Thèse soutenue

Méthodes d'optimisation pour le traitement de requêtes réparties à grande échelle sur des données liées

FR  |  
EN
Auteur / Autrice : Damla Oğuz
Direction : Abdelkader HameurlainBelgin Ergenç
Type : Thèse de doctorat
Discipline(s) : Réseaux, Télécoms, Systèmes et Architecture
Date : Soutenance le 28/06/2017
Etablissement(s) : Toulouse 3
Ecole(s) doctorale(s) : École doctorale Mathématiques, informatique et télécommunications (Toulouse)
Partenaire(s) de recherche : Laboratoire : Institut de Recherche en Informatique de Toulouse (1995-....)

Résumé

FR  |  
EN

Données Liées est un terme pour définir un ensemble de meilleures pratiques pour la publication et l'interconnexion des données structurées sur le Web. A mesure que le nombre de fournisseurs de Données Liées augmente, le Web devient un vaste espace de données global. La fédération de requêtes est l'une des approches permettant d'interroger efficacement cet espace de données distribué. Il est utilisé via un moteur de requêtes fédéré qui vise à minimiser le temps de réponse du premier tuple du résultat et le temps d'exécution pour obtenir tous les tuples du résultat. Il existe trois principales étapes dans un moteur de requêtes fédéré qui sont la sélection de sources de données, l'optimisation de requêtes et l'exécution de requêtes. La plupart des études sur l'optimisation de requêtes dans ce contexte se concentrent sur l'optimisation de requêtes statique qui génère des plans d'exécution de requêtes avant l'exécution et nécessite des statistiques. Cependant, l'environnement des Données Liées a plusieurs caractéristiques spécifiques telles que les taux d'arrivée de données imprévisibles et les statistiques peu fiables. En conséquence, l'optimisation de requêtes statique peut provoquer des plans d'exécution inefficaces. Ces contraintes montrent que l'optimisation de requêtes adaptative est une nécessité pour le traitement de requêtes fédéré sur les données liées. Dans cette thèse, nous proposons d'abord un opérateur de jointure adaptatif qui vise à minimiser le temps de réponse et le temps d'exécution pour les requêtes fédérées sur les endpoints SPARQL. Deuxièmement, nous étendons la première proposition afin de réduire encore le temps d'exécution. Les deux propositions peuvent changer la méthode de jointure et l'ordre de jointures pendant l'exécution en utilisant une optimisation de requêtes adaptative. Les opérateurs adaptatifs proposés peuvent gérer différents taux d'arrivée des données et le manque de statistiques sur des relations. L'évaluation de performances dans cette thèse montre l'efficacité des opérateurs adaptatifs proposés. Ils offrent des temps d'exécution plus rapides et presque les mêmes temps de réponse, comparé avec une jointure par hachage symétrique. Par rapport à bind join, les opérateurs proposés se comportent beaucoup mieux en ce qui concerne le temps de réponse et peuvent également offrir des temps d'exécution plus rapides. En outre, le deuxième opérateur proposé obtient un temps de réponse considérablement plus rapide que la bind-bloom join et peut également améliorer le temps d'exécution. Comparant les deux propositions, la deuxième offre des temps d'exécution plus rapides que la première dans toutes les conditions. En résumé, les opérateurs de jointure adaptatifs proposés présentent le meilleur compromis entre le temps de réponse et le temps d'exécution. Même si notre objectif principal est de gérer différents taux d'arrivée des données, l'évaluation de performance révèle qu'ils réussissent à la fois avec des taux d'arrivée de données fixes et variés.