Système de recommandation basé sur les réseaux pour l'interprétation de résultats de métabolomique
Auteur / Autrice : | Clément Frainay |
Direction : | Fabien Jourdan, Daniel Zalko |
Type : | Thèse de doctorat |
Discipline(s) : | Pathologie, toxicologie, génétique et nutrition |
Date : | Soutenance le 26/06/2017 |
Etablissement(s) : | Toulouse 3 |
Ecole(s) doctorale(s) : | École doctorale Sciences écologiques, vétérinaires, agronomiques et bioingénieries (Toulouse) |
Partenaire(s) de recherche : | Laboratoire : Toxalim (Toulouse ; 2011-....) |
Mots clés
Résumé
La métabolomique permet une étude à large échelle du profil métabolique d'un individu, représentatif de son état physiologique. La comparaison de ces profils conduit à l'identification de métabolites caractéristiques d'une condition donnée. La métabolomique présente un potentiel considérable pour le diagnostic, mais également pour la compréhension des mécanismes associés aux maladies et l'identification de cibles thérapeutiques. Cependant, ces dernières applications nécessitent d'inclure ces métabolites caractéristiques dans un contexte plus large, décrivant l'ensemble des connaissances relatives au métabolisme, afin de formuler des hypothèses sur les mécanismes impliqués. Cette mise en contexte peut être réalisée à l'aide des réseaux métaboliques, qui modélisent l'ensemble des transformations biochimiques opérables par un organisme. L'une des limites de cette approche est que la métabolomique ne permet pas à ce jour de mesurer l'ensemble des métabolites, et ainsi d'offrir une vue complète du métabolome. De plus, dans le contexte plus spécifique de la santé humaine, la métabolomique est usuellement appliquée à des échantillons provenant de biofluides plutôt que des tissus, ce qui n'offre pas une observation directe des mécanismes physiologiques eux-mêmes, mais plutôt de leur résultante. Les travaux présentés dans cette thèse proposent une méthode pour pallier ces limitations, en suggérant des métabolites pertinents pouvant aider à la reconstruction de scénarios mécanistiques. Cette méthode est inspirée des systèmes de recommandations utilisés dans le cadre d'activités en ligne, notamment la suggestion d'individus d'intérêt sur les réseaux sociaux numériques. La méthode a été appliquée à la signature métabolique de patients atteints d'encéphalopathie hépatique. Elle a permis de mettre en avant des métabolites pertinents dont le lien avec la maladie est appuyé par la littérature scientifique, et a conduit à une meilleure compréhension des mécanismes sous-jacents et à la proposition de scénarios alternatifs. Elle a également orienté l'analyse approfondie des données brutes de métabolomique et enrichie par ce biais la signature de la maladie initialement obtenue. La caractérisation des modèles et des données ainsi que les développements techniques nécessaires à la création de la méthode ont également conduit à la définition d'un cadre méthodologique générique pour l'analyse topologique des réseaux métaboliques.