Thèse soutenue

Etude et conception d'une cavité Fabry-Perot de haute finesse pour la source compacte de rayons X ThomX

FR  |  
EN
Auteur / Autrice : Pierre Favier
Direction : Fabian Zomer
Type : Thèse de doctorat
Discipline(s) : Physique des accélérateurs
Date : Soutenance le 20/11/2017
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Particules, hadrons, énergie et noyau : instrumentation, imagerie, cosmos et simulation (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire de l'accélérateur linéaire (Orsay, Essonne ; 1969-2019)
établissement opérateur d'inscription : Université Paris-Sud (1970-2019)
Jury : Président / Présidente : Achille Stocchi
Examinateurs / Examinatrices : Fabian Zomer, Achille Stocchi, Alessandro Variola, Éric Cormier, Marc Hanna, Antoine Courjaud
Rapporteurs / Rapporteuses : Alessandro Variola, Éric Cormier

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

La diffusion Compton inverse est un moyen unique pour produire des rayons X quasi-monochromatiques via l'interaction entre des électrons relativistes et une impulsion laser. Ce processus présente l'avantage de produire des flux très élevés de rayons X avec des énergies supérieures à quelques dizaines de keV. De plus, la divergence du faisceau de sortie est beaucoup plus grande que dans les sources de lumière synchrotron classiques et le faisceau de rayons X est donc plus facile à manipuler. Nous présentons une source de rayons X en construction à l'Université Paris-Sud, ThomX. Cette source utilise un faisceau d'électrons de 50 MeV qui interagit à 16,7 MHz avec une impulsion laser de quelques picosecondes dont la puissance moyenne est à l'état de l'art avec 600 kW, permettant de produire des rayons X entre 30 et 50 keV avec un flux de 10^{13} ph/s. Cette gamme d'énergie ainsi que la dépendance énergie-angulaire provenant du processus physique conviennent aux applications sociétales comme la radiothérapie ou l'histoire de l'art.Une cavité optique de très haute finesse (> 24000) est utilisée comme prototype pour effectuer des travaux de R&D pour la source ThomX. 400 kW de puissance laser moyenne ont été stockés avec succès dans cette cavité, en utilisant un faisceau laser d'entrée de seulement 40 W. Ce résultat, unique au monde, permet d'envisager l'achèvement de la source de rayons X de faible coût et de haut flux ThomX. Cette thèse explique les études expérimentales et analytiques qui ont été réalisées pour atteindre cette performance, dont une généralisation du processus d'empilement des impulsions laser pour les faisceaux laser ayant une fréquence de répétition différente de celle de la cavité, et les méthodes développées pour l'amélioration expérimentale du couplage spatial.