Thèse soutenue

Processus de branchement pour des populations structurées et estimateurs pour la division cellulaire

FR  |  
EN
Auteur / Autrice : Aline Marguet
Direction : Vincent BansayeMarc Hoffmann
Type : Thèse de doctorat
Discipline(s) : Mathématiques fondamentales
Date : Soutenance le 27/11/2017
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale de mathématiques Hadamard (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Établissement opérateur d'inscription : École polytechnique (Palaiseau, Essonne ; 1795-....)
Laboratoire : Centre de mathématiques appliquées (Palaiseau, Essonne)
Jury : Président / Présidente : Jean Bertoin
Examinateurs / Examinatrices : Vincent Bansaye, Marc Hoffmann, Marie Doumic, Sylvie Méléard
Rapporteurs / Rapporteuses : Anne Gégout-Petit, Andreas E. Kyprianou

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Cette thèse porte sur l'étude probabiliste et statistique de populations sans interactions structurées par un trait. Elle est motivée par la compréhension des mécanismes de division et de vieillissement cellulaire. On modélise la dynamique de ces populations à l'aide d'un processus de Markov branchant à valeurs mesures. Chaque individu dans la population est caractérisé par un trait (l'âge, la taille, etc...) dont la dynamique au cours du temps suit un processus de Markov. Ce trait détermine le cycle de vie de chaque individu : sa durée de vie, son nombre de descendants et le trait à la naissance de ses descendants. Dans un premier temps, on s'intéresse à la question de l'échantillonnage uniforme dans la population. Nous décrivons le processus pénalisé, appelé processus auxiliaire, qui correspond au trait d'un individu "typique" dans la population en donnant son générateur infinitésimal. Dans un second temps, nous nous intéressons au comportement asymptotique de la mesure empirique associée au processus de branchement. Sous des hypothèses assurant l'ergodicité du processus auxiliaire, nous montrons que le processus auxiliaire correspond asymptotiquement au trait le long de sa lignée ancestrale d'un individu échantillonné uniformément dans la population. Enfin, à partir de données composées des traits à la naissance des individus dans l'arbre jusqu'à une génération donnée, nous proposons des estimateurs à noyau de la densité de transition de la chaine correspondant au trait le long d'une lignée ainsi que de sa mesure invariante. De plus, dans le cas d'une diffusion réfléchie sur un compact, nous estimons par maximum de vraisemblance le taux de division du processus. Nous montrons la consistance de cet estimateur ainsi que sa normalité asymptotique. L'implémentation numérique de l'estimateur est par ailleurs réalisée.