Thèse soutenue

Analyse de stabilité de systèmes à coefficients dépendant du retard

FR  |  
EN
Auteur / Autrice : Chi Jin
Direction : Islam Boussaada
Type : Thèse de doctorat
Discipline(s) : Automatique
Date : Soutenance le 21/11/2017
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences et technologies de l'information et de la communication (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : Université Paris-Sud (1970-2019)
Laboratoire : Laboratoire des signaux et systèmes (Gif-sur-Yvette, Essonne ; 1974-....)
Jury : Président / Présidente : Catherine Bonnet
Examinateurs / Examinatrices : Islam Boussaada, Catherine Bonnet, Rifat Sipahi, Vladimir Rasvan, Keqin Gu, Silviu-Iulian Niculescu, Gábor Stépán
Rapporteurs / Rapporteuses : Rifat Sipahi, Vladimir Rasvan, Yang Kuang

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

Des systèmes avec des coefficients dépendant du retard ont été rencontrés dans diverses applications de la science et de l'ingénierie. Malgré la littérature abondante sur les systèmes de temporisation, il y a peu de résultats concernant l'analyse de stabilité des systèmes avec des coefficients dépendant du retard. Cette thèse est consacrée à l'analyse de stabilité de cette classe de systèmes.Les méthodes d'analyse de la stabilité sont développées à partir de l'équation caractéristique correspondante suivant une approche généralisée tau-décomposition. Étant donné un intervalle d'intérêt de retard, nous sommes capables d'identifier toutes les valeurs de retard critique contenues dans cet intervalle pour lesquelles l'équation caractéristique admet des racines sur l'axe imaginaire du plan complexe. Le critère de direction de croisement des racines sont proposées pour déterminer si ces racines caractéristique se déplacent vers le plan complexe demi-gauche ou demi-droite lorsque le paramètre de retard passe par ces valeurs de retard critique. Le nombre de racines caractéristiques instables pour un retard donné peut ainsi être déterminé. Notre analyse comprend les systèmes avec un seul retard ou des retards proportionnés sous certaines hypothèses. Le critère de direction de croisement des racines développés dans cette thèse peut être appliqués aux multiple racines caractéristiques, ou aux racines caractéristiques dont la position paramétrée par le retard est tangent à l'axe imaginaire. En tant qu'application, il est démontré que les systèmes avec des coefficients dépendant du retard peuvent provenir de schémas de contrôle qui utilisent une sortie retardée pour approcher ses dérivés pour la stabilisation. Les méthodes d'analyse de stabilité développées dans cette thèse sont adaptées et appliquées pour trouver les intervalles de retard qui atteignent un taux de convergence demandé du système en boucle fermée.