Quelques contributions aux méthodes de partitionnement automatique des séries temporelles financières, et applications aux couvertures de défaillance
Auteur / Autrice : | Gautier Marti |
Direction : | Frank Nielsen |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique |
Date : | Soutenance le 10/11/2017 |
Etablissement(s) : | Université Paris-Saclay (ComUE) |
Ecole(s) doctorale(s) : | École doctorale Sciences et technologies de l'information et de la communication (Orsay, Essonne ; 2015-....) |
Partenaire(s) de recherche : | Établissement opérateur d'inscription : École polytechnique (Palaiseau, Essonne ; 1795-....) |
Laboratoire : Centre de mathématiques appliquées de l'Ecole polytechnique (Palaiseau ; 1974-....) | |
Jury : | Président / Présidente : Julie Josse |
Examinateurs / Examinatrices : Frank Nielsen, Rama Cont, Michalis Vazirgiannis, Fabio Caccioli | |
Rapporteurs / Rapporteuses : Damiano Brigo, Fabrizio Lillo |
Mots clés
Résumé
Nous commençons cette thèse par passer en revue l'ensemble épars de la littérature sur les méthodes de partitionnement automatique des séries temporelles financières. Ensuite, tout en introduisant les jeux de données qui ont aussi bien servi lors des études empiriques que motivé les choix de modélisation, nous essayons de donner des informations intéressantes sur l'état du marché des couvertures de défaillance peu connu du grand public sinon pour son rôle lors de la crise financière mondiale de 2007-2008. Contrairement à la majorité de la littérature sur les méthodes de partitionnement automatique des séries temporelles financières, notre but n'est pas de décrire et expliquer les résultats par des explications économiques, mais de pouvoir bâtir des modèles et autres larges systèmes d'information sur ces groupes homogènes. Pour ce faire, les fondations doivent être stables. C'est pourquoi l'essentiel des travaux entrepris et décrits dans cette thèse visent à affermir le bien-fondé de l'utilisation de ces regroupements automatiques en discutant de leur consistance et stabilité aux perturbations. De nouvelles distances entre séries temporelles financières prenant mieux en compte leur nature stochastique et pouvant être mis à profit dans les méthodes de partitionnement automatique existantes sont proposées. Nous étudions empiriquement leur impact sur les résultats. Les résultats de ces études peuvent être consultés sur www.datagrapple.com.