Thèse soutenue

Lithographie par nanoimpression pour la fabrication de filtres à réseaux résonants en cavité

FR  |  
EN
Auteur / Autrice : Sylvain Augé
Direction : Olivier Gauthier-LafayeAntoine Monmayrant
Type : Thèse de doctorat
Discipline(s) : Photonique et Systèmes Optoélectroniques
Date : Soutenance le 01/12/2017
Etablissement(s) : Toulouse 3
Ecole(s) doctorale(s) : École doctorale Génie électrique, électronique, télécommunications et santé : du système au nanosystème (Toulouse)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'Analyse et d'Architecture des Systèmes (Toulouse ; 1968-....)

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Les filtres CRIGFs sont une nouvelle génération de filtres optiques réflectifs nanostructurés qui présentent un très fort intérêt pour de nombreuses applications. Cependant, leur fabrication est relativement complexe : il s'agit de composants structurés à des échelles petites devant la longueur d'onde d'utilisation, mais de surface totale relativement grande. Ils sont usuellement fabriqués en utilisant des procédés de lithographie de type lithographie électronique, qui présente une résolution suffisante mais qui est séquentielle et donc lente pour de telles surfaces de composant. En outre, les CRIGFs sont souvent réalisés sur des substrats isolants, ce qui complexifie encore plus l'utilisation de cette lithographie. Lors de cette thèse, un procédé de fabrication des CRIGFs a été développé à partir de la lithographie par nanoimpression via moule souple (SNIL). Cette technologie collective et à haut rendement contourne les inconvénients et garde les avantages de la traditionnelle lithographie électronique. Elle permet de fabriquer des motifs nanométriques par simple pressage d'un moule souple sur une couche de résine de polymères sous insolation d'ultraviolets. Après avoir stabilisé le procédé et établi les limites de la technologie, de nombreux filtres CRIGFs ont ainsi été créés. Ils présentent des résultats optiques équivalents dans le proche infrarouge (NIR) à ceux fabriqués par lithographie électronique. Dans un deuxième temps, le caractère générique du procédé mis en place a été démontré de plusieurs façons. Premièrement, nous avons montré qu'il était possible à l'aide de celui-ci de dépasser les compromis usuels de conception en structurant directement le guide d'onde, qui sera ensuite ré-encapsulé. Deuxièmement, nous avons montré que ce même procédé pouvait être directement transféré pour réaliser des filtres CRIGF dans la gamme du moyen infrarouge, bien que les filtres soient alors réalisés sur un matériau cristallin III-V et présentent des dimensions micrométriques plutôt que nanométriques. Enfin, nous avons démontré la grande souplesse et stabilité du procédé en l'utilisant pour explorer différentes géométries potentiellement intéressantes de cette nouvelle famille de filtres optiques nanostructurés. Nous avons notamment étudié des CRIGFs comportant un gradient de période qui ont permis pour la première fois d'obtenir un filtre CRIGF accordable. Pour finir, nous nous sommes attachés à étudier le potentiel de réalisation de filtres CRIGFs plus complexes et présentant plusieurs niveaux de corrugation.