Modélisation physique des biocapteurs au base des transistors électrochimiques
Auteur / Autrice : | Anna Shirinskaya |
Direction : | Abderrahim Yassar |
Type : | Thèse de doctorat |
Discipline(s) : | Chimie |
Date : | Soutenance le 07/09/2017 |
Etablissement(s) : | Université Paris-Saclay (ComUE) |
Ecole(s) doctorale(s) : | École doctorale Sciences chimiques : molécules, matériaux, instrumentation et biosystèmes (Orsay, Essonne ; 2015-....) |
Partenaire(s) de recherche : | établissement opérateur d'inscription : École polytechnique (Palaiseau, Essonne ; 1795-....) |
Laboratoire : Laboratoire de physique des interfaces et des couches minces (Palaiseau, Essonne) | |
Jury : | Président / Présidente : Olivier Simonetti |
Examinateurs / Examinatrices : Abderrahim Yassar, Igor Zozoulenko, Yvan Bonnassieux, Giles Horowitz | |
Rapporteur / Rapporteuse : Benoît Piro, Sabine Ludwigs |
Mots clés
Mots clés contrôlés
Mots clés libres
Résumé
Les Transistors Organiques Electrochimiques (OECT) sont largement utilisés comme les capteurs dans de nombreux appareils bioélectroniques. Bien qu’ils aient été largement étudiés au cours de ces dernières années, il n'y a pas encore de compréhension fondamentale et univoque principe de fonctionnement d'un OECT, notamment en ce qui concerne le mécanisme du dé-dopage.Cette thèse est consacrée à la modélisation des Transistors Organiques Electrochimiques. Tout d'abord, un modèle d'état stationnaire numérique a été établi. Ce modèle utilisant les équations de Poisson-Boltzmann, Nernst-Planck et Nernst, nous permet de décrire finement le processus du dé-dopage dans la couche de PEDOT: PSS ainsi que, la distribution des ions et trous dans le capteur. Il a été prouvé expérimentalement que le modèle numérique dit de « neutralité global » est valable pour expliciter le fonctionnement global du capteur, mais aussi, l'origine et le résultat du processus du dé-dopage. La transition d’un modèle totalement numérique à un modèle analytique a été réalisée en ajustant la fonction analytique logistique paramétrique de Boltzmann au profil de conductivité calculé numériquement.Nous avons pu ainsi extraire, la fonction analytique de la dépendance du courant de drain en Fonction du potentiel local. Cette fonction ajuster sur un profil de courant de drain mesuré expérimentalement en fonction du potentiel appliqué permet d'obtenir la conductivité maximale d'une couche de PEDOT: PSS entièrement dopée. La conductivité maximale était dépendante non seulement du matériau, mais aussi de la taille du canal. Il est possible d'extraire, en utilisant la valeur de conductivité maximale et un modèle de semi-conducteur conventionnel, les autres paramètres pour la description complète d’OECT: densité intrinsèque de charge, densité de trous initiaux, concentration initiale de PSS- et capacité volumétrique de la couche polymère conductrice. Le fait d'avoir un outil permettant d'extraire et de caractériser facilement tous les OECT permet non seulement d'augmenter le niveau de description de compréhension du transistor, mais surtout de mieux maitriser la corrélation entre paramètres internes et externes.Finalement, l’approche que nous avons réalisée, couplant modélisation analytique et numérique, nous a permis de proposer une description complète du fonctionnement physique d’un OECT. En outre nous avons pu valider expérimentalement la pertinence de nos modèles en les comparants avec les caractéristiques obtenues via des mesures réelles.