Thèse soutenue

Modélisation de la propagation électromagnétique en milieux inhomogènes basée sur les faisceaux gaussiens : application à la propagation en atmosphère réaliste et à la radio-occultation entre satellites

FR  |  
EN
Auteur / Autrice : Charles-Antoine L'hour
Direction : Jérôme SokoloffAlexandre Chabory
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 19/04/2017
Etablissement(s) : Toulouse 3
Ecole(s) doctorale(s) : École doctorale Génie électrique, électronique, télécommunications et santé : du système au nanosystème (Toulouse)
Partenaire(s) de recherche : Laboratoire : Laboratoire Plasma et Conversion d'Energie (Toulouse ; 2007-....)

Résumé

FR  |  
EN

La thèse, dont le sujet est "Modélisation de la propagation électromagnétique en milieux à gradient d'indice basée sur les faisceaux gaussiens - Application à la propagation en atmosphère réaliste et à la radio-occultation entre satellites" a été commencée le 2 décembre 2013, au Département ÉlectroMagnétisme et Radar (DEMR) de l'Onera de Toulouse et avec le laboratoire LAPLACE de l'Université Paul Sabatier. Elle est co-financée par l'ONERA et par la Région Midi-Pyrénées. L'encadrement a été assuré par Jérôme Sokoloff (Laplace/UPS, directeur de thèse), Alexandre Chabory (ENAC, co-directeur) et Vincent Fabbro (ONERA). L'École Doctorale est l' "École Doctorale Génie Électrique, Électronique, Télécommunications : du système au nanosystème". Le faisceau gaussien a été principalement utilisé dans la recherche scientifique afin d'étudier les systèmes optiques tels que les lasers. Des études plus rares et plus récentes ont proposé de l'utiliser pour modéliser la propagation des ondes sismiques. Ses propriétés spatiales et spectrales ont amené certains auteurs à étudier son utilisation dans des modèles de propagation atmosphériques. Cette thèse a consisté à développer un modèle, appelé GBAR (Gaussian Beam for Atmospheric Refraction), de propagation troposphérique réaliste et déterministe en utilisant le formalisme des faisceaux gaussiens. La démarche adoptée a consisté à reprendre les équations fondamentales introduites par Cerveny et Popov décrivant de façon itérative la propagation d'un faisceau gaussien en milieu inhomogène, sous hypothèse de haute fréquence (modèle asymptotique). De nouvelles équations ont été développées à partir d'elles pour obtenir une description analytique de la propagation d'un faisceau gaussien dans un milieu troposphérique décrit par les variations spatiales de l'indice de réfraction. L'hypothèse de base pour l'obtention de la formulation analytique est que le gradient de l'indice de réfraction peut être considéré vertical et constant au voisinage du faisceau. Les équations analytiques pour la description de la propagation d'un seul faisceau ont ensuite été étendues à la modélisation d'un champ quelconque dans un milieu troposphérique pouvant contenir de fortes variations du gradient d'indice, y compris des inversions de gradient. Ceci a été réalisé en couplant les équations analytiques avec la procédure de décomposition multi-faisceaux développée dans sa thèse pas Alexandre Chabory. Le modèle GBAR a été validé dans des milieux troposphériques réalistes issus de simulations du modèle météo méso-échelle WRF (Weather Research and Forecasting). Dans un troisième temps, le modèle a été utilisé pour simuler des inversions de données de radio-occultation. Des outils existent pour fournir un modèle d'interprétation de ces données pour estimer les propriétés physiques de l'atmosphère à partir des mesures en phase, amplitude, Doppler et délai des signaux GNSS transmis entre satellites en orbite autour de la Terre