Thèse soutenue

Géométrie et topologie de systèmes dynamiques intégrables

FR  |  
EN
Auteur / Autrice : Damien Bouloc
Direction : Tien Zung NguyenPhilippe Monnier
Type : Thèse de doctorat
Discipline(s) : Mathématiques fondamentales
Date : Soutenance le 30/06/2017
Etablissement(s) : Toulouse 3
Ecole(s) doctorale(s) : École doctorale Mathématiques, informatique et télécommunications (Toulouse)
Partenaire(s) de recherche : Laboratoire : Institut de mathématiques de Toulouse (2007-....)

Résumé

FR  |  
EN

Dans cette thèse, on s'intéresse à deux aspects différents des systèmes dynamiques intégrables. La première partie est dévouée à l'étude de trois familles de systèmes hamiltoniens intégrables : les systèmes de pliage de Kapovich et Millson sur les espaces de modules de polygones 3D de longueurs de côtés fixées, les systèmes de Gelfand-Cetlin introduits par Guillemin et Sternberg sur les orbites coadjointes du groupe de Lie U(n), et une famille de systèmes définie par Nohara et Ueda sur la variété grassmannienne Gr(2,n). Dans chaque cas on montre que les fibres singulières de l'application moment sont des sous-variétés plongées et on en donne des modèles géométriques sous la forme de variétés quotients. La deuxième partie poursuit une étude initiée par Zung et Minh sur les actions totalement hyperboliques de Rn sur des variétés compactes de dimension n, qui apparaissent naturellement lors de l'étude des systèmes non-hamiltoniens intégrables dont toutes les singularités sont non-dégénérées. On s'intéresse au flot engendré par l'action d'un vecteur générique de Rn. On donne une définition d'indice pour ses singularités qu'on relie à la théorie de Morse classique, et on utilise ce flot pour obtenir des résultats sur le nombres d'orbites de dimension donnée. Une étude plus poussée est effectuée en dimension 2, et en particulier sur la sphère S2, où les orbites de l'action dessinent un graphe plongé dont on analyse la combinatoire. On termine en construisant explicitement des exemples d'actions hyperboliques en dimension 3 sur la sphère S3 et dans l'espace projectif RP3.