Interaction entre un plasma froid à la pression atmosphérique et des surfaces thermoplastiques industrielles : application à l'activation de surface
Auteur / Autrice : | Lucie Bres |
Direction : | Nicolas Ghérardi, Bertrand Rives |
Type : | Thèse de doctorat |
Discipline(s) : | Ingénierie des plasmas |
Date : | Soutenance le 22/12/2017 |
Etablissement(s) : | Toulouse 3 |
Ecole(s) doctorale(s) : | École doctorale Génie électrique, électronique, télécommunications et santé : du système au nanosystème (Toulouse) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire Plasma et Conversion d'Energie (Toulouse ; 2007-....) |
Mots clés
Mots clés contrôlés
Résumé
Le développement dans l'industrie aéronautique des composites à matrices organiques renforcés par des fibres de carbone se justifie entre autres par leur très bonne capacité à transférer les efforts mécaniques élevés en rapport de leur faible masse. Les matrices Poly-EtherEtherCétone (PEEK) sont des candidates idéales pour les applications structurales en raison de leurs bonnes propriétés chimiques, mécaniques, ainsi que d'une stabilité thermique supérieure à d'autres polymères. Cependant celles-ci présentent des inconvénients majeurs pour la phase de mise en peinture, à savoir une faible réactivité de surface et une inertie chimique importante qui impliquent le développement d'un procédé d'activation de surface avant toute étape de revêtement. Ce travail se concentre sur une technologie de plasma froid à la pression atmosphérique développée par la société AcXys Technologie(r) : le module ULS en post-décharge. Cette technologie, choisie sur la base de considérations industrielles et environnementales, vise à garantir une activation de surface efficace, sans détérioration des propriétés intrinsèques de la matrice polymère. L'objectif de ce travail est alors d'améliorer la compréhension des mécanismes d'activation par plasma menant à une meilleure adhésion à l'interface composite PEEK/revêtement industriel. Des caractérisations électriques et optiques de la décharge et de la post-décharge nous permettront de mieux comprendre le fonctionnement intrinsèque de l'équipement. Tandis que la caractérisation des modifications de surface (de nature chimiques, physiques et/ou physico-chimiques), notamment au travers de la mouillabilité et de l'acido-basicité, permet d'appréhender l'influence des paramètres opératoires et du gaz plasmagène utilisé. Dans la perspective de mieux spécifier les conditions optimales d'utilisation industrielles, nous évaluons dans cette étude la pertinence de l'utilisation de la notion de dose plasma pour ce procédé, notion représentative de l'ensemble des paramètres opératoires. Cette notion, communément rencontrée dans d'autres procédés, est revue et développée pour correspondre à notre cas d'étude. Son utilisation permet une juste comparaison entre des configurations d'activation différentes puisqu'elle rend compte à la fois de la puissance dissipée sur le substrat et du temps d'interaction plasma/surface. Afin de valider la dose plasma exprimée pour notre équipement, nous introduisons des mesures d'adhérence effectuées entre le composite activé et le revêtement. Les résultats laissent entrevoir des perspectives d'améliorations dans les procédés industriels d'activation de surface.