Thèse soutenue

Fonction et régulation des histone-désacétylases en réponse au stress chez Arabidopsis
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Tingting Lei
Direction : Dao Xiu Zhou
Type : Thèse de doctorat
Discipline(s) : Biologie
Date : Soutenance le 15/12/2017
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences du végétal : du gène à l'écosystème (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Institut des sciences des plantes de Paris-Saclay (Gif-sur-Yvette, Essonne ; 2015-....)
établissement opérateur d'inscription : Université Paris-Sud (1970-2019)
Jury : Président / Présidente : Valérie Gaudin
Examinateurs / Examinatrices : Dao Xiu Zhou, Valérie Gaudin, Wen-Hui Shen, Pierre Carol
Rapporteurs / Rapporteuses : Wen-Hui Shen, Pierre Carol

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

L'acétylation/désacétylation des histones joue un rôle important dans la régulation de divers processus du développement des plantes et de leur réponse au stress. Par contre, la régulation de l’activité des histone-desacétylases (HDAC) par des signaux cellulaires et la relation fonctionnelle entre les différentes HDAC au cours de la réponse au stress oxydatif et d'une élévation de la température ambiante restent encore mal connus. Mon travail de thèse a comporté : 1) l’analyse de la modification post-traductionnelle de la protéine HDA19, régulée par redox et celle des conséquences sur la régulation de l’expression de gènes et la réponse à l’acide salicylique (SA) ; 2) l'étude fonctionelle de HDA9, HDA15 et HDA19 dans la réponse à une élévation de la température ambiante. Dans la première partie, nous montrons que le changement redox induit par SA régule l’accumulation nucléaire de la protéine HDA19 via une S-nitrosylation réversible. Le traitement à SA, ou au donneur physiologique d’oxyde nitrique, S-nitrosoglutathione, augmente les marques d'acétylation des histones d'HDA19 dans des plantules d’Arabidopsis. Des lignées mutantes d’hda19 présentent un état plus oxydé avec une augmentation de l’expression de gènes associés au ROS/RNS, ainsi qu'une accumulation de nicotinamide adénine dinucléotide et de glutathionne. Ces résultats suggèrent que SA induit la S-nitrosylation d’HDA19, réduit son accumulation nucléaire et par conséquent augmente l’acétylation des histones. Dans la seconde partie, nous montrons que HDA9, HDA19 et HDA15 sont toutes impliquées dans la réponse de la plante à l’élévation de la température ambiante. Des mutants hda15 montrent une réponse constitutive à des températures élevées dans des conditions normales, alors que les mutants hda19 et hda9 ont des phénotypes insensibles à la température élevée. L’analyse de l’expression de gènes par RT-PCR et RNA-seq révèle que la mutation d’HDA15 provoque une augmentation de transcrits des gènes impliqués dans le métabolisme primaire et cellulaire lorsque les plantules sont transférées de 20°C à 27°C pendant 4 heures. Par contre, la mutation d’HDA19 conduit à l’induction de gènes impliqués dans des réponses au stress, alors que les gènes induits par la mutation d’HDA9 après le transfert à 27°C ne semblent pas concerner des catégories fonctionnelle spécifiques. Il semble donc que la réponse des plantes à l’élévation de la température soit régulées par HDA9 et HDA19 par différentes voies. Ces résultats suggèrent que de différents membres d’HDAC ont des rôles distincts ou opposés dans la réponse à l’élévation de la température, en affectant l’expression de gènes de différentes catégories. Les travaux de ma thèse apportent un éclairage nouveau sur la fonction des HDAC, en enrichissant la compréhension de la régulation de l’expression génique chez la plante.