Thèse soutenue

Modélisation à grande échelle pour les phénomènes éruptifs

FR  |  
EN
Auteur / Autrice : Pierre Chopin
Direction : Tahar Amari
Type : Thèse de doctorat
Discipline(s) : Physique des plasmas
Date : Soutenance le 29/09/2017
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Ondes et matière (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Établissement opérateur d'inscription : École polytechnique (Palaiseau, Essonne ; 1795-....)
Laboratoire : Centre de Physique Théorique (Palaiseau ; 1958-....)
Jury : Président / Présidente : Michel Rieutord
Examinateurs / Examinatrices : Tahar Amari, Luc Damé
Rapporteurs / Rapporteuses : Marianne Faurobert-Scholl

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Cette thèse a pour objet la modélisation du champ magnétique de la couronne solaire à l'aide du code de reconstruction non linéaire XTRAPOLS, avec une attention particulière pour les environnements des phénomènes éruptifs. Le caractère novateur des études menées porte sur l'aspect sphérique global de la méthode.Trois études principales de cas sont présentées dans cette thèse. La première concerne les évènements éruptifs de février 2011, géoeffectifs, faisant figurer une région active étendue. Nous mettons en évidences plusieurs structures de tubes de flux torsadés, et caractérisons leur lien avec les structures à grande échelle.La deuxième concerne les évènements du 3 et 4 août 2011. Plusieurs régions actives sont présentes sur le disque solaires, et deux d'entre elles présentent une activité éruptive importante.Là encore, nous mettons en évidences des tubes de flux torsadés dans chacune de ces deux régions active,et mettons en lumière les liens topologiques qui existent entre elles.La Troisième concerne une étude faite dans le cadre d'un groupe NLFFF, pour l'étude de la modélisation non linéaire globale de la couronne. La date correspondant à la reconstruction est celle de l'éclipse totale de soleil du 20 mars 2015. Nous discutons ici de l'impact de différents type de données et de modèles utilisés, et soulignons l'importance de la cohérence temporelle et de l'inclusion du courant dans les régions actives.Les travaux présentés dans cette thèse ont donc permis de caractériser l'environnement global des régions actives éruptives et d'étudier les liens entre les éléments à différentes échelles. Nous présentons en guise d'ouverture différente méthode pour étendre la modélisation au delà de la surface source.