Thèse soutenue

Réactions ion-molécule en phase gaz pour la chimie des ionosphères planétaires et des plasmas
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Allan Lopes
Direction : Christian Alcaraz
Type : Thèse de doctorat
Discipline(s) : Chimie
Date : Soutenance le 21/12/2017
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences chimiques : molécules, matériaux, instrumentation et biosystèmes (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Institut de chimie physique (Orsay, Essonne ; 2000-....)
établissement opérateur d'inscription : Université Paris-Sud (1970-2019)
Jury : Président / Présidente : Anne Zehnacker-Rentien
Examinateurs / Examinatrices : Christian Alcaraz, Anne Zehnacker-Rentien, Frédéric Merkt, Christian Naulin, Jan Zabka, Anne Lafosse
Rapporteurs / Rapporteuses : Frédéric Merkt, Christian Naulin

Résumé

FR  |  
EN

La thèse porte sur des études expérimentales de réactions d’ions positifs et négatifs pour lesquelles on cherche à caractériser l’effet des différentes formes d’énergie : excitation des ions parents et/ou énergie de collision sur la réactivité. Deux buts sont poursuivis. Le premier, fondamental, est de comprendre la dynamique réactionnelle des systèmes étudiés. Le deuxième est plus appliqué. Il s’agit de fournir des données pour la modélisation de la chimie des milieux complexes (ionosphères, plasmas…). Les systèmes étudiés concernent la réactivité de cations excités CH₃⁺ avec des hydrocarbures saturés et insaturés (alc-ane, -ènes et -ynes en C1 à C4) pour sonder la réactivité sur des molécules de fonctionnalité et de tailles variées ainsi que la réactivité de l’anion C₃N⁻ avec l’acétylène C₂H₂. Ces systèmes sont d’intérêt pour l’étude de l’ionosphère de Titan. Nous avons étudié la réactivité de ces systèmes sur le dispositif CERISES en fonction de l’énergie de collision et de l’énergie interne des ions parents. Les anions C₃N⁻ sont produits par attachement dissociatif d’électrons sur le précurseur BrC₃N. Les cations CH₃⁺ peuvent être formés par deux méthodes. Au laboratoire, l’impact électronique conduit, sur le méthane CH₄, à la formation de CH₃⁺ peu excité, et sur le chlorométhane CH₃Cl, à la formation de CH₃⁺ plus excité. Cette observation a permis de préparer les expériences au synchrotron SOLEIL où on utilise la photoionisation des radicaux CH₃ produits par la pyrolyse du nitrométhane CH₃NO₂ pour former les ions CH₃⁺ et contrôler leur excitation. La variation de l’énergie de photon entre 9.8 et 15 eV a permis de faire varier la distribution d’énergie vibrationnelle ou électronique des ions CH₃⁺. Le développement d’un détecteur de photoélectrons adapté à la source de radicaux a permis la réalisation d’expériences TPEPICO (Threshold PhotoElectron PhotoIon Coincidence) où les ions sont extraits de la source en coïncidence avec des électrons de seuil permettant ainsi un contrôle complet de leur énergie. Nous avons observé que l’énergie interne de CH₃⁺ peut jouer un rôle important sur sa réactivité en ouvrant certaines voies de réaction comme la dissociation séquentielle de certains produits (réactions avec le méthane, le propène…) ou bien la voie de transfert de charge endothermique (réactions avec le méthane, l’éthène) que l’énergie de collision ne favorise pas efficacement. L’observation de l’évolution de la section efficace de formation des produits en fonction des deux types d’énergie nous a également permis de discuter les mécanismes de formation de certains produits, comme ceux passant par la décomposition d’un complexe ou par des transferts plus directs. On a pu montrer que la réaction de C₃N⁻ + C₂H₂ produisait des ions C₂H⁻, CN⁻ et C₅N⁻ en faibles quantités et seulement au-dessus de seuils en énergie de collision qui excluent leur formation dans des atmosphères très froides comme celle de Titan, sauf s’il existe des processus formant les anions C₃N⁻ avec de l’énergie.