Thèse soutenue

Lois d’échelles et propriétés statistiques multifractales de la topographie des planètes

FR  |  
EN
Auteur / Autrice : François Landais
Direction : Frédéric Schmidt
Type : Thèse de doctorat
Discipline(s) : Structure et évolution de la Terre et des autres planètes
Date : Soutenance le 24/11/2017
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences mécaniques et énergétiques, matériaux et géosciences (Gif-sur-Yvette, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Géosciences Paris-Saclay (Orsay, Essonne ; 2004-....)
établissement opérateur d'inscription : Université Paris-Sud (1970-2019)
Jury : Président / Présidente : Valérie Ciarletti
Examinateurs / Examinatrices : Frédéric Schmidt, Valérie Ciarletti, Ioulia Tchiguirinskaia, Pascal Allemand, Hauke Hussmann, Laurent Jorda
Rapporteurs / Rapporteuses : Ioulia Tchiguirinskaia, Pascal Allemand

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

Au cours des 20 dernières années, le développement des méthodes de télédétection et le succès des missions spatiales ont considérablement enrichi nos connaissances sur les surfaces planétaires révélant une immense diversité de morphologies. Etant le reflet de l'interaction et de la compétition entre des processus géologiques dont les modalités sont variables d'un corps à l'autre, elles sont largement étudiées pour retracer l'histoire géologique des planètes telluriques. En particulier, des informations précieuses sur la nature des processus et sur les lois générales qui contrôlent la formation et l'évolution des paysages sont enregistrées dans le champ topographique qui peut être analysé en tant que champ statistique. Nous rapportons dans cette thèse les résultats d'une étude comparative des propriétés statistiques de la topographie des principaux corps du système solaire en nous appuyant sur le volume croissant de données altimétriques et photogrammétriques. Notre approche est centrée sur la notion de loi d'échelle qui vise à caractériser les symétries du champ en traduisant le caractère auto-similaire des surfaces naturelles : les détails d'une surface ressemblent en général à des versions réduites de l'ensemble. Nous mettons en oeuvre plusieurs méthodes d'analyse de données dites «multifractales» pour dégager le meilleur modèle statistique capable de décrire la topographie dans différents contexte et proposons de nouveaux indicateurs de rugosité à l'échelle globale, régionale et locale. Nous montrons qu'en dépit de leur diversité, les surfaces du système solaire respectent des lois statistiques similaires que nous explicitons. En particulier nous montrons que la distribution globale des pentes d'un corps respecte en général des lois multifractales pour les échelles supérieures à 10-20km et présente une structure statistique différente pour les échelles inférieures. Enfin nous proposons une méthode pour générer des topographies synthétique sphériques dont le propriétés statistiques sont similaires aux topographie planétaire du système solaire.