Thèse soutenue

Etude de l'impact des conditions géologiques et climatiques sur l'efficacité énergétique des systèmes géothermiques de surface

FR  |  
EN
Auteur / Autrice : Mathias Cuny
Direction : Monica SirouxChristophe Fond
Type : Thèse de doctorat
Discipline(s) : Energétique
Date : Soutenance le 29/09/2017
Etablissement(s) : Strasbourg
Ecole(s) doctorale(s) : École doctorale Mathématiques, sciences de l'information et de l'ingénieur (Strasbourg ; 1997-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie (Strasbourg ; 2013-....)
Jury : Président / Présidente : Patrick Salagnac
Examinateurs / Examinatrices : Michel Feidt, Jian Lin
Rapporteurs / Rapporteuses : Patrick Salagnac, Mohammed El Ganaoui

Résumé

FR  |  
EN

Les systèmes géothermiques de surface extraient l’énergie du sol via un fluide caloporteur circulant dans un échangeur pour une profondeur ne dépassant pas 200 m. Deux typologies d’échangeurs sont généralement utilisées : les systèmes avec échangeurs verticaux, principalement affectés par les conditions géologiques ; et les échangeurs horizontaux, plus proches de la surface du sol, impactés essentiellement par les conditions climatiques. Dans le sol, les échanges thermiques sont majoritairement des transferts de chaleur par conduction. Ainsi, les propriétés thermo-physiques du sol influencent la quantité d’énergie extraite par les échangeurs. Afin de quantifier les propriétés thermo-physiques d’un sol sous l’influence des conditions géologiques et climatiques, deux dispositifs expérimentaux sont élaborés, conçus, instrumentés et validés au sein de notre laboratoire. Les résultats expérimentaux enrichissent les connaissances scientifiques sur le comportement hydrique d’un sol soumis à des événements pluvieux et l’impact de la contrainte verticale sur les propriétés thermo-physiques d’un sol. De plus, une étude numérique, à partir d’une modélisation 2D par éléments finis d’un échangeur airsol, évalue les performances énergétiques de ce dernier en fonction de différentes humidifications du sol et différents scénarios de pluie. Les résultats numériques révèlent ainsi l’intérêt d’utiliser un sol d’enrobage très humide pour accroître significativement les performances énergétiques d’un échangeur air-sol.