Thèse soutenue

Conception fabrication et caractérisation d’un photorécepteur cohérent en filière PIC InP pour les applications 100-400 Gbit/s
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Guillaume Santini
Direction : Badr-Eddine Benkelfat
Type : Thèse de doctorat
Discipline(s) : Electronique et télécommunications
Date : Soutenance le 20/12/2017
Etablissement(s) : Evry, Institut national des télécommunications
Ecole(s) doctorale(s) : École doctorale Informatique, télécommunications et électronique de Paris
Partenaire(s) de recherche : Laboratoire : Services répartis- Architectures- MOdélisation- Validation- Administration des Réseaux / SAMOVAR - Département Electronique et Physique / EPH
Université : Université Pierre et Marie Curie (Paris ; 1971-2017)
Jury : Président / Présidente : Aziz Benlarbi-Delaï
Examinateurs / Examinatrices : Delphine Marris-Morini, Jean-Pierre Vilcot, Jean-François Carpentier, Mohand Achouche
Rapporteurs / Rapporteuses : Delphine Marris-Morini, Jean-Pierre Vilcot

Résumé

FR  |  
EN

Ce travail porte sur la conception, la fabrication et la caractérisation d’un photorécepteur cohérent en filière PIC InP pour les applications 100-400 Gbit/s. La solution retenue est un récepteur cohérent pré-amplifié par un SOA pour permettre d’améliorer la responsivité du récepteur par rapport à un récepteur cohérent classique. De plus, ce récepteur est réalisé en technologie enterrée pour permettre un fonctionnement sur une plus grande gamme de longueurs d’onde. Enfin, un récepteur cohérent non pré-amplifié est aussi réalisé pour pouvoir évaluer l’impact de l’intégration du SOA sur le fonctionnement de notre récepteur. La première partie de cette étude est consacrée à des rappels sur les transmissions optiques à très haut débit, à un état de l’art sur les récepteurs cohérents, à une présentation des différents photodétecteurs et à une présentation de l’hybrid 90° qui est le composant coeur des récepteurs cohérents. Dans un second temps, nous présentons les différents choix retenus pour la conception de notre récepteur. L’étude de deux hybrid 90° simulés en technologie ridge et en technologie enterrée est détaillée. Nous commentons également le choix des photodiodes ainsi que le choix du SOA utilisé pour notre composant. Le troisième chapitre est consacré aux différentes étapes technologiques permettant la fabrication de notre récepteur cohérent pré amplifié. Nous commençons par une description des différentes techniques d’épitaxie utilisées. Ensuite, nous présentons en détails les 22 étapes technologiques nécessaires pour réaliser notre récepteur. Enfin, nous regroupons l’ensemble des caractérisations réalisées sur notre récepteur cohérent. Après un rappel sur les différentes parties de celui-ci et de leurs performances clés, nous caractérisons les composants unitaires formant notre récepteur (mixeur cohérent, photodiodes UTC et SOA). Enfin nous présentons les caractéristiques statiques et dynamiques de notre récepteur et nous comparons ses performances avec celles de l’état de l’art. Ces travaux de thèse ont permis de démontrer la faisabilité d’un récepteur pré-amplifié utilisant un SOA intégré en technologie InP enterrée avec un record de responsivité de 5 A/W. Ceci représente un gain de 12,5 dB par rapport à un récepteur cohérent non amplifié idéal et un gain de 15,5 dB par rapport à l’état de l’art des récepteurs cohérents. De plus, la consommation engendrée par cette intégration reste très faible (240 mW). Enfin, nous avons démontré une démodulation à 32 Gbauds avec un facteur Q de 14 dB. La bande passante de 40 GHz de nos diodes est compatible avec des applications à 56 Gbauds et peut être améliorée pour des applications à 100 Gbauds en réduisant la taille des photodiodes. Ce travail de thèse ouvre donc le chemin pour de nouveaux récepteurs pré-amplifés par un SOA pour des applications à 400 Gbit/s