Thèse soutenue

Diagnostic de panne et analyse des causes profondes du système dynamique inversible

FR  |  
EN
Auteur / Autrice : Mei Zhang
Direction : Boutaib DahhouMichel CabassudZetao Li
Type : Thèse de doctorat
Discipline(s) : Automatique
Date : Soutenance le 17/07/2017
Etablissement(s) : Toulouse 3
Ecole(s) doctorale(s) : École doctorale Systèmes (Toulouse ; 1999-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'Analyse et d'Architecture des Systèmes (Toulouse ; 1968-....)

Résumé

FR  |  
EN

Beaucoup de services vitaux de la vie quotidienne dépendent de systèmes d'ingénierie hautement complexes et interconnectés; Ces systèmes sont constitués d'un grand nombre de capteurs interconnectés, d'actionneurs et de composants du système. L'étude des systèmes interconnectés joue un rôle important dans l'étude de la fiabilité des systèmes dynamiques; car elle permet d'étudier les propriétés d'un système interconnecté en analysant ses sous-composants moins complexes. Le diagnostic des pannes est essentiel pour assurer des opérations sûres et fiables des systèmes de contrôle interconnectés. Dans toutes les situations, le système global et / ou chaque sous-système peuvent être analysés à différents niveaux pour déterminer la fiabilité du système global. Dans certains cas, il est important de déterminer les informations anormales des variables internes du sous-système local, car ce sont les causes qui contribuent au fonctionnement anormal du processus global. Cette thèse porte sur les défis de l'application de la théorie inverse du système et des techniques FDD basées sur des modèles pour traiter le problème articulaire du diagnostic des fautes et de l'analyse des causes racines (FD et RCA). Nous étudions ensuite le problème de l'inversibilité de la gauche, de l'observabilité et de la diagnosticabilité des fauts du système interconnecté, formant un algorithme FD et RCA multi-niveaux basé sur un modèle. Ce système de diagnostic permet aux composants individuels de surveiller la dynamique interne localement afin d'améliorer l'efficacité du système et de diagnostiquer des ressources de fautes potentielles pour localiser un dysfonctionnement lorsque les performances du système global se dégradent. Par conséquent, un moyen d'une combinaison d'intelligence locale avec une capacité de diagnostic plus avancée pour effectuer des fonctions FDD à différents niveaux du système est fourni. En conséquence, on peut s'attendre à une amélioration de la localisation des fauts et à de meilleurs moyens de maintenance prédictive. La nouvelle structure du système, ainsi que l'algorithme de diagnostic des fautes, met l'accent sur l'importance de la RCA de défaut des dispositifs de terrain, ainsi que sur l'influence de la dynamique interne locale sur la dynamique globale. Les contributions de cette thèse sont les suivantes: Tout d'abord, nous proposons une structure de système non linéaire interconnecté inversible qui garantit le fauts dans le sous-système de périphérique de terrain affecte la sortie mesurée du système global de manière unique et distincte. Une condition nécessaire et suffisante est développée pour assurer l'inversibilité du système interconnecté qui nécessite l'inversibilité de sous-systèmes individuels. Deuxièmement, un observateur interconnecté à deux niveaux est développé; Il se compose de deux estimateurs d'état, vise à fournir des estimations précises des états de chaque sous-système, ainsi que l'interconnexion inconnue. En outre, il fournira également une condition initiale pour le reconstructeur de données et le filtre de fauts local une fois que la procédure FD et RCA est déclenchée par tout fauts. D'une part, la mesure utilisée dans l'estimateur de l'ancien sous-système est supposée non accessible; La solution est de la remplacer par l'estimation fournie par l'estimateur de ce dernier sous-système.