Thèse soutenue

Etude des mécanismes d'entretien et de propagation d'un arc électrique de court-circuit entre câbles endommagés dans les réseaux électriques d'aéronefs

FR  |  
EN
Auteur / Autrice : Thibault André
Direction : Philippe TeuletFlavien Valensi
Type : Thèse de doctorat
Discipline(s) : Ingénierie des plasmas
Date : Soutenance le 19/04/2017
Etablissement(s) : Toulouse 3
Ecole(s) doctorale(s) : École doctorale Génie électrique, électronique, télécommunications et santé : du système au nanosystème (Toulouse)
Partenaire(s) de recherche : Laboratoire : Laboratoire Plasma et Conversion d'Energie (Toulouse ; 2007-....)

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Les arcs électriques de défaut se produisant entre deux câbles endommagés peuvent donner lieu à un phénomène appelé " arc tracking ", qui se caractérise par le maintien et la propagation de cet arc le long des câbles, entraînant leur ablation progressive. Dans un réseau aéronautique, un tel défaut peut avoir de graves conséquences lorsqu'il apparaît au sein d'un toron de câbles, d'autant plus qu'il est susceptible de se transférer à une structure avoisinante. Un dispositif expérimental a été développé pour l'étude de ce phénomène. Il est constitué d'une alimentation conçue selon des spécifications propres au domaine aéronautique, permettant de générer un signal continu ou alternatif pendant une durée réglable. Afin de se rapprocher des conditions de vol (pression réduite à haute altitude), les essais sont effectués au sein d'une enceinte fermée, soit à 1 bar, soit à 95 mbar. Trois types de câbles sont testés, un en aluminium et deux en cuivre. En régime continu, ils sont reliés au + et au - de l'alimentation, et à deux phases en régime alternatif. Une plaque en aluminium, représentant la structure de l'avion et connectée au neutre du générateur en régime alternatif, est placée en regard de la partie dénudée des câbles, là où se produit l'arc, permettant un éventuel transfert de l'arc depuis les câbles vers cette plaque. Chaque test s'accompagne de l'acquisition systématique des signaux de courant et de tension, et deux capteurs de flux radiatif sont positionnés autour de l'arc. Une caméra rapide permet la visualisation du comportement de l'arc au cours de l'essai. Enfin, les échantillons de câbles sont pesés avant et après chaque test. Un bilan de puissance est réalisé pour les différentes configurations testées (courant, pression, câbles), afin d'estimer la répartition de la puissance totale entre les électrodes (fusion et vaporisation des câbles, conduction, rayonnement) et la colonne de plasma (rayonnement, conduction, convection). La part transférée aux électrodes est estimée au moyen de la valeur de la chute de tension aux électrodes et du courant. Une partie de cette puissance aux électrodes est à l'origine de la fusion et de la vaporisation des câbles (le matériau isolant comme le métal). Celle-ci est estimée grâce à un calcul thermodynamique à partir de la masse de câble ablatée, en considérant que la totalité a été fondue et que 1% a été vaporisé. La puissance transmise à la colonne d'arc est en partie rayonnée, mais le spectre de longueurs d'onde inférieures à 200 nm est absorbé dès les premiers microns d'air, et une estimation est effectuée à partir du calcul coefficient d'émission nette. Une partie importante de l'étude a porté sur le transfert de l'arc à la plaque en aluminium, en fonction de la distance entre les câbles et cette plaque et selon un critère de température en face arrière, mesurée par thermographie infrarouge. Il a ainsi été montré qu'à pression réduite l'arc est beaucoup plus diffus, et a tendance à s'accrocher à la plaque en aluminium à des distances environ deux fois plus grandes qu'à pression atmosphérique. Cependant, la puissance totale disponible étant inférieure d'environ 20%, les dégâts à la plaque en aluminium sont moins importants.