Thèse soutenue

Développement d’un oscillateur paramétrique optique continu intense et à faible bruit pour des applications aux communications quantiques.

FR  |  
EN
Auteur / Autrice : Aliou Ly
Direction : Fabien Bretenaker
Type : Thèse de doctorat
Discipline(s) : Optique, optoélectronique, microondes
Date : Soutenance le 08/12/2017
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Ondes et matière (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : Université Paris-Sud (1970-2019)
Laboratoire : Laboratoire Aimé Cotton (Orsay, Essonne)
Jury : Président / Présidente : Patrick Georges
Examinateurs / Examinatrices : Fabien Bretenaker, Patrick Georges, Patricia Segonds, Giuseppe Leo, Antoine Godard, Yannick Dumeige, Thomas Oksenhendler
Rapporteurs / Rapporteuses : Patricia Segonds, Giuseppe Leo

Résumé

FR  |  
EN

La portée des communications quantiques est limitée à quelques dizaines de km en raison de l’atténuation dans les fibres. Les répéteurs quantiques (relais quantiques synchronisés par des mémoires quantiques photoniques) furent introduits afin d’accroître ces distances. Or, pour le moment, les mémoires les plus performantes fonctionnent à des longueurs d’onde n’appartenant pas à la bande C télécom. Afin de profiter de ces mémoires, l’utilisation d’interfaces quantiques (milieu non linéaire quadratique) fut proposée comme alternative. En ajoutant ainsi par somme de fréquences un photon de pompe de longueur d’onde appropriée au photon télécom portant l’information, on transfère l’information à une longueur d’onde compatible avec les mémoires, et ceci sans dégradation de l’information portée initialement par le photon télécom. Notre but est ainsi de construire un oscillateur paramétrique optique continu simplement résonant (SRO) qui fournira un faisceau à 1648 nm qui sera sommé en fréquence aux photons télécom à 1536 nm pour transférer l’information vers un photon stockable dans une mémoire à base d’atomes alcalins. Pour transférer efficacement l’information, le SRO doit satisfaire quelques critères : une haute finesse spectrale (largeur de raie ~kHz), une forte puissance (~1W) et une longueur d’onde plus grande que celle du photon télécom à convertir. Pour ce faire, nous utilisons le faisceau non-résonant d’un SRO continu. Le premier travail réalisé dans cette thèse a été de faire la démonstration de la possibilité d’avoir un faisceau à la fois intense et pur spectralement en sortie d’un SRO continu. En réutilisant un SRO déjà développé durant nos travaux antérieurs, nous avons pu stabiliser au niveau du kHz la fréquence du faisceau non résonant à 947 nm (onde signal) de ce SRO, tout en émettant une puissance de plus d’un watt. Ensuite, nous avons conçu le SRO dont le faisceau non résonant à 1648 nm (onde complémentaire) a été stabilisé à court terme en-dessous du kHz avec une puissance de l’ordre du watt. Nous avons ensuite étudié la stabilité à long terme de la longueur d’onde du complémentaire à 1648 nm. Nous avons mesuré des dérives de fréquences de l’ordre de 10 MHz/mn. Ces dérives, venant essentiellement de la cavité de référence sur laquelle le SRO est asservi, peuvent être réduites en contrôlant activement la cavité d’une part, et en utilisant des techniques de stabilisation en fréquence robustes, d’autre part.