'interaction pointe-liquide. Une première série de mesure est réalisée sur différents liquides modèles avec un AFM couplé à une caméra rapide via un microscope optique inversé. Avant le mouillage de la sonde, les courbes de spectroscopie de force et FM mettent en évidence la déformation de l'interface liquide sur des échelles nanométriques, pour une grande gamme de tailles de sonde (de 10 nm à 30 µm). L'analyse des mesures expérimentales avec le modèle théorique récemment développé par René Ledesma-Alonso permet de déterminer la distance critique dmin en dessous de laquelle l'interface se déstabilise et mouille irréversiblement la pointe ("jump-to-contact"). Un excellent accord est trouvé entre le modèle théorique et les mesures FM. La deuxième série de mesure s'intéresse à l'immersion partielle de pointes AFM cylindriques. Les courbes de spectroscopie FM montrent qu'une certaine quantité de liquide, située dans la couche visqueuse, est entraînée par l'oscillation de la pointe. On mesure simultanément la friction exercée sur la pointe et la masse de liquide ajoutée au système, qui est directement reliée à l'extension du champ de vitesse. Un modèle analytique basé sur la résolution de l'équation de Stokes rend compte quantitativement de l'ensemble des résultats expérimentaux. La dernière série de mesure est réalisée avec des sondes cylindriques spécialement conçues pour l'étude de la dynamique de nanoménisques. Ces sondes comportent des défauts topographiques annulaires dont l'épaisseur varie entre 10 et 50 nm. Les mesures montrent une divergence du coefficient de friction aux petits angles de contact qui est bien reproduite par un modèle théorique basé sur l'approximation de lubrification. La localisation de la dissipation d'énergie au voisinage de la ligne de contact et les propriétés d'ancrage du ménisque sont également discutées. Les expériences originales développées dans cette thèse démontrent ainsi la capacité de l'AFM à étudier quantitativement les liquides à l'échelle nanométrique et ouvrent la voie à une étude systématique des processus de dissipation au sein de liquides confinés, et notamment au voisinage d'une ligne de contact en mouvement.